

ADAM M. DUMVILLE Direct Dial: 603.230.4414 Email: adam.dumville@mclane.com Admitted in NH and MA 11 South Main Street, Suite 500 Concord, NH 03301 T 603.226.0400 F 603.230.4448

#### Via Electronic Mail and Hand Delivery

December 1, 2016

New Hampshire Site Evaluation Committee Pamela G. Monroe, Administrator 21 South Fruit Street, Suite 10 Concord, NH 03301

Re: SEC Docket No. 2015-04: Public Service Company of New Hampshire d/b/a Eversource Energy for a New 115 kV Transmission Line from Madbury Substation to Portsmouth Substation – Characterization of Sediment Quality Along Little Bay Crossing, Durham to Newington, NH.

Dear Ms. Monroe:

Enclosed for filing in the above-captioned docket, please find a report completed by Normandeau Associates on behalf of the Applicant in support of their Application for a Certificate of Site and Facility, titled *Characterization of Sediment Quality Along Little Bay Crossing, Durham to Newington, NH.* 

Please contact me directly should you have any questions.

Sincerely,

adam Bill

Adam M. Dumville

AMD: Enclosure

cc: Distribution List (via e-mail) Dori Wiggin, NH Department of Environmental Services (via e-mail) Owen David, NH Department of Environmental Services (via e-mail)

> McLane Middleton, Professional Association Manchester, Concord, Portsmouth, NH | Woburn, Boston, MA



# Public Service of New Hampshire Seacoast Reliability Project

# Characterization of Sediment Quality Along Little Bay Crossing

Durham to Newington, NH

Presented To: Public Service Company of New Hampshire 780 North Commercial Street Manchester, NH 03101

Submitted: December 1, 2016

Submitted By: Normandeau Associates, Inc. 25 Nashua Road Bedford, NH 03110

www.normandeau.com

## **Table of Contents**

#### Page

#### PAGE 1

| EXEC | UTIN | /E SUN  | IMARY                                                       | 3  |
|------|------|---------|-------------------------------------------------------------|----|
| 1.0  | INT  | RODU    | CTION                                                       | 4  |
| 2.0  | MET  | THODS   | 5                                                           | 6  |
|      | 2.1  | Sedim   | ENT COLLECTION                                              | 6  |
|      | 2.2  | SAMP    | LE HANDLING AND ANALYSIS                                    | 6  |
| 3.0  | RES  | ULTS    |                                                             | 9  |
|      | 3.1  | Field   | CHARACTERIZATION OF SEDIMENT CORES                          | 9  |
|      | 3.2  | Anal    | YTICAL RESULTS                                              |    |
|      |      | 3.2.1   | Physical Characteristics                                    | 10 |
|      | 3.3  |         | LS                                                          |    |
|      | 3.4  | Orga    | NIC COMPOUNDS                                               | 13 |
|      |      | 3.4.1   | Polycyclic Aromatic Hydrocarbons (PAHs)                     | 13 |
|      |      | 3.4.2   | Polychlorinated Byphenyls (PCBs)                            | 13 |
|      |      | 3.4.3   | Total Petroleum Hydrocarbons (TPH)                          |    |
|      |      | 3.4.4   | Dioxins/Furans                                              | 14 |
|      |      | 3.4.5   | Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate |    |
|      |      |         | (PFOS)                                                      | 14 |
| 4.0  | CON  | NCLUS   | IONS                                                        | 14 |
| 5.0  | REF  | ERENC   | CES                                                         | 22 |
|      |      |         | COLOGICAL RISK ANALYSIS                                     |    |
| APPE | ENDL | X B: VI | BRACORE BORING LOGS                                         |    |

#### **APPENDIX C: ANALYTICAL RESULTS**

## List of Tables

#### Page

| Table 1. | Proposed sampling parameters, testing limits and analytical methods for sediments along SRP cable route in Little Bay                                       | 8  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. | Qualitative description of sediments along cable route from vibracore collections, September 2016.                                                          | 9  |
| Table 3. | Physical characteristics of sediments along the SRP cable route in Little<br>Bay                                                                            | 16 |
| Table 4. | Concentration (mg/kg [ppm]) of metals in sediments along the SRP cable route in Little Bay                                                                  | 16 |
| Table 5. | Concentration (µg/kg [ppb]) of Polycyclic Aromatic Hydrocarbons<br>(PAHs) along the SRP cable route in Little Bay                                           | 17 |
| Table 6. | Concentration (µg/kg [ppb]) of Polychlorinated Biphenyls (PCBs) in sediments along the SRP cable route in Little Bay                                        | 18 |
| Table 7. | Concentration (µg/kg [ppm]) of Total Petroleum Hydrocarbons (TPH) in sediments along the SRP cable route in Little Bay                                      | 19 |
| Table 9. | Concentration (ng/g [ppb]) of Perfluorooctanoic acid (PFOA) and<br>Perfluorooctane sulfonate (PFOS) in sediments along the SRP cable route<br>in Little Bay | 19 |
| Table 8. | Concentration (pg/g [pptr]) of Dioxins/Furans in sediments along the SRP cable route in Little Bay                                                          | 20 |

## List of Figures

#### Page

| Figure 1. | Seacoast Reliability Project Location Map                                                                                        | 5 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2. | Sediment Sampling Locations                                                                                                      | 7 |
| 0         | National Coastal Condition Assessment Sampling Locations, 2000-2010.<br>Source: http://www.epa.gov/emap/nca/html/data/index.html | 2 |

## **Executive Summary**

Public Service Company of New Hampshire d/b/a Eversource Energy (PSNH) is proposing to construct a new 115 kilovolt (kV) transmission line between the existing Madbury and Portsmouth substations. The Seacoast Reliability Project (SRP) would be located in the Towns of Madbury, Durham and Newington as well as the City of Portsmouth, in Strafford and Rockingham Counties, New Hampshire. The 12.9-mile long project would begin at the existing PSNH Madbury Substation in Madbury, traversing Durham, crossing approximately 0.9 miles of Little Bay via an underwater cable into Newington, and then continuing east before ending in Portsmouth. The entire project lies within existing electric corridor on land, and a mapped cable corridor across Little Bay. The proposed cable installation methods in Little Bay include jet plowing and hand jetting, and will necessarily disturb sediments and suspe101nd them into the water column.

Previous testing of surface sediments by USEPA indicated that sediment quality in Little Bay is good. However, in response to concerns regarding the potential increased exposure risk resulting from the dispersal of possible sediment-borne contaminants in the Great Bay system, Eversource conducted sediment testing along the cable route. Sediments along the proposed cable crossing were sampled to the planned burial depth where possible using a vibratory sampler. At several locations, the presence of stiff, naturally occuring clay ("native" or "parent" material) several feet below the substrate surface prevented penetration of the sampler to the full planned depth. In shallow portions of the route where cable burial is planned to be 3.5 feet, four-foot deep cores were collected, homogenized, and analyzed for chemical constituents. Where the cable will cross the channel, burial will be to 8 feet. When cores penetrated greater than 4 feet, the upper 4 feet of sediments was separated from the lower section and the two portions were analyzed separately.

All samples were analyzed for typical dredge material analytes (grain size, total organic carbon (TOC), a suite of metals, specific PAHs, and specific PCBs) as well as total petroleum hydrocarbons (TPH), dioxins/furans, and perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Results were compared to existing data on sediment contaminants in Little Bay and to available screening criteria that were developed based on biological responses to exposure. Grain size, TOC, metal, PAH, and PCB concentrations had all been studied in Little Bay during the US EPA National Coastal Condition Assessment (NCCA) program. Results of the site-specific survey were consistent with the NCCA data and were all below levels of environmental concern with the exception of arsenic. Arsenic was slightly higher than the lowest screening level value, but within the range of concentrations observed in Little Bay in the NCCA program. The NCCA program also included bioassay testing and determined that exposure to sediments from Little Bay resulted in no significant difference in mortality compared to reference sediments.

TPH, PFOA, and PFOS results all fell below detection limits in every sample. Dioxins/furans occurred in most samples but at very low levels, never exceeding the screening guidelines. As discussed in Appendix A, the results of the sediment testing were examined in the context of ecological risk. This analysis concluded that there is no potential for ecological effects from constituents of potential concern in the sediments that will be disturbed during cable installation, including metals, PAHs, PCBs, PFCs, dioxins and furans. Grain size data were consistent with the values used during the sediment plume modeling that predicted the potential to exposure Great Bay Estuary resources to suspended sediments during cable installation using jet plow and hand jetting. Coupled with the high quality of the sediments in terms of contaminants, this consistency indicates that impacts to bay resources as a result of cable installation will be minimal.

## 1.0 Introduction

Public Service Company of New Hampshire d/b/a Eversource Energy (PSNH) is proposing to construct a new 115 kilovolt (kV) transmission line between their existing Madbury and Portsmouth substations to enhance the electric reliability in the seacoast region. The Seacoast Reliability Project (SRP) would be located in the Towns of Madbury, Durham and Newington as well as the City of Portsmouth, in Strafford and Rockingham Counties, New Hampshire. The SRP is proposed to be approximately 12.9 miles long including a 0.9-mile crossing under Little Bay (Figure 1). The cable crossing will directly affect a corridor approximately 90 feet wide within a charted Cable Area approximately 1,000 feet wide.

The SRP will cross under Little Bay by being buried 3.5-8 feet in the substrate using jet plow and hand jet technology. For this crossing, the transmission line will be necessarily split into three cables to maintain the required transmissivity for the reliability project.

Sediments along the route for the SRP submarine cables across Little Bay will be fluidized during installation via jet plow technology. Some of this material will be suspended and transported away from the cable route as modeled by RPS ASA (2015). The model predicts that sediments will remain in the water column for a limited duration (up to several hours) before being redeposited and that the exposure of sensitive receptors (e.g., shellfish beds; aquaculture facilities; eelgrass) will be limited at most, although Eversource acknowledges that conditions during installation may differ somewhat from the assumptions used in the modeling. In order to gain a more complete understanding of the potential exposure risk to natural resources, Normandeau tested the sediments along the route for contaminants.

Normandeau has been the lead environmental consultant for Eversource for the SRP since 2013. Normandeau has been responsible for characterizing environmental conditions and evaluating impacts from construction and operation of the SRP. Normandeau's staff have extensive experience sampling marine sediments and interpreting results of contaminant testing. GEI contributed to the development of testing requirements and interpretation of the results through their expertise in ecological risk assessment and sediment remedial investigations.

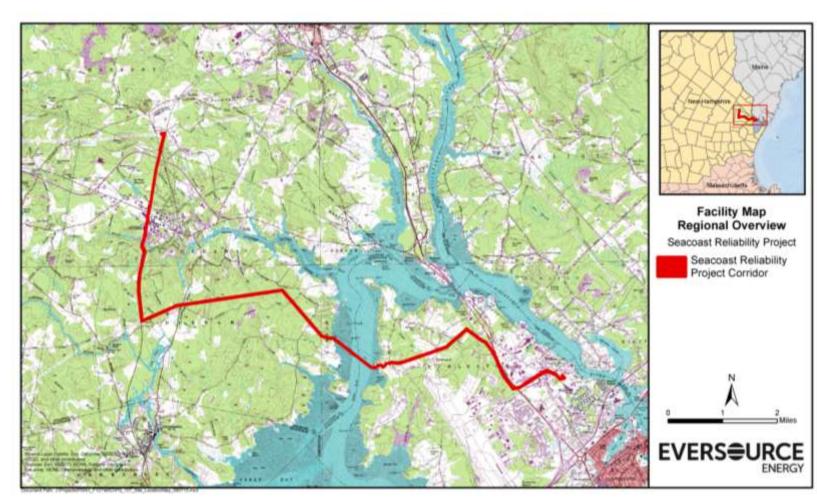



Figure 1. Seacoast Reliability Project Location Map.

თ

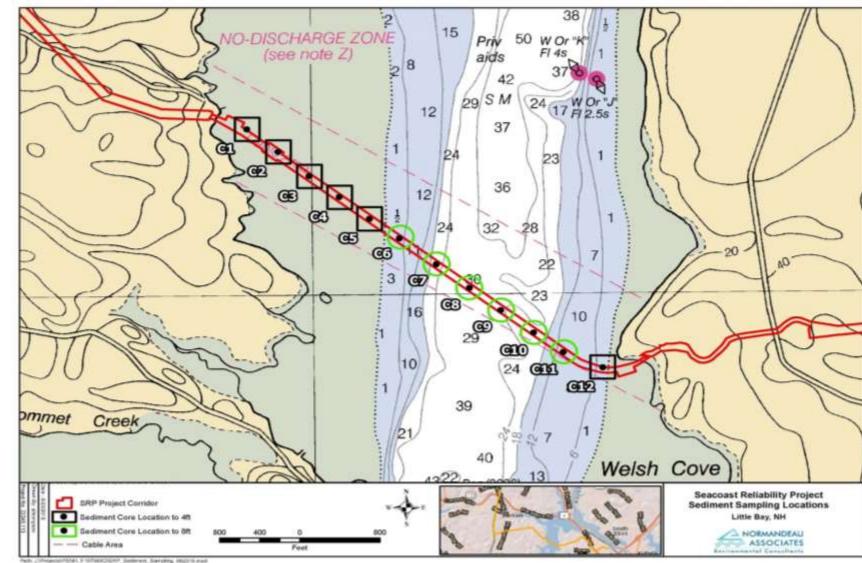
## 2.0 Methods

This section describes the methods used to investigate estuarine sediments along the Little Bay crossing. The sampling and testing plan were provided to USACE and NH DES for concurrence prior to collection of sediments.

## 2.1 Sediment Collection

Twelve sampling locations were allocated along the cable corridor (Figure 2) in proportion to the two cable burial depths (3.5 ft. and 8 ft.) with the goal of collecting sediment cores to the full burial depth at each location. Collections were made using a Rossfelder Model P-3, low frequency vibro-percussive vibracore. Coring tubes were 3-inch diameter semi-rigid Cellulose Acetate Butyrate (CAB) tubes with disposable stainless steel core catchers riveted to the tube. The use of CAB tubes allows samples to be collected without an outer housing or core barrel that needs to be decontaminated between sample locations. At each sampling location, up to three attempts were made to achieve collection of a full length core.

Sampling locations were documented using a Trimble GeoXT GPS with an accuracy of <1meter.


In areas where the cable will be buried to 3.5 ft, the uppermost 4 ft portion of each core was characterized. In areas where cable burial will be 8 ft., the core was divided into upper (top 4 ft) and lower segments. Each core was examined for evidence of stratification within each segment to determine whether further separation for chemical testing was necessary. No stratification was evident so no additional subsampling was done. Each segment identified for chemical analysis was placed into a disposable aluminum container, homogenized with disposable aluminum utensils and then subsamples were placed into containers provided by the analytical laboratories. Separate equipment was used for homogenizing each sample to eliminate the risk of cross-contamination.

## 2.2 Sample Handling and Analysis

Samples were stored in containers provided by the laboratories on wet ice until delivery to the analytical laboratory. Each sediment sample was tested for the parameters shown on Table 1 which were taken from the recommended testing limits outlined in the Regional Implementation Manual (RIM; U.S. EPA and U.S. Army corps of Engineers 2004), a document that delineates how estuarine and marine sediments being proposed for dredging and aquatic disposal should be tested for contaminants. In addition to the parameters required by the RIM, samples were tested for total petroleum hydrocarbon (TPH) in response to a request by NHDES; dioxins/furans in response to concern that these compounds had been detected in the past in the estuary and tributaries; and, perfluoro compounds (PFCs) in response to concern that contaminants occurring in groundwater at the adjacent Pease Superfund site could have been transported to the estuary. Results were compared to available regulatory criteria or guidelines as described in Section 3.2.

GEI reviewed the results in the context of ecological risk. Their analytical approach is described in Appendix A1.

SEACOAST RELIABILITY PROJECT: SEDIMENT CHARACTERIZATION REPORT



Sediment Sampling Locations Figure 2.

| Table 1. | Proposed sampling parameters, testing limits and analytical methods for |
|----------|-------------------------------------------------------------------------|
|          | sediments along SRP cable route in Little Bay.                          |

| Analytical<br>Laboratory | Parameter                           | RIM Testing Limit<br>(dry weight)           | Analytical<br>Method |
|--------------------------|-------------------------------------|---------------------------------------------|----------------------|
| Alpha Analytical         | Arsenic                             | 0.4 ppm                                     | 6020A                |
|                          | Cadmium                             | 0.07 ppm                                    | 6020A                |
|                          | Chromium                            | 0.5 ppm                                     | 6020A                |
|                          | Copper                              | 0.5 ppm                                     | 6020A                |
|                          | Lead                                | 0.5 ppm                                     | 6020A                |
|                          | Mercury                             | 0.02 ppm                                    | EPA 7474             |
|                          | Nickel                              | 0.5 ppm                                     | 6020A                |
|                          | Zinc                                | 1.0 ppm                                     | 6020A                |
|                          | Polycyclic Aromatic Hydrocarbons    | 10 ppb                                      | 8270D-SIM            |
|                          | (PAHs)                              |                                             |                      |
|                          | Polychlorinated Biphenyls (PCBs)    | 1 ppb                                       | 8270D-SIM            |
|                          | Total Organic Carbon                | 0.1%                                        | 9060A                |
|                          | Percent Water                       | 1.0%                                        | 2540G                |
|                          | Grain Size Distribution – wet sieve | Sieve Nos. 4, 10, 40, 60,                   | ASTM D422            |
|                          |                                     | 200                                         |                      |
|                          | Total Petroleum Hydrocarbons        | 10,000 ppm <sup>a</sup>                     | 8015C                |
| Cape Fear Analytical     | Dioxins/Furans                      | 1 ppt (tetra), 5 ppt<br>(octa) <sup>b</sup> | EPA 1613B            |
| Vista Analytical         | Perflouro Compounds (PFCs)          | 6 ppb <sup>b</sup>                          | Modified EPA 537     |

<sup>a</sup>NH DES criterion for remediation of contaminated soils

<sup>b</sup>no regulatory criteria available; recommendation by GEI based on ecorisk evaluation (Appendix A)

## 3.0 Results

## 3.1 Field Characterization of Sediment Cores

Sediment boring logs are provided in Appendix B and are summarized in Table 2.

# Table 2.Qualitative description of sediments along cable route from vibracore<br/>collections, September 2016.

| Zone             | Station | Penetration<br>Depth | Core Recovery<br>Actual/Planned | Sediment Description                                                       |
|------------------|---------|----------------------|---------------------------------|----------------------------------------------------------------------------|
| Tidal            | C-1     | 51″                  | 50"/48"                         | Fine grained saturated clay with trace sand, uniform                       |
| Flat (west)      | C-2     | 60″                  | 59"/48"                         | throughout                                                                 |
|                  | C-3     | 60″                  | 58"/48"                         |                                                                            |
|                  | C-4     | 58″                  | 55"/48"                         |                                                                            |
|                  | C-5     | 55″                  | 54"/48"                         |                                                                            |
| Western<br>Slope | C-6     | 66″                  | 63"/96"                         | Upper 48": fine grained saturated clay with trace sand, uniform throughout |
|                  |         |                      |                                 | Below 48": fine grained saturated clay with trace sand, uniform throughout |
| Channel          | C-7     | 60″                  | 55"/96"                         | Upper 12": saturated clay with sand, uniform throughout                    |
|                  |         |                      |                                 | Below 12": fine grained saturated clay, uniform throughout                 |
|                  | C-8     | 38″                  | 36"/96"                         | Upper 19": uniform fine sand                                               |
|                  |         |                      |                                 | Below 19": uniform saturated clay                                          |
|                  | C-9     | 15″                  | 14"/96"                         | Upper 9": medium sand                                                      |
|                  |         |                      |                                 | Below 9": uniform saturated clay with sand                                 |
|                  | C-10    | 24″                  | 23"/96"                         | Fine sand, uniform                                                         |
| Eastern          | C-11    | 94″                  | 89″/96″                         | Upper 14": silt with sand                                                  |
| Slope            |         |                      |                                 | Below 14": uniform saturated clay                                          |
| Welsh Cove       | C-12    | 37″                  | 36"/48"                         | Uniform saturated clay with sand                                           |

The planned sampling depth of four feet was achieved at Stations C-1, C-2, C-3, C-4, and C-5. At Station C-12, the corer penetrated to just over 3 feet because of the density of the clay substrate. It was not possible to collect the full planned length of eight foot cores at Stations C-6 through C-10, likely because of the density of the underlying clay substrate at these stations. Retrieval at C-11 was close to the planned length of eight feet.

Cores from Stations C-6, C-7, and C-11 were split into upper (top four feet) and lower (below four feet) segments for physical and chemical analyses.

## 3.2 Analytical Results

Complete analytical laboratory results are provided in Appendix A. Review of the laboratory report showed that each of the analytical laboratories involved used the requested methods and met the appropriate detection limits. Quality control testing (matrix spike [MS] and matrix spike duplicates [MSD], equipment blanks) results were within acceptable ranges for most analytes. Although the MS/MSD for some compounds are outside of control limits, the laboratory control sample and duplicate can be relied upon to demonstrate accuracy in the results. Additional discussion of analytical quality control testing is included in Appendix A1.

Analysis of grain size, TOC, metals, PAHs, and PCBs is typically required for dredging projects. Additional analytes were included in this assessment to address potential local concerns:

- Total petroleum hydrocarbon Requested by DES
- Dioxins/furans Surface Water Quality Status data (EPA 2008) indicated that dioxins were present in portions of the upper Great Bay Estuary and tributaries
- PFCs present in groundwater at Pease

### 3.2.1 Physical Characteristics

Grain size and TOC results are provided in Table 3. As previous information has indicated, sediments along the western tidal flat (Stations C-1 thorugh C-5) and the western slope of the channel (Station C-6) were primarily fine grained (70-90% silt + clay particles). Within the channel (Stations C-7 through C-10) and the eastern channel slope (Station C-11), sediments contained higher proportions of sand (34-92%). Sediments at Station C12 were about 49% fines. These grain size conditions were consistent with the values reported in Normadeau (2016) and used for the sediment plume modeling in RPS ASA (2016).

TOC provides an indication of the organic content of the sediments that is a combination of both naturally occurring compounds (e.g., from decomposition of organisms) and organic pollutants. TOC was highest (>1%) in the sediments on the western tidal flat and western slope, consistent with the higher proportion of fine-grained sediments. With one exception (C-8), TOC was <1%. These relatively low values suggest low likelihood of highly elevated organic contamination.

## 3.3 Metals

Inorganic metals in marine sediments can occur naturally at low levels or at elevated levels as a result of anthropogenic sources (U.S. EPA 2007a). Concentrations of metals along the cable route are shown in Table 4 in comparison to the Effects Range-Low (ER-L) and Effects-Range Median (ER-M) screening levels used by NOAA (2008). ER-L and ER-M values were derived for a wide range of inorganic and organic chemicals by examining biological responses to different chemical concentrations. ER-Ls are defined as the 10<sup>th</sup> percentile value on an ordered list of concentrations in sediment found in the literature that co-occur with any biological effect. Concentrations lower than the ER-L value represent a minimal-effects range in which biological effects would rarely be observed. ER-M values are defined as the 50<sup>th</sup> percentile concentration; biological effects are possible at environmental concentrations falling between the ER-L and ER-M values (NOAA 2008).

Arsenic concentrations ranged from 6.06 to 11.7 mg/kg, similar to the values previously observed in surface sediments in Little Bay during US EPA's National Coastal Condition Assessment program (Figure 3) where concentrations averaged 6.66 mg/kg and ranged from 2 to 10.8 mg/kg. In 2016, when deep sediments are included, the average concentration along the cable route was 8.35 mg/kg, slightly higher than ER-L level (8.2 mg/kg) but well below the ER-M value (70 mg/kg). When only the upper layer is considered, the average arsenic concentration was 7.99 mg/kg, below the ER-L. Spatially, arsenic levels exceeded the ER-L at Stations C-1 through C-4, C-6 (both upper and lower layers), and the lower layer at C-11. Arsenic is a naturally occurring metal in New England sediments and the range

observed along the cable route is not uncommon. As Ayotte et al. (2012) discussed, weathering of bedrock in southeastern New Hampshire has contributed arsenic to groundwater so it is reasonable to assume that the same process could be a natural source of arsenic to the estuary sediments. Given that the arsenic concentrations found along the cable route are mostly below or only slightly above the ER-L, it is likely that these concentrations reflect local natural background levels.

No other metal tested occurred at levels higher than the ER-L and the range of concentrations in the 2016 fell within the range observed by US EPA.

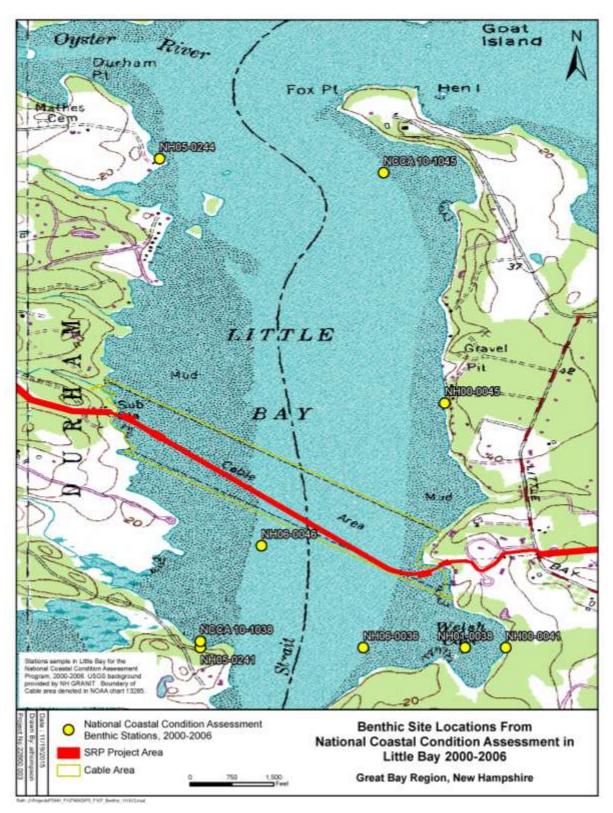



Figure 3. National Coastal Condition Assessment Sampling Locations, 2000-2010. Source: <u>http://www.epa.gov/emap/nca/html/data/index.html</u>

### 3.4 Organic Compounds

#### 3.4.1 Polycyclic Aromatic Hydrocarbons (PAHs)

PAHs are frequently found in marine sediments. Typical routes of entry are petroleum spills or air emissions of combustion by-products (Appendix A1). PAHs were below the detection limit in both layers at Station C-6, the lower layer at Stations C-7 and C-11, and the upper layer at Stationc C-9 and C-10 (Table 5). Low concentrations of one or more PAHs were present in the remaining samples, (Table 5). Medium (MMW) and high molecular weight (HMW) PAHs were observed more frequently than low molecular weight (LMW) PAHs. Total PAH concentrations ranged from 50-211 ng/g compared to 229-1479 ng/g in the NCCA Little Bay samples. Similarly, total LMW PAHs ranged from 18-53 ng/g compared to 23-270 ng/g in the NCCA samples; total HNW PAHs ranged from 23-144 ng/g compared to NCCA's 191-1038 ng/g.

Along the proposed cable route, total PAH, total LMW PAH, and total HMW PAH concentrations were each more than an order of magnitude lower than the respective ER-Ls, indicating that PAHs are unlikely to have detrimental effects on the biology of the Little Bay sediments.

### 3.4.2 Polychlorinated Byphenyls (PCBs)

PCBs have not been used in the US since the late 1970s but they are extremely stable compounds and persist in the environment (Appendix A2). PCBs were not detected in most samples with the exception of the deeper layer at Station C-7 (Table 6). The USACE Regional Implementation Manual protocol requires that total PCBs be estimated by doubling the sum of 18 specific PCB congeners, using one half the method detection limit (MDL) for congeners whose values were below the MDL. Using this approach, the total PCBs in samples from along the cable route ranged from 10.6 to 15.1 ug/kg. Of note is that the one sample that contained detectable levels of any PCB congeners fell in the middle of that range. This range of concentrations is higher than that observed in the NCCA data (0 to 7.5 ug/kg), but that may be an artifact of the summation using half the detection limit. Concentrations in both data sets are below the ER-L for total PCBs.

#### 3.4.3 Total Petroleum Hydrocarbons (TPH)

As described in Appendix A1, TPHs include a wide variety of hydrocarbon compounds. The RIM does not require testing for TPH, but NH DES requested this analysis. NH DES encountered an unexpected pocket of petroleum-contaminated sediments in one of the tributaries to Great Bay on a previous project, and felt that it could serve as an indicator of a similar condition along the cable route. Detection limits for TPH ranged from 39 to 54 mg/kg (ppm). TPH was not detected in any sample (Table 7). NH DES has established a clean-up criterion for contaminated soils of 10,000 mg/kg (ppm; or 10 x  $10^6 \mu g/kg$ ). Concentrations of TPH in Little Bay sediments along the cable route were more than two orders of magnitude below that standard. While NH DES's clean-up criterion is not based on ecological risk, GEI pointed out (Appendix A1) that PAHs are typically the TPH components with the highest toxicity. As PAHs were well below levels of concern, it is unlikely that any other component of TPH would be of ecological concern either.

#### 3.4.4 Dioxins/Furans

Dioxins and furans are widespread in the environment because a major source of these compounds is combustion and they are often distributed through atmospheric transport. Along the cable route, one to four dioxin/furan compounds were detected in most samples (Table 8). The most commonly occurring compound was 1,2,3,4,6,7,8,9-OCDD, a breakdown product of other dioxin compounds; it was present in 11 of the 15 samples. NOAA's SQuiRTs tables do not provide screening values for total dioxins/furans in marine sediments. The Canadian Council for the Ministers of the Environment (2004) have, however, established a Toxicity Equivalency (TEQ) value of 0.85 ng/kg that was developed using a similar approach to ER-L. The TEQ for a sample is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds. The compound that had the highest concentration in samples along the cable route, 1,2,3,4,6,7,8,9-OCDD has the lowest TEF of the dioxin compounds (DioxinFacts.org, 2016). When calculated based on only the detected compounds (ND=0), total concentrations of dioxin/furans were below the TEQ in all samples.

#### 3.4.5 Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS)

PFOA and PFOS have been reported in groundwater at Pease Air Force Base. Given that there is a potential hydrologic link to the project area via groundwater and tributaries, there is a concern that these compounds could have accumulated in sediments or porewater along the cable route. Neither compound occurred above detection limits (1.83 to 2.00 ng/kg) in any sample collected in September 2016 (Table 9). There are no US screening criteria available for these compounds. There are no other data available from the Great Bay estuary for comparison. GEI evaluated existing data and aqueous criteria for PFOA/PFOS in Appendix A2 and concluded that the European proposed Probable No Effect Concentration (PNEC) of 6.7  $\mu$ g/kg in marine sediments is very protective. It is unlikely that sediment-borne PFOA or PFOS poses a risk to organisms in the vicinity of the cable crossing in Little Bay.

## 4.0 Conclusions

Sediments were collected in September 2016 along the planned cable route in Little Bay to be tested for chemical constituents that are indicative of anthropogenic pollution. These constituents included contaminants typically associated with industrialized marine harbors (metals, PAHs, PCBs) as well as total petroleum hydrocarbons, dioxins/furans, and perfluoro compounds that are not typically tested for in projects disturbing sediments, but could occur in the Project area due to surrounding conditions. Testing was conducted following established analytical protocols. Several important observations emerged.

• Sediment grain size to cable burial depth observed in 2016 is consistent with the information used to conduct the sediment plume modeling predicting the behavior of sediments suspended during the cable installation

- Metals were present in all samples, but concentrations were below NOAA screening criteria (ER-L) for sediment concentrations indicative of biological effects, with the exception of arsenic
- Arsenic levels in several samples slightly exceeded the NOAA ER-L screening criterion but were well below the ER-M criterion, so by definition, has the possibility of having a biological effect. However, arsenic levels fell within the range of concentrations found in Little Bay by USEPA between 2000 and 2010, for which bioassay testing indicated no adverse biological effects.
- Concentrations of PAH compounds were low or below detection limits and total PAH concentrations were lower than observed by USEPA within Little Bay. Total PAH, total LMW PAH, and total HMW PAH concentrations were below NOAA screening criteria (ER-L).
- Concentrations of PCB congeners were low or below detection limits. No previous data are available for PCBs in Little Bay, but total PCB concentrations were uniformly below NOAA screening criteria (ER-L).
- Dioxins/furans were present in low concentrations in many samples. The TEQ provides a weighted summation of dioxins/furans representing a potential toxicity level. Although neither NH nor US have developed guidelines for dioxins/furans, the Canadian Council for the Ministers of the Environment (2004) has. Concentrations of dioxins/furans along the cable route were all below the Canadian TEQ ND=0 guidelines.
- Perfluoro compounds were below detection limits in all samples and are below the proposed European PNEC.

GEI evaluated the sediment chemistry results in terms of potential ecological risk. This analysis is incorporated as Appendix A. GEI determined that all of the analytes except arsenic uniformly occurred at levels below concentrations identified as likely to cause toxic effects in marine sediments. Arsenic was only slightly above the lowest screening criterion (ER-L) and was consistent with levels reported elsewhere in Little Bay. GEI concluded, therefore, that dispersion of sediments into other areas of Little Bay would pose no ecological risk.

In 2007, USEPA (2007b) characterized sediment quality in Little Bay as "good" (the highest rating possible) based on a combination of sediment chemistry and bioassay testing that revealed no significant mortality among test organisms exposed to bay sediments. Given that contaminant levels are within the ranges observed by USEPA, it can be concluded that the quality of sediments along the cable route also meet the EPA characterization as good.

|                      |       |      |      |       |      |       |       |       |       |       | <u> </u> | 610   | 614   | 614   | 618   | NCAA      |
|----------------------|-------|------|------|-------|------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-----------|
| Station              | C1    | C2   | C3   | C4    | C5   | C6    | C6    | C7    | C7    | C8    | C9       | C10   | C11   | C11   | C12   | Range     |
| Depth (inches)       | 0-48  | 0-48 | 0-48 | 0-48  | 0-48 | 0-48  | 48-61 | 0-48  | 48-54 | 0-48  | 0-48     | 0-48  | 0-48  | 48-89 | 0-48  |           |
| Grain Size           |       |      |      |       |      |       |       |       |       |       |          |       |       |       |       |           |
| % Total Gravel       | 0.2   | 0.2  | 0.1  | 0     | 0.6  | 0.2   | 0     | 0.1   | 0     | 0.6   | 2.3      | 0.1   | 1.1   | 0     | 2.2   |           |
| % Coarse Sand        | 1.5   | 1.4  | 0.7  | 3.2   | 2    | 1.3   | 0.6   | 0.7   | 0.1   | 0.4   | 3.4      | 0.4   | 1.7   | 1.3   | 2.1   |           |
| % Medium Sand        | 3.4   | 4.7  | 2.3  | 7.1   | 4    | 4     | 2.9   | 4.3   | 7.3   | 8.8   | 31.6     | 1.7   | 5.9   | 4.3   | 7.1   |           |
| % Fine Sand          | 6     | 8    | 8.2  | 16.3  | 24.3 | 13.1  | 5.9   | 44.9  | 36.7  | 66    | 34       | 91.6  | 35.8  | 12.6  | 39.2  |           |
| % Total Fines        | 88.9  | 85.7 | 88.7 | 73.4  | 69.1 | 81.4  | 90.6  | 50    | 55.9  | 24.2  | 28.7     | 6.2   | 55.5  | 81.8  | 49.4  |           |
| Total Organic Carbon | 1.635 | 1.54 | 1.38 | 1.165 | 1.11 | 1.165 | 1.28  | 0.718 | 0.661 | 1.057 | 0.10     | 0.194 | 0.795 | 0.936 | 0.531 | 0.55-2.35 |
| (mean %)             |       |      |      |       |      |       |       |       |       |       |          |       |       |       |       |           |
| Moisture %           | 41.3  | 38.9 | 36.9 | 35.1  | 31.7 | 32.4  | 35.3  | 28    | 29.1  | 29.7  | 18.3     | 21.1  | 31.4  | 33.2  | 24.6  |           |

#### Table 3. Physical characteristics of sediments along the SRP cable route in Little Bay

#### Table 4. Concentration (mg/kg [ppm]) of metals in sediments along the SRP cable route in Little Bay

|                |       |       |       |         |       |         |         |         |         |         |         |         |         |         |       |      | ER-  | NCCA    |
|----------------|-------|-------|-------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|------|------|---------|
| Station        | C1    | C2    | C3    | C4      | C5    | C6      | C6      | C7      | C7      | C8      | C9      | C10     | C11     | C11     | C12   | ER-L | Μ    | Range   |
| Depth (inches) | 0-48  | 0-48  | 0-48  | 0-48    | 0-48  | 0-48    | 48-61   | 0-48    | 48-54   | 0-48    | 0-48    | 0-48    | 0-48    | 48-89   | 0-48  |      |      |         |
| Arsenic, Total | 10.7  | 10.4  | 9.94  | 8.54    | 7.05  | 9.14    | 11.7    | 7.17    | 6.88    | 6.56    | 6.4     | 6.56    | 7.39    | 10.8    | 6.06  | 8.2  | 70   | 2-10.8  |
| Cadmium, Total | 0.187 | 0.188 | 0.185 | 0.154   | 0.157 | 0.13    | 0.112   | 0.064   | 0.057   | 0.114   | 0.022   | 0.035   | 0.082   | 0.083   | 0.089 | 1.2  | 960  | 0.12-   |
|                |       |       |       |         |       |         |         |         |         |         |         |         |         |         |       |      |      | 0.325   |
| Chromium,      | 36.9  | 29.9  | 32.5  | 22.2    | 20.6  | 22.4    | 25.4    | 16.7    | 18      | 13.7    | 17.4    | 10.9    | 22.8    | 22.7    | 16.8  | 81   | 370  | 21-95   |
| Total          |       |       |       |         |       |         |         |         |         |         |         |         |         |         |       |      |      |         |
| Copper, Total  | 10.5  | 9.54  | 9.79  | 7.49    | 6.61  | 9.15    | 10.2    | 6.02    | 7.35    | 6.04    | 7.64    | 2.46    | 8.19    | 9.21    | 5.51  | 31   | 270  | 4-16.8  |
| Lead, Total    | 11.7  | 7.49  | 8.36  | 5.13    | 4.8   | 6.03    | 5.46    | 4.07    | 3.91    | 4.4     | 5.39    | 2.88    | 9.39    | 4.8     | 4.6   | 46.7 | 218  | 22.2-   |
|                |       |       |       |         |       |         |         |         |         |         |         |         |         |         |       |      |      | 43.4    |
| Mercury, Total | 0.033 | 0.025 | 0.041 | < 0.017 | 0.016 | < 0.018 | < 0.021 | < 0.017 | < 0.015 | < 0.014 | < 0.013 | < 0.015 | < 0.018 | < 0.017 | 0.019 | 0.15 | 0.71 | 0.04-   |
|                |       |       |       |         |       |         |         |         |         |         |         |         |         |         |       |      |      | 0.149   |
| Nickel, Total  | 17.9  | 17.2  | 15.8  | 14.1    | 12.7  | 15.6    | 18.2    | 11.5    | 13.2    | 9.43    | 13.2    | 6.17    | 14.1    | 16.5    | 10.7  | 20.9 | 51.6 | 6-18.9  |
| Zinc, Total    | 58.2  | 54.6  | 52    | 43.3    | 52.8  | 47.2    | 54.2    | 34.5    | 38.6    | 36.2    | 44.7    | 30.9    | 45.6    | 49.3    | 26.8  | 150  | 410  | 28-82.5 |

ER-L = Effects Range Low = 10<sup>th</sup> percentile on an ordered list of concentrations in sediment found in the literature that co-occur with any biological effect; concentrations lower than the ER-L value represent a minimal-effects range in which effects would be rarely observed

ER-M = effects Range Median = 50<sup>th</sup> percentile; concentrations equal to and above the ER-L, but below the ER-M represent a possible-effects range

| Station                 | C1     | C2    | C3      | C4    | C5    | C6    | C6    | C7     | <b>C7</b> | C8    | C9    | C10   | C11     | C11   | C12    | ER-L  | ER-M   | NCCA Range     |
|-------------------------|--------|-------|---------|-------|-------|-------|-------|--------|-----------|-------|-------|-------|---------|-------|--------|-------|--------|----------------|
| Depth (inches)          | 0-48   | 0-48  | 0-48    | 0-48  | 0-48  | 0-48  | 48-61 | 0-48   | 48-54     | 0-48  | 0-48  | 0-48  | 0-48    | 48-89 | 0-48   |       |        |                |
| Naphthalene             | <8.37  | <7.88 | <7.63   | <7.13 | <7.22 | <7.37 | <7.6  | <6.51  | <7.04     | <6.76 | <5.87 | <6.25 | <7.21   | <6.85 | <6.48  | 160   | 2,100  |                |
| Acenaphthylene          | <8.37  | <7.88 | <7.63   | <7.13 | <7.22 | <7.37 | <7.6  | <6.51  | <7.04     | 11    | <5.87 | <6.25 | <7.21   | <6.85 | <6.48  | 44    | 640    |                |
| Acenaphthene            | <8.37  | <7.88 | 18.4    | <7.13 | <7.22 | <7.37 | 27.5  | <6.51  | <7.04     | 11    | <5.87 | <6.25 | <7.21   | <6.85 | <6.48  | 16    | 500    |                |
| Fluorene                | <8.37  | <7.88 | <7.63   | <7.13 | <7.22 | <7.37 | <7.6  | <6.51  | <7.04     | 13    | <5.87 | <6.25 | <7.21   | <6.85 | 6.75   | 19    | 540    |                |
| Phenanthrene            | 8.4    | <7.88 | 13.5    | <7.13 | <7.22 | <7.37 | <7.6  | 6.97   | <7.04     | 9.37  | <5.87 | <6.25 | 10.7    | <6.85 | 11.9   | 240   | 1,500  |                |
| Anthracene              | <8.37  | <7.88 | 9.28    | <7.13 | <7.22 | <7.37 | <7.6  | <6.51  | <7.04     | <6.76 | <5.87 | <6.25 | <7.21   | <6.85 | <6.48  | 85.3  | 245    |                |
| Fluoranthene            | 17.4   | 10.4  | 39.4    | 8.65  | 12.8  | <7.37 | <7.6  | 18.9   | <7.04     | 10.1  | <5.87 | <6.25 | 20.4    | <6.85 | 19.7   | 600   | 5,100  |                |
| Pyrene                  | 16.4   | 11.7  | 36.6    | 8.86  | 11.8  | <7.37 | <7.6  | 17.9   | <7.04     | 10.2  | <5.87 | <6.25 | 28.6    | <6.85 | 20.7   | 665   | 2,600  |                |
| Benz(a)anthracene       | 9.65   | <7.88 | 19.8    | <7.13 | 9.22  | <7.37 | <7.6  | 17.2   | <7.04     | <6.76 | <5.87 | <6.25 | 16.4    | <6.85 | 14.1   | 261   | 1,600  |                |
| Chrysene                | 9.46   | <7.88 | 21.4    | <7.13 | 7.71  | <7.37 | <7.6  | 15.5   | <7.04     | <6.76 | <5.87 | <6.25 | 14.8    | <6.85 | 14.8   | 384   | 2,800  |                |
| Benzo(b) fluoranthene   | 11.6   | <7.88 | 22.6    | <7.13 | 7.35  | <7.37 | <7.6  | 10.8   | <7.04     | <6.76 | <5.87 | <6.25 | 19.6    | <6.85 | 13.8   | na    | na     |                |
| Benzo(k) fluoranthene   | 10.2   | <7.88 | 20.2    | <7.13 | <7.22 | <7.37 | <7.6  | 12.6   | <7.04     | <6.76 | <5.87 | <6.25 | 19      | <6.85 | 13.8   | na    | na     |                |
| Benzo(a) pyrene         | 11.6   | <7.88 | 23.4    | <7.13 | 8.55  | <7.37 | <7.6  | 15.3   | <7.04     | <6.76 | <5.87 | <6.25 | 22.6    | <6.85 | 16.8   | 430   | 1,600  |                |
| Indeno(1,2,3-cd) Pyrene | 9.3    | <7.88 | 16.5    | <7.13 | <7.22 | <7.37 | <7.6  | 7.44   | <7.04     | <6.76 | <5.87 | <6.25 | 18.8    | <6.85 | 11.4   | na    | na     |                |
| Dibenz(a,h) anthracene  | <8.37  | <7.88 | <7.63   | <7.13 | <7.22 | <7.37 | <7.6  | <6.51  | <7.04     | <6.76 | <5.87 | <6.25 | <7.21   | <6.85 | <6.48  | 63.4  | 260    |                |
| Benzo(ghi) perylene     | 9.2    | <7.88 | 16      | <7.13 | <7.22 | <7.37 | <7.6  | 6.67   | <7.04     | <6.76 | <5.87 | <6.25 | 19.3    | <6.85 | 11     | na    | na     |                |
| Total PAHs*             | 138.32 | 77.26 | 272.34  | 67.42 | 93.53 | 58.96 | 84.5  | 148.81 | 56.32     | 98.47 | 46.96 | 50    | 211.83  | 54.8  | 170.95 | 4,022 | 44,792 | 229.26-1,479.4 |
| Total LMW PAHs          | 29.325 | 23.64 | 52.625  | 21.39 | 21.66 | 22.11 | 46.5  | 23.245 | 21.12     | 51.13 | 17.61 | 18.75 | 28.725  | 20.55 | 31.61  | 552   | 3,160  | 23.4-270       |
| Total MMW PAHs          | 33.8   | 22.1  | 76      | 17.51 | 24.6  | 7.37  | 7.6   | 36.8   | 7.04      | 20.3  | 5.87  | 6.25  | 49      | 6.85  | 40.4   | na    | na     |                |
| Total HMW PAHs          | 75.195 | 31.52 | 143.715 | 28.52 | 47.27 | 29.48 | 30.4  | 88.765 | 28.16     | 27.04 | 23.48 | 25    | 134.105 | 27.4  | 98.94  | 1,700 | 9,600  | 191.1-1,029.7  |

#### Table 5. Concentration (µg/kg [ppb]) of Polycyclic Aromatic Hydrocarbons (PAHs) along the SRP cable route in Little Bay

\*total PAHs calculated using half of detection limit

na = not available

| Station            | C1      | C2      | C3      | C4     | C5     | C6     | C6    | C7      | C7      | C8     | C9      | C10     | C11    | C11     | C12     | ER-L | ER-M |
|--------------------|---------|---------|---------|--------|--------|--------|-------|---------|---------|--------|---------|---------|--------|---------|---------|------|------|
| Depth (inches)     | 0-48    | 0-48    | 0-48    | 0-48   | 0-48   | 0-48   | 48-61 | 0-48    | 48-54   | 0-48   | 0-48    | 0-48    | 0-48   | 48-89   | 0-48    |      |      |
| Cl2-BZ#8*          | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | 1.1     | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | <0.648  |      |      |
| Cl3-BZ#18*         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | 1.16    | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl3-BZ#28*         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | <0.648  |      |      |
| Cl4-BZ#44*         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl4-BZ#49          | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl4-BZ#52*         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl4-BZ#66*         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl5-BZ#87          | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl5-BZ#101*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl5-BZ#105*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl5-BZ#118*        | < 0.837 | < 0.788 | < 0.763 | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl6-BZ#128*        | < 0.837 | < 0.788 | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | <0.625  | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl6-BZ#138*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | <0.625  | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl6-BZ#153*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl7-BZ#170*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl7-BZ#180*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl7-BZ#183         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl7-BZ#184         | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| Cl7-BZ#187*        | < 0.837 | <0.788  | < 0.763 | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | <0.625  | <0.721 | <0.685  | < 0.648 |      |      |
| Cl8-BZ#195*        | < 0.837 | <0.788  | < 0.763 | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | <0.625  | <0.721 | <0.685  | < 0.648 |      |      |
| C19-BZ#206*        | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | <0.685  | < 0.648 |      |      |
| Cl10-BZ#209*       | < 0.837 | <0.788  | <0.763  | <0.713 | <0.722 | <0.737 | <0.76 | < 0.651 | < 0.704 | <0.676 | < 0.587 | < 0.625 | <0.721 | < 0.685 | < 0.648 |      |      |
| <b>Total PCBs*</b> | 15.066  | 14.184  | 13.734  | 12.834 | 12.996 | 13.266 | 13.68 | 11.718  | 13.524  | 12.168 | 10.566  | 11.25   | 12.978 | 12.33   | 11.664  | 22.7 | 180  |

SEACOAST RELIABILITY PROJECT: SEDIMENT CHARACTERIZATION REPORT

# Table 6. Concentration (µg/kg [ppb]) of Polychlorinated Biphenyls (PCBs) in sediments along the SRP cable route in Little Bay

\* Per the RIM, total PCBs are to be estimated based on the following: Total = 2 X [sum of 18 NOAA summation congeners indicated with a \*]. For values below the MDL, use one half the MDL; for values between the MDL and the RL use estimated values.

# Table 7.Concentration (mg/kg [ppm]) of Total Petroleum Hydrocarbons (TPH) in sediments along the SRP cable route in<br/>Little Bay

| Station                      | C1    | C2   | C3    | C4    | C5    | C6    | C6    | C7    | C7    | C8   | C9   | C10   | C11   | C11   | C12   |
|------------------------------|-------|------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|
| Depth (inches)               | 0-48  | 0-48 | 0-48  | 0-48  | 0-48  | 0-48  | 48-61 | 0-48  | 48-54 | 0-48 | 0-48 | 0-48  | 0-48  | 48-89 | 0-48  |
| ТРН                          |       |      |       |       |       |       |       |       |       |      |      |       |       |       |       |
| TPH mg/kg (ppm) <sup>a</sup> | <53.5 | <54  | <51.8 | <50.5 | <48.4 | <48.7 | <53.2 | <45.9 | <45.9 | <47  | <39  | <41.1 | <47.8 | <43.6 | <47.8 |

<sup>a</sup>Alpha Analytical reported the data as µg/kg (parts per billion); data converted to mg/kg (parts per million to conform with NHDES criterion

# Table 9. Concentration (ng/g [ppb]) of Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) in sediments along the SRP cable route in Little Bay

| Station        | C1    | C2    | C3    | C4    | C5    | C6    | C6    | C7    | C7    | C8    | С9    | C10   | C11   | C11   | C12   |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Depth (inches) | 0-48  | 0-48  | 0-48  | 0-48  | 0-48  | 0-48  | 48-61 | 0-48  | 48-54 | 0-48  | 0-48  | 0-48  | 0-48  | 48-89 | 0-48  |
| PFOA (ng/g)    | <1.91 | <1.91 | <1.94 | <1.92 | <1.94 | <2.00 | <1.93 | <1.95 | <1.87 | <1.85 | <1.97 | <1.83 | <1.95 | <1.95 | <1.98 |
| PFOS (ng/g)    | <1.91 | <1.91 | <1.94 | <1.92 | <1.94 | <2.00 | <1.93 | <1.95 | <1.87 | <1.85 | <1.97 | <1.83 | <1.95 | <1.95 | <1.98 |

| Station                         | C1      | C2      | C3      | C4      | C5      | C6      | C6      | C7      | C7      | C8      | C9      | C10     | C11    | C11     | C12     |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|
| Depth (inches)                  | 0-48    | 0-48    | 0-48    | 0-48    | 0-48    | 0-48    | 48-61   | 0-48    | 48-54   | 0-48    | 0-48    | 0-48    | 0-48   | 48-89   | 0-48    |
| 2,3,7,8-TCDD                    | < 0.972 | < 0.952 | < 0.942 | < 0.934 | < 0.942 | < 0.949 | < 0.937 | < 0.932 | < 0.912 | < 0.896 | < 0.913 | < 0.966 | < 0.93 | < 0.943 | < 0.981 |
| 1,2,3,7,8-PeCDD                 | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,4,7,8-HxCDD               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,6,7,8-HxCDD               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,7,8,9-HxCDD               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,4,6,7,8-HpCDD             | 7.41    | <4.76   | <4.71   | <4.67   | 5.54    | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | 8.87    | 11.6   | <4.72   | 30.5    |
| 1,2,3,4,6,7,8,9-OCDD            | 84.9    | <33.7   | <9.42   | 30.7    | 62.7    | 98.2    | <9.37   | <36.9   | 60.6    | 23.0    | 14.8    | 135     | 334    | 35.0    | 410     |
| 2,3,7,8-TCDF                    | < 0.972 | < 0.952 | < 0.942 | < 0.934 | < 0.942 | < 0.949 | < 0.937 | < 0.932 | < 0.912 | < 0.896 | < 0.913 | < 0.966 | < 0.93 | < 0.943 | < 0.981 |
| 1,2,3,7,8-PeCDF                 | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 2,3,4,7,8-PeCDF                 | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,4,7,8-HxCDF               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | <4.74   | <4.68   | <4.66   | <4.56   | <4.48   | <4.57   | <4.83   | < 4.65 | <4.72   | <4.91   |
| 1,2,3,6,7,8-HxCDF               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| 2,3,4,6,7,8-HxCDF               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| 1,2,3,7,8,9-HxCDF               | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| 1,2,3,4,6,7,8-HpCDF             | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | 7.19    |
| 1,2,3,4,7,8,9-HpCDF             | <4.86   | <4.76   | <4.71   | <4.67   | <4.71   | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| 1,2,3,4,6,7,8,9-OCDF            | < 9.72  | < 9.52  | < 9.42  | < 9.34  | < 9.42  | < 9.49  | < 9.37  | < 9.32  | < 9.12  | < 8.96  | < 9.13  | < 9.66  | < 9.30 | < 9.43  | 15.7    |
| Total Tetrachlorodibenzo-       | < 0.972 | < 0.952 | < 0.942 | < 0.934 | < 0.942 | < 0.949 | < 0.937 | < 0.932 | < 0.912 | < 0.896 | < 0.913 | 0.97    | < 0.93 | < 0.943 | < 0.981 |
| p-dioxin                        |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total Pentachlorodibenzo-       | < 4.86  | < 4.76  | < 4.71  | < 4.67  | < 4.71  | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| p-dioxin                        |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total Hexachlorodibenzo-        | < 4.86  | < 4.76  | < 4.71  | < 4.67  | < 4.71  | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | 5.77   | < 4.72  | 16.4    |
| p-dioxin                        |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total Heptachlorodibenzo-       | 17.7    | < 4.76  | < 4.71  | < 4.67  | 13.2    | 5.28    | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | 26.9    | 41.4   | < 4.72  | 81.6    |
| p-dioxin                        |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total                           | < 0.972 | < 0.952 | < 0.942 | < 0.934 | < 0.942 | < 0.949 | < 0.937 | < 0.932 | < 0.912 | < 0.896 | < 0.913 | < 0.966 | < 0.93 | < 0.943 | < 0.981 |
| Tetrachlorodibenzofuran         |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total                           | < 4.86  | < 4.76  | < 4.71  | < 4.67  | < 4.71  | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| Pentachlorodibenzofuran         |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total                           | < 4.86  | < 4.76  | < 4.71  | < 4.67  | < 4.71  | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | < 4.91  |
| Hexachlorodibenzofuran          |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| Total                           | < 4.86  | < 4.76  | < 4.71  | < 4.67  | < 4.71  | < 4.74  | < 4.68  | < 4.66  | < 4.56  | < 4.48  | < 4.57  | < 4.83  | < 4.65 | < 4.72  | 17.3    |
| Heptachlorodibenzofuran         |         |         |         |         |         |         |         |         |         |         |         |         |        |         |         |
| TEQ WHO2005 ND=0 <sup>a</sup>   | 0.0995  | 0.0101  | 0.00    | 0.00921 | 0.0743  | 0.0295  | 0.00    | 0.0111  | 0.0182  | 0.00689 | 0.00445 | 0.129   | 0.217  | 0.0105  | 0.504   |
| TEQ WHO2005 ND=0.5 <sup>b</sup> | 5.62    | 5.44    | 5.37    | 5.33    | 5.42    | 5.44    | 5.34    | 5.33    | 5.22    | 5.12    | 5.21    | 5.61    | 5.50   | 5.39    | 6.05    |

SEACOAST RELIABILITY PROJECT: SEDIMENT CHARACTERIZATION REPORT

#### Table 8. Concentration (pg/g [pptr]) of Dioxins/Furans in sediments along the SRP cable route in Little Bay

<sup>a</sup>TEQ ND=0 is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds detected in the sample by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds detected.

<sup>b</sup>TEQ ND=0.5 is a weighted toxicity value calculated by multiplying the concentration of individual dioxin/furan compounds in the sample by their relative (compared to the most toxic compound 2,3,7,8-TCDD) toxicity (the toxicity equivalency factor or TEF) and summing over all compounds detected, using one half of the detection limit as the concentration for compounds not detected.

SEACOAST RELIABILITY PROJECT: SEDIMENT CHARACTERIZATION REPORT

## 5.0 References

- Ayotte, J.D., Cahillane, Matthew, Hayes, Laura, and Robinson, K.W., 2012, Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011: U.S. Geological Survey Scientific Investigations Report 2012–5156, 25 p., at http://pubs.usgs.gov/sir/2012/5156/.
- Canadian Council for the Ministers of the Environment. 2004. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (PCDD/Fs). Ceqgrcqe.ccme.ca/download/en/245.
- DioxinFacts.org. 2016. TEQ vs. TM-17. Accessed at: http://dioxinfacts.org/tri\_dioxin\_data/teq\_tm17/index.html
- NOAA. 2008. SQuiRTs Screening Quick Reference Tables. Access at: <u>http://response.restoration.noaa.gov/sites/default/files/SQuiRTs.pdf</u>
- Normandeau. 2016. Public Service of New Hampshire Seacoast Reliability Project Madbury, Durham, Newington & Portsmouth, NH Natural Resources.
- RPS ASA 2016. Modeling Sediment Dispersion from Cable Burial for Seacoast Reliability Project, Little Bay, New Hampshire. Prepared for Normandeau Associates, Inc, Bedford, NH. Prepared by RPS ASA, 55 Village Square Drive, South Kingstown, RI.
- PREP (Piscataqua Regional Estuaries Partnership). 2012. Environmental Data Report. Technical Support Document for the 2013 State of Our Estuaries Report. 287 p.
- PREP (Piscataqua Regional Estuaries Partnership). 2013. State of Our Estuaries 2013. 48 p.
- Trowbridge, P. 2009. Environmental Indicators Report. Piscataqua Region Estuaries Partnership. 174 p.
- U.S. EPA (U.S. Environmental Protection Agency). 2007a. Framework for Metals Risk Assessment. EPA 120/R-07/001, March 2007
- U.S. EPA. 2007b. National Estuary Program Coastal Condition Report. Chapter 3: Northeast National Estuary Program Coastal Condition, New Hampshire Estuaries Program. 6 p.
- U.S. EPA. 2008. Surface Water Quality Status (September 2008), Greenland, NH. <u>http://www.greenland-</u> <u>nh.com/Documents/Hazard%20Mitigation%20Documents/Map4\_Greenland\_NH.pd</u> <u>f</u>
- U.S. EPA New England and U.S. Army Corps of Engineers, New England District. 2004. Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters. 54 p.

# Appendices

## Appendix A: Ecological Risk Analysis





## **Appendix A1 - Technical Memorandum**

Review of ecological risk implications of SRP sediment analytical data

### **Executive Summary**

This memorandum provides an opinion on whether potential remobilization of sediment from the planned activities may be of an ecological concern to the benthic biota of Little Bay, New Hampshire, based on the results of the Characterization of Sediment Quality of which this memorandum is an appendix.

Based on the reported sediment chemical concentrations in the data set, it is our scientific opinion that there is no potential for ecological effects from constituents of potential concern in the sediment including PAHs, PCBs, PFCs, dioxins and furans, and metals. The only metal which slightly exceeds the strictest screening criteria is arsenic, but its distribution appears within the range of naturally occurring arsenic in the area, and remobilization would not result in any appreciable increase in concentrations or potential adverse effects.

We conclude that the planned activities would have negligible impact to Little Bay biota from the perspective of potential ecological toxic impacts.

## 1. Introduction

This Technical Memorandum presents an ecological evaluation of the results of the *Characterization of Sediment Quality Along Little Bay Crossing* (hereafter "Characterization Report") conducted as part of the Public Service Company of New Hampshire Seacoast Reliability Project. The goal of the review is to provide a brief summary review focused on potential ecological risks associated with the sediment data.

This review is an initial screening level review which means that the site data are compared to the most stringent applicable and relevant screening criteria. If the media concentrations do not exceed the screening criteria, it can be concluded there is no cause for further concern. If the media concentrations do exceed the screening criteria, it is necessary to consider the distribution and frequency of exceedances, as well as comparing the observed values to typical or background values to determine if there is any potential for unacceptably increased risk. If such potential is found site specific evaluations of nature and extent may be called

for, applying site specific ecological risk data. This review focuses on the initial screeninglevel evaluation only.

## 2. Measured Sediment Concentrations

The sediment samples considered in this review are summarized in Table 2 of the Characterization Report. Table 1 of the same report presents the analytes considered. Samples were collected from the 0 to 48-inch depth interval for all locations along the transect, while additional samples at the depth interval > 48 inches were collected at 3 locations with sufficient penetration (C6 on the western slope, C7 in the channel, and C11 on the eastern slope).

Results are presented in Tables 3 (physical characteristics), Table 4 (metals), Table 5 (PAHs), Table 6 (PCBs), Table 7 (TPH), Table 8 (dioxins and furans), and Table 9 (PFOA and PFOS).

Data qualifiers were identified in the laboratory data report. Most of the qualifiers are related to the sample matrix spike(MS)/matrix spike duplicate (MSD). The recovery or precision issues in the MS/MSD are likely attributable to non-homogeneity in the sample matrix. Although the MS/MSD for some compounds are outside of control limits, the laboratory control sample and duplicate can be relied upon to demonstrate accuracy in the results. The laboratory data report can be found Appendix C of the Characterization Report.

## 3. Conceptual Site Model

An important first step for any risk evaluation is to develop a conceptual site model (CSM) to better focus the analysis. A CSM is a logical framework to summarize the expected movement of potential toxicants and the subsequent exposures to these toxicants by biota. For this evaluation, the CSM assumes:

- Potential chemical constituents of concern may be present in the sediment in the path of the planned excavation
- The planned activity will result in a remobilization of sediment. Chemical constituents contained in the sediment may be redeposited within or outside of the footprint of the excavation
- This evaluation does not review the modeled transport of sediment but considers the reported concentrations in sediment versus ecological benchmarks

- From an ecological standpoint, the relevant portion of the estuarine sediments of concern to this risk evaluation is the biologically active zone of the sediment column. The biologically active zone is typically defined by the availability of oxygen for biological activity, and generally comprises the top 12 inches or less. Deeper sediments generally are not biologically available unless they are brought to the surface by disturbances. As the project will potentially cause remobilization of such deeper sediment, all sediment from all depths should be considered in this evaluation.
- The primary exposures of ecological concern are benthic macroinvertebrates which inhabit the surface sediments in Little Bay. These organisms include animals that feed on or in the sediment and either ingest or directly contact sediment. In addition, sedentary filter-feeding organisms such as oysters could potentially be exposed to contaminants adsorbed to sediment particles mobilized during cable installation
- The constituents of potential concern include substances that may be naturally occurring or contaminants from anthropogenic activities (USEPA 2007). Naturally occurring toxicants such as metals are ubiquitous at low concentrations, and are not necessarily contaminants unless anthropogenic activities have increased their concentrations above both background levels and toxicological levels of concern. Organic constituents of potential concern are generally but not always of anthropogenic origin. For this evaluation the following groups were considered: PAHs, dioxins and furans, PCBs, TPH and PFCs.

## 4. Ecotoxicological Review

The primary basis of our review was the comparison of sediment chemical concentrations to published sediment quality "guidelines" or "criteria." Sediment criteria generally consist of two concentrations or levels, the lowest of which represents a low level screening value which denotes a "safe" level, and the highest of which is a probable or median effect level denoting concentrations above which ecological risk is likely. In the grey zone in between the threshold and probable effect level site specific considerations of background levels, bioavailability and sensitivity of the local biota will determine if there is any ecological concern.

In general, there are few jurisdictions with promulgated sediment criteria. Sediment evaluations therefore are based on readily available benchmarks for various effects derived from scientific data by agencies and scientists. For many potential contaminants there are generally accepted benchmarks with applicability in the US (e.g., metals, PAHs, PCBs). However, for others no consensus values have been developed, and comparison criteria need to be developed from review of the scientific literature (e.g., PFCs). For some, such as TPH there are little data available and the potential risk from TPH needs to be evaluated through other means.



#### 4.1 Metals

Metals are a natural component of rock and soil, but environmental media may be enriched from discharges or deposition from many anthropogenic sources. The sediment Characterization Report compared the observed metals values to the marine Effects Range Low (ER-L) and Effects Range – Median (ER-M) values originally developed by Long and Morgan (1990) for NOAA and recommended for use by NOAA, USGS, and EPA for marine and estuarine sediments. Many states and several EPA regions have adopted these values as guidelines and benchmarks for marine sediment. As noted in the sediment Characterization Report, the ER-L is the concentration below which there is less than 10% chance to see an adverse effect a "threshold effect" value), while the ER-M is the concentration at which there is a 50% chance to see adverse effects (a "probable effect" value).

All samples for the evaluated metals in sediment are well below their threshold levels (ER-L) and of no further ecological concern except in the case of arsenic. In the case of arsenic, about half of the samples exceed the ER-L threshold value by small amounts, although none approach the ER-M probable effect value. Arsenic is discussed further in Section 4.1.1.

| Table T Evaluation of metals |                  |                 |                |            |
|------------------------------|------------------|-----------------|----------------|------------|
|                              | Threshold Effect | Probable Effect | Maximum        | Conclusion |
|                              | ER-L             | ER-M            | detected value |            |
| Arsenic                      | 8.2 mg/kg        | 70 mg/kg        | 11.7 mg/kg     | See below  |
| Cadmium                      | 1.2 mg/kg        | 4.2 mg/kg       | 0.19 mg/kg     | No concern |
| Chromium                     | 81 mg/kg         | 370 mg/kg       | 36.9 mg/kg     | No concern |
| Copper                       | 31 mg/kg         | 270 mg/kg       | 10.5 mg/kg     | No concern |
| Lead                         | 46.7 mg/kg       | 218 mg/kg       | 11.7 mg/kg     | No concern |
| Mercury                      | 0.15 mg/kg       | 0.71 mg/kg      | 0.04 mg/kg     | No concern |
| Nickel                       | 20.9 mg/kg       | 51.6 mg/kg      | 18.2 mg/kg     | No concern |
| Zinc                         | 150 mg/kg        | 410 mg/kg       | 58.2 mg/kg     | No concern |

Table 1 Evaluation of metals

#### 4.1.1 Further evaluation of arsenic

Some arsenic results exceeded the threshold level ER-L, and as a result arsenic cannot be fully eliminated from further consideration based on screening alone.

Arsenic concentrations ranged from 6.1 to 11.7 mg/kg. Almost half (47%) exceeded the ER-L of 8.2. The average for all arsenic was 8.35, almost coincident with the ER-L.

Figure 1 presents a diagram of the distribution of samples in relation to (a) the ER-L and (b) the US EPA National Coastal Condition Assessment program (NCAA) range of typical values for Little Bay. The samples are divided in two groups – one group showing those samples with > 70 % fines, i.e. the very silty ones, and (b) one group with samples of <70% fines, i.e. less silty samples.

The diagram shows that the exceedances of the arsenic are entirely in the high (i.e. >70%) fines sediment. This suggests that unconsolidated sediment has a slightly higher arsenic content than the coarser material.

The range of arsenic values reported by NCAA in surface sediments is 2 to 10.8 mg/kg. All the SRP samples except one are within this range and, thus, are considered to be consistent with typical or background values. The single sample that exceeds the range, at 11.7 mg/kg, is the deeper sample at C6. Because the bulk of the samples are within the typical ranges that pertain throughout Little Bay per the NCAA, there is little or no potential for redistribution of these sediments significantly increasing surface concentrations or in other ways resulting in surface sediment conditions being different from the current. Therefore, we conclude that the arsenic present in the samples is consistent with typical values for the area, do not represent levels of concern, and of no further concern to ecological receptors present in Little Bay.

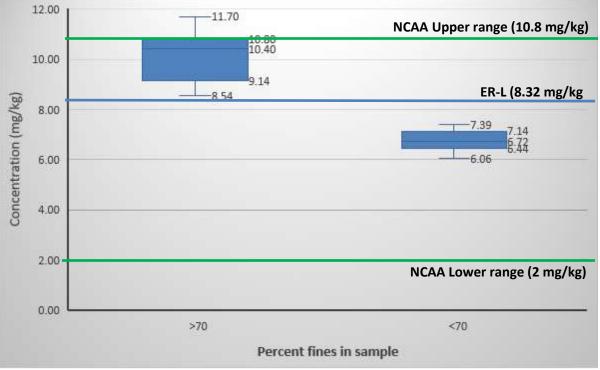



Figure 1 Distribution of Arsenic concentrations in sediment

The numbers on the box diagram indicate concentrations for the maximum value, the 75<sup>th</sup> percentile, the mean, the 25<sup>th</sup> percentile and the minimum value, respectively.

#### 4.2 PAHs

PAHs originate from either petrogenic (i.e., hydrocarbons and petroleum) or pyrogenic (i.e. byproducts of combustion) sources. Some PAHs can be produced naturally from burning and some biological processes, but the bulk of the of PAHs in the environment are the result of anthropogenic discharges, spills, or deposition. PAHs (and other neutral organics) in aquatic systems are considered to have an additive mode of action to aquatic biota where the effect of a mixture is the additive effect of each component, which is based on the so-called "narcosis model" (USEPA 2003). Therefore, PAH benchmarks are defined for summed groups of PAHs. There are benchmarks for total PAHs (the sum of all the PAHs), as well as for the sum of the lighter PAHs (the low molecular weight PAHs, or LMW PAH) and for the heavier PAHs (the high molecular weight PAHs, or HMW PAHs). There are (ER-L) and (ER-M) values for these categories, which were applied in the Characterization Report:

|            | Threshold Effect | Probable Effect | Maximum        | Conclusion |  |  |  |
|------------|------------------|-----------------|----------------|------------|--|--|--|
|            | ER-L             | ER-M            | detected value |            |  |  |  |
| LMW PAHs   | 552 µg/kg        | 3,160 µg/kg     | 53 µg/kg       | No concern |  |  |  |
| HMW PAHs   | 1,700 µg/kg      | 9,600 µg/kg     | 144 µg/kg      | No concern |  |  |  |
| Total PAHs | 4,022 µg/kg      | 44,792 µg/kg    | 272 µg/kg      | No concern |  |  |  |

Table 2 Evaluation of PAHs

There are also ER-L and ER-M for individual PAHs which were presented in the report as well, although these are of lower reliability due to the additive effect of PAHs which typically occur as mixtures.

Trace levels of a number of PAHs were detected in many samples. This is not unusual in areas adjacent to areas of anthropogenic activities, where PAHs may derive from hydrocarbon spills and releases and via deposition of pyrogenic PAHs from emissions to air from burning of fuels.

All PAHs are well below their threshold effect levels, and thus are of no further ecological concern.

#### 4.3 PCBs

PCBs are anthropogenic contaminants previously in widespread industrial uses, most prominently in electrical transformers. Their use has been discontinued but residual contamination still exists. This value sums the detected congeners and assumes that non-detected congeners are present at ½ their detection limit. This implies that even if no PCBs are actually detected, there will be an assumption of some low level presence. As noted in the Characterization Report, only one sample had detected PCBs (C7 had detections of PCB 8 and 18). Otherwise all were non-detect.

There are established ER-L and ER-M values for total PCBs, which were used in the sediment Characterization Report. The sum of detected and non-detected congeners is well below of the threshold value and thus of no further concern.

|            | Threshold Effect<br>ER-L | Probable Effect<br>ER-M | Maximum value (including non- | Conclusion |
|------------|--------------------------|-------------------------|-------------------------------|------------|
|            |                          |                         | detects)                      |            |
| Total PCBs | 22.7 µg/kg               | 180 µg/kg               | 15.1 µg/kg                    | No concern |

Table 3 Evaluation of PCBs

#### 4.4 TPH

Total Petroleum Hydrocarbons is a measure of the mixture of up to hundreds of hydrocarbons that make up petroleum products. The chemical composition of these mixtures vary depending on the source of the TPH. For example, light hydrocarbons like gasoline has a very different profile than heavier hydrocarbons such as heating oil. Therefore, it is difficult to define concentration levels for screening, as toxicity is highly dependent on chemical composition. For this reason, no toxicologically-based sediment screening level for TPH is available.

To indirectly address TPH, a common approach is to consider the content of components of known toxicity in the TPH, such as the PAHs. PAHs are usually present in TPH mixtures. If PAHs are not a concern (as concluded in Section 4.3), then it is unlikely that TPH is of any ecological concern at this site. No TPH was detected, and the PAHs are well below their levels of concern. Therefore, we conclude that TPH is of no further ecological concern.

#### 4.5 Dioxins and Furans

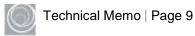
Dioxins and furans are persistent and bioaccumulative substances that are an unwanted byproduct of some industrial processes such as pesticide manufacturing and chlorine bleaching They also can derive from combustion from anthropogenic sources as well as natural sources such as forest fires and volcanic eruptions, Dioxins and furans exist as various congeners of different levels of chlorination. The most toxic and bioavailable dioxin is 2,3,7,8-tetrachloro dibenzodioxin (2,3,7,8-TCDD). Dioxins and furans with more chlorines are less toxic and available, although they tend to be more persistent in the environment.

To address the differences in toxicity, a toxicity equivalency factor (TEF) is applied to each congener. The TEF (WHO 2005) converts each congener concentration to a 2,3,7,8-TCDD toxic equivalent, and the resulting sum of dioxins are expressed as TCDD Toxic Equivalents (TEQ). For example, OCDD has a toxicity 1/1000 of that of 2,3,7,8-TCDD thereby resulting in much lower TEQs.

There are no ER-L or ER-M values for dioxins and furans in common usage in the US. To provide a basis for ecological evaluation, this evaluation considers the equivalent Canadian criteria (CCME 2004). Canada has developed values analogous to the ER-L and ER-M using similar principles which are encoded in Canadian regulations. These values are the ISQG (Interim Sediment Quality Guideline) and PEL (Probable Effect Level) which are analogous to the ER-L and ER-M, and based on Canadian regulatory precedent should be considered as conservative values.

|                  | Threshold Effect | Probable Effect | Maximum   | Conclusion     |
|------------------|------------------|-----------------|-----------|----------------|
|                  | Canada ISQG      | Canada PEL      | TEQ       |                |
| TEQ              |                  |                 | 0.5 ng/kg | No concern     |
| (detects only)   |                  |                 |           |                |
| TEQ              | 0.85 ng/kg       | 21.5 ng/kg      | 6.1 ng/kg | See discussion |
| (ND at 1/2       |                  |                 |           | below          |
| detection limit) |                  |                 |           |                |

Table 5 Evaluation of dioxins and furans


The dioxin and furan results are reported in two ways:

- The TEQ calculated from detected congeners only. This sum assumes non-detected congeners are absent. This will underestimate the total, as several other congeners are likely to be present at sub-detection limit levels
- The TEQ calculated from detected congeners plus non-detected congeners assumed to be present at <sup>1</sup>/<sub>2</sub> their reported detection limit. This will overestimate the total, as one would in real world samples not expect to see all or even most congeners present as high as <sup>1</sup>/<sub>2</sub> the DL

Consequently, the true TEQ is likely much closer to the TEQ based on detects only, rather than to the ND=  $\frac{1}{2}$  detection limit assumption.

In the Little Bay samples detected dioxins and furans consist almost entirely of hepta- and octachlorinated dioxins and furans. Samples dominated by these highly chlorinated and recalcitrant forms indicate residual degraded dioxins/furans. Their equivalent TEQs are low (maximum observed concentration at 0.5 ng/kg), however, and do not translate into toxic amounts. When all congeners are assumed to be present at ½ their detection limits the apparent concentration jumps to 6.1 ng/kg at location C12, which is above the threshold level, although below the probable effect level (PEL). This is largely due to the higher toxicity factors for the tetra- and penta-chloro dioxins and furans, such as location C3 has a non-detected TEQ of 5.3 ng/kg which exceeds the threshold screening level (ISQG) but is still well below the PEL.

The detection limits reported for this study are consistent with standard detection limits for dioxin and furan chemical analysis in soil and sediment, and are viewed as adequate to draw conclusions about analytical data.



Considering the above, the true TEQ is likely slightly higher than the reported TEQ based on ND=0, but would not approach the TEQ implied by assuming all non-detects are present at  $\frac{1}{2}$  their detection limit. Therefore, we conclude that there is no further concern from dioxins and furans in these sediments.

#### 4.6 PFCs

PFCs are persistent and bioaccumulative, and have been detected in environmental media and tissues even in remote areas far from locations of their use. PFCs are industrial chemicals used in paper and textile treatment, production of fluoropolymers, cosmetics and insecticides formulations. A primary use has been in fire-fighting foams. They enter the environment via direct and indirect emission sources such as manufacturing processes, leaching from commercial products containing PFCs, and releases to water bodies.

In the present case it is known that PFCs have been used at nearby facilities, and those facilities may have been a source to potential impacts to water and sediment in Little Bay. Analysis of the two most prominent PFCs, PFOA (perfluorooctanoic acid) and PFOS (perfluorooctanesulfonate) was therefore conducted on the sediment samples collected from Little Bay.

The fate, transport and toxicity of PFCs remains poorly understood, and applicable benchmarks for evaluation of waters and especially sediment are not widely adopted or developed. To allow a preliminary evaluation of any detected PFCs in these samples, a review of scientific literature with a focus on the toxicity of PFCs to sediment-dwelling organisms was conducted for this evaluation and is included as Appendix A2.

There are few sediment based sediment quality criteria in existence for PFCs, such as the UK proposed values presented here. Our review revealed that some jurisdictions (e.g. Canada) do not think it possible to derive a reliable sediment benchmark. This is because the polar and surfactant-like properties of PFCs point to a preference to partitioning to the water phase within the pore water/sediment system, and to migrate relatively freely in and out of the sediment compartment. However, the bulk sediment analysis conducted on the sediment captures the presence of PFCs even if present in the pore water phase, although the exact partitioning factor is unclear. The benchmarks used in this evaluation incorporate the partitioning between pore water and sediment for typical sediments.

The review in Appendix A2 identified a threshold level for marine sediment of 6.7  $\mu$ g/kg and 67  $\mu$ g/kg for freshwater sediment for PFOS. This value was adopted by several European jurisdictions as benchmarks. The sediment values are uncertain yet conservative and were derived from water based toxicity data and extrapolated to sediment assuming the "worst case" observed partitioning to sediment from water.

The large difference between the benchmarks for marine and freshwater sediment is due to the variable results of the limited toxicity data that are currently available. One group of



organisms, the marine and estuarine mysid shrimp, appear more sensitive to PFOS than other organisms resulting in a lower threshold value.

Most of the available toxicity literature focuses on PFOS. PFOA is considered considerably less toxic, and certainly less bioaccumulative and separate benchmarks for it have not been reviewed.

Because these benchmarks are high level indicators of potential concern and not well established, as a secondary line of evidence Appendix A2 reviewed "typical" concentrations in sediment around the world. There are no readily available data from the NE Atlantic coastal region, and examples were derived from coastal and inland water studies in Asia, Europe, Canada, and the US. This review suggests that concentrations  $< 2 - 3 \mu g/kg$  can be considered typical of sediment in populated areas, while concentrations  $> 10 \mu g/kg$  are usually only observed in areas of evident impact such as harbors and polluted lakes.

Table 6 Evaluation of PFCs

|      | Towicity threshold  | Concentrations in | Maximum          | Conclusion |
|------|---------------------|-------------------|------------------|------------|
|      | Toxicity threshold, |                   |                  | Conclusion |
|      | preliminary         | sediments         | value in         |            |
|      | (Denmark and UK)    | worldwide (see    | Little Bay       |            |
|      |                     | App. C2)          | samples          |            |
| PFOS | 6.7 µg/kg (marine)  | < 2-3 µg/kg –     | $< 2 \ \mu g/kg$ | No concern |
|      | (67 µg/kg in other  | typical           |                  |            |
|      | areas)              | >10 µg/kg -       |                  |            |
| PFOA | Likely > 10 times   | impacted          | $< 2 \ \mu g/kg$ | No concern |
|      | higher than PFOS    |                   |                  |            |
|      | (based on water     |                   |                  |            |
|      | toxicity)           |                   |                  |            |

There were no detections of PFOA or PFOS in any sample. The detection limits are all  $< 2 \mu g/kg$ , which is below the preliminary screening benchmark and lower than typical sediment values. Therefore, because PFCs were not detected using methods with sufficiently low detection limits with respect to ecological effects data, we conclude that there is no potential for ecological effects from PFCs in these sediments.

## 5. Summary

This memorandum provides an opinion on whether potential remobilization of sediment from the planned activities may be of an ecological concern to the biota of Little Bay, New Hampshire, based on the results of the Characterization of Sediment Quality of which this memorandum is an appendix. Based on the reported sediment chemical concentrations in the data set, it is our scientific opinion that there is no potential for ecological effects from constituents of potential concern in the sediment including PAHs, PCBs, PFCs, dioxins and furans, and metals. The only metal which slightly exceeds the strictest screening criteria is arsenic, but its distribution appears within the range of naturally occurring arsenic in the area, and remobilization would not result in any appreciable increase in concentrations or potential adverse effects.

We conclude that the planned activities would have negligible impact to Little Bay from the perspective of potential ecological toxic impacts.

## 6. References

- CCME 2004. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Polychlorinated Dibenzo-p-dioxins and Polychlorinated dibenzofurans (PCDD/Fs). Canadian Council of Ministers of the Environment.
- Long E.R., L.G. Morgan, 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration. Seattle, Washington. 1990
- USEPA 2003. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013, November 2003
- USEPA 2007. Framework for Metals Risk Assessment. EPA 120/R-07/001, March 2007





# **Appendix A2 - Technical Memorandum**

**PFOA and PFOS in sediment** 

#### **Executive Summary**

In the absence of established criteria for the screening of perfluorinated compounds (PFCs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in sediment, we conducted a literature review of existing scientific data on (a) the typical values observed in natural sediment worldwide, and (b) thresholds of ecological toxicity of sediment-associated PFCs. Sufficient information is available to provide a preliminary interpretation of sediment concentrations of potential ecological concern. These values are sufficient to screen out areas of no concern, but are subject to substantial uncertainties that need to be considered if the values are exceeded.

The following evaluation benchmarks are suggested as values to determine if there could be a potential concern. The aquatic toxicity of PFOA is at minimum 10 times lower than for PFOS, and sediment benchmarks would be expected to be commensurately higher than for PFOS.

|                                | Limit                 | Concentrations | Comments                              |
|--------------------------------|-----------------------|----------------|---------------------------------------|
|                                | Consistent with       | < 4 µg/kg      | Even remote areas often have          |
|                                | typical background in |                | measurable concentrations, usually    |
| Sediment typical               | developed areas       |                | but not always < 1 μg/kg              |
| concentrations                 | Some impact likely    | > 10 µg/kg     | Frequently measured in harbors and    |
| (PFOS and PFOA)                | present               |                | polluted lakes and rivers             |
|                                | Significant impact    | > 100 µg/kg    | Observed near PFC manufacture and     |
|                                | likely present        |                | release locations                     |
|                                | Lowest (strictest)    | 6.7 μg/kg PFOS | Recommended value in UK and           |
| Sadimant Tavicity              | Probable No Effect    |                | Denmark in marine areas, based on     |
| Sediment Toxicity<br>Benchmark | Concentration (PNEC)  |                | the most sensitive marine organism    |
| (PFOS)                         | Alternate PNEC        | 67 μg/kg PFOS  | Recommended value in UK and           |
| (F103)                         |                       |                | Denmark for freshwater sediment. In   |
|                                |                       |                | line with toxicity for most organisms |

## 1. Introduction

This memorandum presents a high level summary of the occurrence and ecotoxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in sediment, the two most prevalent perfluorinated compounds (PFCs), in support of the evaluation of potential impacts resulting from aspects of the Eversource Energy Seacoast Reliability Project (SRP) in Little Bay. The need is founded on the fact that established sediment criteria are lacking for these and other PFCs.

Our objective is to provide a high level framework for interpreting concentrations of PFCs that may be present in sediment, and that may end up being mobilized by the planned SRP activities. To this end it focuses on two issues: (1) What information is available on expected concentrations in sediment based on studies elsewhere, and (2) What information is available on expected ecotoxicity of sediment associated PFCs. This information could be applied as an initial comparison standard to any site specific data.

PFCs are industrial chemicals that are widely distributed and persistent in the environment. For over 50 years, they have been used in numerous applications including paper and textile treatment, production of fluoropolymers, cosmetics, and insecticide formulations. A primary use has been in fire-fighting foams. They enter the environment via direct and indirect emission sources such as manufacturing processes, leaching from commercial products containing PFCs, and releases to water bodies.

This evaluation focuses on both PFOA and PFOS. These two are the most prevalent of the PFCs, partly due to their more common use and also because biogeochemical processes often end up producing particularly PFOA as a breakdown product. Typically PFOA and PFOS together form the overwhelming bulk of the PFCs present, although the relative contribution of PFOA and PFOS across all media varies widely for reasons that do not appear to be clearly elucidated.

## 2. Measured Sediment Concentrations

No data specific to the area or even region appear to be available. To provide a framework and context for concentrations that could reasonably be expected, a literature search was done. While actual data are limited, many studies have been conducted worldwide over the last decades evaluating PFCs in sediment. Some of these are summarized here in order to provide a framework for what concentrations of PFOA and PFOS might be expected in the local environment.

Note that sediment concentrations discussed here are sometimes reported in the literature as dry weight (dw), sometimes as wet weight (ww), and sometimes the source does not specify which one. The benchmarks will be presented on a dry weight basis. Where data are reported



as wet weight, the corresponding dry weight in silty sediment can be roughly approximated as twice the wet weight (i.e., the water content of silty sediment is around 50 percent, while sandy sediment has lower water content).

| Geography              | Comments                               | Sources                       |
|------------------------|----------------------------------------|-------------------------------|
| Marine and estuarine   | PFOA=0.06-0.63 μg/kg ww (but up to     | Houde et al. 2006, Higgins    |
| sediments – US         | 10.7 in Port St Lucie);                | et al. 2006, 3M 2001          |
| (Charleston, Sarasota, | PFOS= nd – 3.1 μg/kg ww                |                               |
| SB Bay, Port St Lucie  |                                        |                               |
| Marine and estuarine   | In undisturbed tidal flats in Japan:   | Alzaga et al. 2005, Nakata    |
| sediments - other      | PFOA= up to 1.1 μg/kg ww               | et al. 2006. Nakata et al. in |
|                        | PFOS=up to 0.14 μg/kg ww               | Japan also evaluated co-      |
|                        | In Barcelona Harbor 8-12 μg/kg ww      | located biota and found       |
|                        | PFOA                                   | high elevations in            |
|                        |                                        | lugworms but minimal          |
|                        |                                        | uptake in clams.              |
|                        | Baltic Sea: PFOS=0.02-2.4 μg/kg;       | Theobald et al. 2011          |
|                        | PFOA: 0.06-1.6 μg/kg                   |                               |
| FW sediments – Great   | L. Ontario up to 12 µg/kg dw PFOS in   | EC 2013                       |
| Lakes                  | recent sediment (mean 10 μg/kg),       |                               |
|                        | but dropping to <1 in sediments        |                               |
|                        | dated to 1980 or before. Other Great   |                               |
|                        | Lakes have lower concentrations (0.9   |                               |
|                        | to 2.2 μg/kg) PFOS. Harbors were       |                               |
|                        | similar.                               |                               |
| FW sediments –         | In most cases PFOS < 1 μg/kg, but 2    | EC 2013                       |
| Canadian lakes         | μg/kg at a lake in an industrial area. |                               |
| FW sediments – US      | Measured values across multiple        | 3M 2001                       |
| cities                 | sites 0.2 – 0.8 μg/kg.                 |                               |
|                        | Streams in SF Bay have range of nd-    |                               |
|                        | 0.23 μg/kg PFOA and nd-1.3 μg/kg       |                               |
|                        | PFOS.                                  |                               |
| International surveys  | PFOA: 2.0 – 3.1 μg/kg in Europe        | James et al. 2009             |
|                        | Netherlands: nd-24 μg/kg dw PFOA,      | Schrap et al. 2004            |
|                        | nd-47 μg/kg dw PFOS                    |                               |
|                        | Scandinavia: nd up to 392 μg/kg        | Kallenborn et al. 2005.       |
|                        | PFOA and nd up to 892 PFOS.            | These elevated values may     |
|                        |                                        | be associated with            |
|                        |                                        |                               |
|                        |                                        | industrial outfalls           |

Table 1 – Typical PFC sediment concentrations



| R. | up to 13300 µg/kg.                 | Co-located studies on fish |
|----|------------------------------------|----------------------------|
|    | At other locations: Mean <0.5-3.5, | and clams indicated        |
|    | ranging up to 9.1 $\mu$ g/kg       | elevated concentrations in |
|    |                                    | fish, but not in clams.    |

A review of the selected reports above allows the following conclusions:

- Trace levels of PFOA and PFOS are almost ubiquitous in sediment. In fact, studies in Canadian Arctic lakes distant from sources (Stock et al. 2007) have revealed elevated concentrations (surprisingly, up to 85 µg/kg dw) although more typically are <1 µg/kg dw). Measurable concentrations may be expected in most sediments, especially in urbanized areas. The presence of trace levels of PFCs in sediment is not necessarily an indication of site related contamination.</li>
- Data from marine / estuarine environments is fairly limited. Open water and tidal flat samples were found to be 1 µg/kg (for PFOA and PFOS both) or less in tidal flats in Japan, and up to 2.4 µg/kg ww in the Baltic Sea which is a heavily industrialized region. In US harbors we see concentrations typically at 1 µg/kg or less, but ranging up to 3.1 µg/kg ww PFOS in San Francisco Bay.
- Available freshwater data is more extensive. The Great Lakes are fairly well studied and have PFOS concentrations ranging from 0.9 to 2.2  $\mu$ g/kg. However, L. Ontario is an outlier, with concentrations ranging up to 12  $\mu$ g/kg. In US rivers and lakes observed concentrations typically are the <2  $\mu$ g/kg range.
- Heavily impacted sediments do exist. In Europe concentrations in the hundreds of ppb have been reported for both PFOS and PFOA in Scandinavia, and up to 24  $\mu$ g/kg PFOA and 47  $\mu$ g/kg PFOS in the Netherlands. Studies conducted at the 3M PFC manufacturing facility in Decatur show sediment concentrations near the outfall averaging 2,740  $\mu$ g/kg PFOS but ranging as high as 13,400  $\mu$ g/kg. However, other areas nearby in the Tennessee River do not exceed 9.1  $\mu$ g/kg PFOS and average in the <0.5 to 2.4  $\mu$ g/kg range.

To summarize the limited amount of available data it is reasonable to consider that PFOS or PFOA concentrations around 1-3  $\mu$ g/kg ww (which translates into approximately 2-5  $\mu$ g/kg dw) can probably be considered normal and consistent with area wide contamination in today's world. Sediments impacted by PFCs would be expected to present concentrations exceeding 10  $\mu$ g/kg. Heavily impacted sites will have values in the hundreds of ppb.

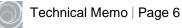
This brief and high level survey provides a conceptual framework for interpretation of sediment PFOA and PFOS data. It does not address issues related to the stability or mobility



of these materials in the sediment. Co-located data collected world-wide indicates a strong correlation between sediment and surface water, implying considerable sediment to water interchange. This is consistent with the chemical characteristics of the PFCs, which are polar and have surfactant properties, which reduces the affinity of PFCs to partition to the sediment compartment.

## 3. Ecotoxicological Sediment Evaluation Criteria

#### 3.1 Existing Criteria


There are few established sediment criteria for protection of ecological resources, none in the USA.

**Norway c**urrently has a marine sediment Probable No Effect Concentration (PNEC) of 15 mg/kg for PFOA and 6.7 mg/kg for PFOS. Norway is considering a drastic reduction to a PNEC of 2  $\mu$ g/kg for PFOS, which would establish a limit close to typical anthropogenic background. It is unclear how these were derived.

**Denmark and the UK** (EA 2004) have issued a proposed PNEC of **67 µg/kg** for freshwater sediment and **6.7 µg/kg** for marine sediment, extrapolating to sediment from water only PNECs of 25 µg/L for freshwater and 2.5 µg/L for marine water. PNECs are calculated using highly conservative assumptions, and therefore are expected to be generally protective. This is based on available aquatic chronic data for fish, invertebrates and plants, converted to sediment basis by applying a  $K_d$ =8.7 l/kg. Zareitelabad et al. (2013) reports sediment  $K_d$  values for PFOS around 7.4-7.5 in US sediment, but ranging from 0.1 to 10 for PFOA indicating different fate dynamics. Note that PFCs are not expected to follow organic carbon equilibrium partitioning (i.e., based on  $K_{ow}$  and  $K_{oc}$  as is the case for non-polar organics) so the partitioning coefficient  $K_d$  needs to be an empirical sediment to water partitioning value. The reason for the much lower benchmark in marine situations is the high ecotoxicological sensitivity of (marine) mysid shrimp, which show an apparent sensitivity to PFCs an order of magnitude higher than other organisms.

**Canada and the EU** both conclude there is insufficient information to derive sediment criteria from the water criteria. The EU notes that the adsorption and desorption of PFCs from sediment to/from water is rapid and not governed by organic carbon. Adsorption/desorption is also considered independent of inorganic composition. Conditions for equilibrium are therefore unknown and a PNEC is not achievable.

As a preliminary screening value either the European marine preliminary PNEC (6.7  $\mu$ g/kg) or the freshwater preliminary PNEC (67  $\mu$ g/kg) can be applied, keeping in mind the large



uncertainty resulting from assumptions when converting aquatic toxicity endpoints to a sediment value.

#### 3.2 Ecotoxicology

There is only limited toxicological data for sediment biota. Most data for aquatic organisms is based on water exposures. The consensus of these studies is that PFOS and PFOA have low acute toxicities, and reported environmental concentrations except in extreme cases should not be a concern. Chronic toxicities (for fish and aquatic invertebrates) from a small set of studies underlie a lot of the development of criteria for PFOS and PFOA in all jurisdictions.

- For fish the standard No Observed Effect Concentration (NOEC) value is about 300  $\mu$ g/L (fathead minnows, UK EA 2004). No marine fish data are available.
- For invertebrates the standard NOEC for PFOS is about 7000 µg/L for freshwater Daphnids (UK EA 2004), but the much lower value of 250 µg/L for marine Mysid shrimp (OECD, 2002) which results in the lower marine standard.
- For plants the NOECs are higher: >3200 µg/L for marine phytoplankton, and around 3500 µg/L for freshwater macrophytes (*Myriophyllum*, Hanson et al. 2005)

The PFOS NOEC for Mysids of 250  $\mu$ g/L, the lowest empirical measurement, has then been converted using European methodologies to PNECs, is **36 \mug/L**, applying appropriate safety factors (EC 2011).

PFOA is generally considered much less toxic than PFOS, with equivalent toxicities at least an order of magnitude higher. NOEC values were reported in OECD (2006) as 12,500  $\mu$ g/L for algae, 20,000  $\mu$ g/L for *Daphnia*, and 40,000  $\mu$ g/L for fish. No information has been found specific to Mysid shrimp.

A study by Yang et al. (2014) determined a suggested chronic criterion based on USEPA procedures of 250  $\mu$ g/L for PFOS and 3,520  $\mu$ g/L for PFOA. This indicates that the relative aquatic toxicity of PFOS is at more than 10 times higher than for PFOS. An independent point of comparison can be made from chronic values (ChV) derived from EcoSAR v.11.10 (EPA 2010), a quantitative structure activity relationship (QSAR) analysis procedure from the Office of Pollution Prevention and Toxics (OPPT) of the EPA. This program calculates on the basis of the characteristics of the compounds ChVs for mysids. These are 54  $\mu$ g/L for PFOA and 117  $\mu$ g/L for PFOS. For freshwater Daphnia the corresponding ChV are 1,485  $\mu$ g/L for PFOA and 3,181  $\mu$ g/L for PFOS. These values are in broad alignment with the empirical data.

As a result of the physicochemical characteristics of PFOS and PFOA they tend to partition to the water phase, i.e., to both the pore water and the overlying surface water. The mechanisms of partitioning are poorly understood. However, a bulk sediment measurement

for PFCs will include both the mass of PFCs existing in the pore water phase as well as the mass adsorbed to sediment, so will capture the total content of the "bulk sediment" water/sediment system.

The proposed PNEC values for PFOS in sediment are based on measurement in bulk sediment, although they were originally derived from assumed porewater exposure which then is backcalculated to bulk sediment using the estimated sediment to pore water partitioning coefficients. As a result, the sediment PNEC proposed here is representative of the total exposure in sediment, whether to the porewater or the sediment fractions.

#### 3.2.1 Oysters

Oysters are a particular concern for the area as there are oyster farms in the bay. There are limited toxicity data for oysters. Only one direct toxicity test was found, which reported an acute toxicity EC50 of >3000  $\mu$ g/L (Wildlife International 2000 cited in OECD 2002). Applying a safety factor of 100 the NOEC would be >30  $\mu$ g/L, or commensurate with the previously described conservative screening level for water, suggesting the sediment value is also protective of oysters

Jeon et al (2010) evaluated bioaccumulation in Pacific oysters and found bioaccumulation factors (BAFs) from all sources to oyster tissue on the order of 10 for PFOA and 100 for PFOS at low salinities (10 ppt), increasing to 20 and 250 respectively at high salinity (34 ppt) when exposed to 10  $\mu$ g/L PFOS or PFOA in water and to food items (algae) cultured in PFOS or PFOA. Most of the increase in uptake (80-90%) was due to uptake from diet, with direct water bioconcentration factors (BCFs, i.e. direct uptake from the water column) on the order of 1 – 3 for PFOA and 25 to 80 for PFOS<sup>1</sup>. Bioaccumulation potential for PFOS is clearly more significant than for PFOA. These uptake factors suggest that oysters accumulate from their filter feeding– and could result in relatively elevated tissue concentrations from lower water concentrations. This may be a concern for consumption of oysters. Tissue concentrations in oysters have been measured; in Chesapeake Bay PFOS values from 42 to 1225  $\mu$ g/kg dw have been found, indicating significant exposure is present (Giesy et al., 2001, Kannan et al 2002). However, So et al. (2006) found low levels in Japanese oysters (<1 to 4 ppb PFOA and 0.6 – 3.8 ppb dw PFOS).

### 4. Summary

PFCs in sediment are little understood, and subject to considerable uncertainty. Little or no ecotoxicological work in sediment exists. Conclusions about sediment are extrapolated from

<sup>&</sup>lt;sup>1</sup> BAFs and BCFs are expressed as unitless values indicating the concentration multiplier in tissue relative to the media.

aquatic toxicity data using assumptions about partitioning between sediment and water. As a preliminary sediment screening level based on the scientific literature the following limits for PFOS are suggested. For PFOA the estimated toxicity is at least an order of magnitude lower based on aquatic toxicity differences, but confidence in a corresponding sediment benchmark is low due to the limited understanding of sediment partitioning. However, they are subject to significant uncertainty;

- Lowest limit:  $6.7 \mu g/kg dw$  PFOS in marine sediment. This is almost certainly overprotective
- Alternate limit; the freshwater sediment level of 67  $\mu$ g/kg dw, while still uncertain, is more in line with most toxicity data.
- For PFOA, preliminary suggested values would be at least 10 times higher, although there is low confidence in this estimate due to the uncertainties about partitioning behavior in sediment and the lack of specific sediment values in the literature.

However, the properties of PFOS and PFOA indicate that their key mode of action is from water (and diet) exposure and not through sediment exposure, and further that there is significant interchange between sediment and surface water resulting in correlated concentrations. The lowest water PNEC is conservatively set at 36  $\mu$ g/L for PFOS, although empirical toxicity NOECs are >250  $\mu$ g/L (for PFOA limits are considerably higher). These limits are reasonable as preliminary screening values for surface water.

For comparative purposes, and independent of toxicity thresholds, a review of 'typical' concentrations of PFOA and PFOS in sediment world-wide (there being limited regional data) indicates as a starting point of comparison:

- Sediment with less than 4  $\mu$ g/kg are broadly consistent with anthropogenic background in populated areas and even some remote regions. PFCs at sub-ppb level are generally detectable in even pristine areas.
- Sediment with >10  $\mu$ g/kg are indicators of some impact as seen in some harbors, and polluted lakes and rivers.
- Sediment with >100  $\mu$ g/kg are associated with locations of industrial manufacture or release of PFCs.
- The relative contribution of PFOS and PFOA to the total PFCs varies considerably, and no pattern emerges.

This information is intended to provide a preliminary interpretive framework for data emerging from site monitoring and sampling.

## 5. References

3M, 2003. Environmental and Health Assessment of Perfluoroocane sulfonic acid and its. salts. Prepared by 3M Company, with J Moore (Hollyhouse Inc.), J Rodericks and D



Turnbull (Environ Corp.) and W Warren-Hicks and Colleagues (The Cadmus Group, Inc.). August 2003.

- Alzaga, R., Salgado-Petinal, C., Jover, E., Bayona, J.M. 2005. Development of a Procedure for the Determination of Perfluorocarboxylic Acids in Sediments by Pressurized Fluid Extraction, Headspace Solid-Phase Microextraction Followed by Gas Chromatographic-Mass Spectrometric Determination. J. Chrom. 1083, 1-6.
- Norges Miljodirektorat 2012. PNEC verdier for PFC. Miljodirektoratets veileder TA-3001/2012
- Environment Canada, 2013. Perfluorooctane Sulfonate in the Canadian Environment. Environmental Monitoring and Surveillance in Support of the Chemicals Management Plan. En14-96/2013E-PDF
- Giesy, J. and K. Kannan 2001. Perfluorooctanesulfonate and related fluorochemicals in oyster, *Crassostrea virginica*, from the Gulf of Mexico and Chesapeake Bay. Prepared for 3M, St. Paul, MN. Cited in OECD, 2002.
- Hanson, M., P. Sibley, R. Brain, S. Mabury, and K. Solomon. 2005. Microcosm evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acids. *Arch. Environm. Contam. Toxicol.* 48: 329-337.
- Houde, M., J. Martin, R. Letcher, R. Solomon, and K. Muir. 2006. Biological Monitoring of polyrfluoroalkyl substances, a review. *Environ. Sci. Technol.* 40: 3463-3473
- Higgins, C. and R. Luthy. 2006. Modeling sorption of anionic surfactants onto sediment materials, an a priori approach for perfluoroalkyl surfactants and linear alkylobenzene sulfonates. *Environ. Sci. Technol.* 41: 3254-3261.
- James A., V. Bonnomet, A. Morin, and B. Fribourg-Blanc. 2009. Implementation of requirements on Priority substances within the Context of the Water Framework Directive. Contract N° 07010401/2008/508122/ADA/D2. Prioritisation process: Monitoring-based ranking., INERIS / IOW: 58.
- Jeon, J., K. Kannan, H. Lim, H. Moon, J. Ra, and S. Kim, 2010. Bioaccumulation of Perfluorochemicals in Pacific Oyster under Different Salinity Gradients. *Environ. Sci. Technol.* 44: 2695-2701
- Kallenborn R, Berger U, Järnberg U, Dam M, Glesne O, Hedlund B, et al. Perfluorinated alkylated substances (PFAS) in the Nordic environment. Nordic Council of Ministers; 2004.
- Kannan, K and Giesy, JP (2002). Global distribution and bioaccumulation of perfluorinated hydrocarbons. Organohalogen Compounds, **59**, 267-270

- Nakata, H., Kannan, K., Nasu, T., Cho, H.S., Takemura, A. 2006. Perfluorinated Contamnants in Sediments and Aquatic Organisms Collected from the Shallow Water and Tidal Flat Areas of the Ariake Sea, Japan: Environmental Fate of Perfluorooctane Sulfonate in Aquatic Ecosystems. *Environ. Sci. Technol.* **40**, 4916-4921.
- OECD, 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its salts. Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, ENV/JM/RD(2002)17/FINAL, 21-Nov-2002.
- Schrap, S., J.Pijnenburg, and R. Geerding. 2004. Geperfluoreerde verbindingen in Nederlands oppervlaktewater. Lelystad, the Netherlands: RIZA/RIKZ. Report no. RIZA-rapport 2004.025
- So M., S. Taniyasu S, P. Lam, G. Zheng, J. Giesy, and N. Yamashita. 2006. Alkaline Digestion and Solid Phase Extraction Method for Perfluorinated Compounds in Mussels and Oysters from South China and Japan. Archiv. Environ. Contam. Toxicol. 50:240-248
- Theobald, N., Caliebe, C., Gerwinski, W., Huhnerfuss, H., Lepom, P., 2012. Occurrence of perfluorinated organic acids in the North and Baltic Seas. Part 2: distribution in sediments. Environmental science and pollution research international 19, 313-324.
- UK EA, 2004. Environmental Risk Evaluation Report: Perluorooctane sulphonate (PFOS). Prepared for the United Kingdom Environment Agency by D. Brooke, A. Footitt and T. Nwaogu, ISBN 978-1-84911-124-9
- USEPA, 2011. ECOlogical Structure-Activity Relationship Model (ECOSAR) Class Program, v. 1.1. June 2011.
- Yang, S., RF. Xu, F. Wu, S. Wang and B. Zheng. Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China. *Sci. Total Environment* 470-471: 677-683.
- Zairetalabad, P., J.Siemens, M.Hamer, and W. Amelung. 2013. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface water, sediments, soils and wastewater – A review of on concentrations and distribution coefficients. *Chemosphere* 91 (2013): 725-732.

Appendix B: Vibracore Boring Logs



| Page | 1 | of | 1 |
|------|---|----|---|
|------|---|----|---|

|                                                         |                                      |           |                                                                                                          | T                           |
|---------------------------------------------------------|--------------------------------------|-----------|----------------------------------------------------------------------------------------------------------|-----------------------------|
| Project Name:                                           | Eversource: Seacost Reliabil         | ity Proje | ct                                                                                                       | Proj. #: 22860.006          |
| Site Name:                                              | Little Bay                           |           |                                                                                                          | Task #: 05                  |
| City:                                                   | Newington                            | State:    | NH                                                                                                       | Date: 09/20/16              |
| Field Team Leader(s                                     | ):JBS                                |           | Field Team Safety Coordinator:                                                                           | JBS                         |
| Field Crew: CJR, B                                      | JA, AT                               |           | Arrival & Departure Times: 12:52-13                                                                      | :05                         |
| Station ID #: C-1                                       |                                      |           | Weather: Clear Cloudy                                                                                    | Rain Other                  |
| Photos: Y                                               | Roll No./Exposure No.: NA            |           | Wind Conditions (Speed/Direction):                                                                       | 5MPH SOUTH                  |
| FIELD DATA                                              |                                      |           |                                                                                                          |                             |
| Water Depth:                                            | ft. Tide: Ebb                        | Floo      | d Low Slack High Slack                                                                                   | Other                       |
| PID: N/A                                                | Redox Potential: N/A                 | pH:       | N/A H <sup>2</sup> O Temp.: N/A                                                                          | Air Temp.: NA               |
| SAMPLE/PUSH #1<br>Core ID#: C-1<br>Sample Method: Pongr |                                      |           | Penetration Depth:51"<br>Material CAB / Juminum / SS Co                                                  |                             |
|                                                         | Felder PVL / Portable Clamp-on / NA  |           |                                                                                                          | $\sim$                      |
| SAMPLE/PUSH #2                                          |                                      |           |                                                                                                          |                             |
| Core ID#:                                               | Coring Time:                         |           | Penetration Depth:ft.                                                                                    | Core Receivery:ft           |
| Sample Method: Ponar                                    | / Vibracore / Piston Core / Manual   | Coring I  | Vaterial: CAB / Aluminum / SS Co                                                                         | ore Diameter (OD): 2" 3" 4" |
| Vibracore Type: Rossf                                   | elder / PVL / Portable Clamp-on / NA |           | Sampling Equipment Deconned or Re                                                                        | placed: Y N                 |
| SAMPLE/PUSH #3<br>Core ID#:                             | Coring Time:                         |           | Penetration Depth:ft.                                                                                    | Core Recovery:ft            |
| Sample Method: Penal                                    | 7 Vibracore / Piston Core / Manual   | Coring I  | Vaterial: CAB / Aluminum / SS Co                                                                         | ore Diameter (OD): 2" 3" 4" |
| Vibracore Type: Rossf                                   | elder / PVL / Portable Clamp-on / NA |           | Sampling Equipment Deconned or Re                                                                        | placed: Y N                 |
|                                                         | 0493072<br>5884827<br>0              |           | Coordinate Units: at/Lon US Surv<br>Datum: WGS84 Y N Othe<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH | vey Feet<br>er              |
| COMMENTS / NOTE                                         | ES                                   |           |                                                                                                          |                             |
|                                                         |                                      |           | North<br>C-1<br>brick building                                                                           | land                        |
| Ft. Tube Used=5'                                        |                                      |           |                                                                                                          |                             |
| Preparer's Initial: JBS                                 | <u> </u>                             |           | l/                                                                                                       |                             |



|  | Page | 1 ( | of | 1 |
|--|------|-----|----|---|
|--|------|-----|----|---|

| Project Name:               | Eversource: Seacost Reliabi                                                           | ity Proje | ect Proj. #: 22860.006                                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|
| Site Name:                  | Little Bay                                                                            |           | Task #: 05                                                                                                       |
| City:                       | Newington                                                                             | State:    | NH Date: 09/20/16                                                                                                |
| Field Team Leader(s)        | ): JBS                                                                                |           | Field Team Safety Coordinator:                                                                                   |
| Field Crew: CJR, BJ         | IA, AT                                                                                |           | Arrival & Departure Times: 13:10-13:25                                                                           |
| Station ID #: C-2           |                                                                                       |           | Weather: Clear Cloudy Rain Other                                                                                 |
| Photos: Y                   | Roll No./Exposure No.: NA                                                             | 4         | Wind Conditions (Speed/Direction): 5MPH SOUTH                                                                    |
| FIELD DATA                  |                                                                                       |           |                                                                                                                  |
| Water Depth:3.1_            | ft. Tide: Ebb                                                                         | Floo      | Low Slack High Slack Other                                                                                       |
| PID: N/A                    | Redox Potential: N/A                                                                  | pH:       | N/A H <sup>2</sup> O Temp.: N/A Air Temp.: NA                                                                    |
|                             | Coring Time:<br>Vibracore / iston Core / Manual<br>elder PVL / Portable Clamp-on / NA | Coring    | Material CAB / Juminum / SS Core Diameter (OD): 23                                                               |
| SAMPLE/PUSH #2<br>Core ID#: | Coring Time:                                                                          |           | Penetration Depth:ft. Core Recovery:                                                                             |
| Sample Method: Ponar        | / Vibracore / Piston Core / Manual                                                    | Coring I  | Material: CAB / Aluminum / SS Core Diameter (OD): 2" 3"                                                          |
| Vibracore Type: Rossfe      | elder / PVL / Portable Clamp-on / NA                                                  |           | Sampling Equipment Deconned or Replaced: Y N                                                                     |
| SAMPLE/PUSH #3<br>Core ID#: | Coring Time:                                                                          | Coring    | Penetration Depth:ft. Core Recovery:<br>Material: CAB / Aluminum / SS Core Diameter (OD): 2" 3"                  |
|                             | elder / PVL / Portable Clamp-on / NA                                                  | -         | Sampling Equipment Deconned or Replaced: Y N                                                                     |
| · · · ·                     | 0425851<br>798955<br>)                                                                |           | Coordinate Units: at/Lon US Survey Feet<br>Datum: WGS84 Y N Other<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH |
| COMMENTS / NOTE             | S                                                                                     |           |                                                                                                                  |
|                             |                                                                                       |           | North<br>C-2<br>brick building                                                                                   |
| Ft. Tube Used=5'            |                                                                                       |           |                                                                                                                  |
| Preparer's Initial: JBS     | <u>}</u>                                                                              |           |                                                                                                                  |



| Project Name:                                                                                                                                                                                 | Eversource: Seacost Reliabili                                                         | ty Projec   | ect Proj. #: 22860.006                                                                                                                     | 3                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Site Name:                                                                                                                                                                                    | Little Bay                                                                            |             | Task #: 05                                                                                                                                 |                        |
| City:                                                                                                                                                                                         | Newington                                                                             | State:      | NH Date: 09/20/16                                                                                                                          |                        |
| Field Team Leader(s):                                                                                                                                                                         | JBS                                                                                   |             | Field Team Safety Coordinator: JBS                                                                                                         |                        |
| Field Crew: CJR, BJA                                                                                                                                                                          | A, AT                                                                                 | -           | Arrival & Departure Times: 13:30-13:45                                                                                                     |                        |
| Station ID #: C-3                                                                                                                                                                             |                                                                                       | -           | Weather: Clear Cloudy Rain Other                                                                                                           |                        |
| Photos: Y N                                                                                                                                                                                   | Roll No./Exposure No.: NA                                                             | -           | Wind Conditions (Speed/Direction): 5-10 MPH SOUTH                                                                                          |                        |
| FIELD DATA                                                                                                                                                                                    |                                                                                       | ······      |                                                                                                                                            |                        |
| Water Depth:4.0                                                                                                                                                                               | ft. Tide: Ebb 🕻                                                                       | Flood       | Low Slack High Slack Other                                                                                                                 |                        |
| PID: N/A                                                                                                                                                                                      | Redox Potential: N/A                                                                  | pH: N       | N/A H <sup>2</sup> O Temp.: N/A Air Temp.: NA                                                                                              |                        |
|                                                                                                                                                                                               | Coring Time:<br>Vibracore / Jiston Core / Manual<br>Ider PVL / Portable Clamp-on / NA |             | Penetration Depth:60'' Core Recovery:<br>Material CAB / Juminum / SS Core Diameter (OD): 2<br>Sampling Equipment Deconned or Replaced: Y N | _ <b>58''</b><br>3" 4" |
| SAMPLE/PUSH #2<br>Core ID#:                                                                                                                                                                   | Coring Time:                                                                          |             | Penetration Depth:ft. Core Recovery:                                                                                                       | ft                     |
| Sample Method: Ponar /                                                                                                                                                                        | Vibracore / Piston Core / Manual                                                      | Coring M    | Material: CAB / Aluminum / SS Core Diameter (OD): 2"                                                                                       | 3" 4"                  |
| Vibracore Type: Rossfel                                                                                                                                                                       | lder / PVL / Portable Clamp-on / NA                                                   |             | Sampling Equipment Deconned or Replaced: Y N                                                                                               |                        |
| SAMPLE/PUSH #3<br>Core ID#:                                                                                                                                                                   | Coring Time:                                                                          |             | Penetration Depth:ft. Core Recovery:                                                                                                       | ft                     |
| Sample Method: DenarT                                                                                                                                                                         | Vibracore / Piston Core / Manual                                                      | Coring M    | Material: CAB / Aluminum / SS Core Diameter (OD): 2"                                                                                       | 3" 4"                  |
| vibracore Type: Rossfel                                                                                                                                                                       | lder / PVL / Portable Clamp-on / NA                                                   |             | Sampling Equipment Deconned or Replaced: Y N                                                                                               |                        |
| DGPS DATA           Operator:         JBS           File Name:         C-3-1           Lat         N:         43.103           Lon         E:         70.866           PDOP of SVs:         9 | 365618<br>576674                                                                      | -           | Coordinate Units: US Survey Feet<br>Datum: WGS84 Y N Other<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH                                  |                        |
| COMMENTS / NOTES                                                                                                                                                                              | 3                                                                                     | r           |                                                                                                                                            |                        |
|                                                                                                                                                                                               |                                                                                       | -<br>-<br>- | North<br>island<br>C-3<br>brick building                                                                                                   |                        |
| Ft. Tube Used=5'                                                                                                                                                                              |                                                                                       |             |                                                                                                                                            |                        |
| Preparer's Initial: JBS                                                                                                                                                                       |                                                                                       | -           |                                                                                                                                            |                        |



Page 1 of 1

| Project Name:                                                                                                                                                                                | Eversource: Seacost Reliabili                                                         | y Projec         | ct                                                                                                       | Proj. #: 22860.006         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| Site Name:                                                                                                                                                                                   | Little Bay                                                                            |                  |                                                                                                          | Task #: 05                 |
| City:                                                                                                                                                                                        | Newington                                                                             | State:           | NH                                                                                                       | Date: 09/20/16             |
| Field Team Leader(s):                                                                                                                                                                        | JBS                                                                                   |                  | Field Team Safety Coordinator:                                                                           | JBS                        |
| Field Crew: CJR, BJA                                                                                                                                                                         | A, AT                                                                                 | -                | Arrival & Departure Times: 14:00-14:                                                                     | :15                        |
| Station ID #: C-4                                                                                                                                                                            |                                                                                       | -                | Weather: Clear Cloudy                                                                                    | Rain Other                 |
| Photos: Y N                                                                                                                                                                                  | Roll No./Exposure No.: NA                                                             |                  | Wind Conditions (Speed/Direction):                                                                       | 5-10 MPH SOUTH             |
| FIELD DATA                                                                                                                                                                                   |                                                                                       |                  |                                                                                                          |                            |
| Water Depth:4.1_                                                                                                                                                                             | ft. Tide: Ebb 🕻                                                                       | Floor            | Low Slack High Slack                                                                                     | Other                      |
| PID: N/A                                                                                                                                                                                     | Redox Potential: N/A                                                                  | pH:              | N/A H <sup>2</sup> O Temp.: N/A                                                                          | Air Temp.: NA              |
|                                                                                                                                                                                              | Coring Time:<br>Vibracore / Jiston Core / Manual<br>Ider PVL / Portable Clamp-on / NA | Coring N         | Penetration Depth: <b>58''</b><br>Material CAB / Juminum / SS Cor<br>Sampling Equipment Deconned or Rep  | re Diameter (OD): 23 4"    |
| SAMPLE/PUSH #2<br>Core ID#:                                                                                                                                                                  | Coring Time:                                                                          |                  | Penetration Depth:ft. 0                                                                                  | Core Recovery:ft           |
| Sample Method: Ponar /                                                                                                                                                                       | Vibracore / Piston Core / Manual                                                      | Coring N         | Material: CAB / Aluminum / SS Cor                                                                        | re Diameter (OD): 2" 3" 4" |
| Vibracore Type: Rossfel                                                                                                                                                                      | lder / PVL / Portable Clamp-on / NA                                                   |                  | Sampling Equipment Deconned or Rep                                                                       | placed: Y N                |
| SAMPLE/PUSH #3<br>Core ID#:                                                                                                                                                                  | Coring Time:                                                                          |                  | Penetration Depth:ft. 0                                                                                  |                            |
| Sample Method: Penar7                                                                                                                                                                        | Vibracore / Piston Core / Manual                                                      | Coring N         | Material: CAB / Aluminum / SS Cor                                                                        |                            |
| Vibracore Type: Rossfel                                                                                                                                                                      | lder / PVL / Portable Clamp-on / NA                                                   |                  | Sampling Equipment Deconned or Rep                                                                       | placed: Y N                |
| DGPS DATA           Operator:         JBS           File Name:         C-4-1           Lat         N:         43.10           Lon         E:         70.865           PDOP of SVs:         9 | 300157<br>564414                                                                      | -                | Coordinate Units: at/Lon US Surv<br>Datum: WGS84 Y N Othe<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH | ey Feet<br>r               |
|                                                                                                                                                                                              | 5                                                                                     | -<br>-<br>-<br>- | North isla<br>C-4                                                                                        | and                        |
| Ft. Tube Used=5'                                                                                                                                                                             |                                                                                       | -                |                                                                                                          |                            |
| Preparer's Initial: JBS                                                                                                                                                                      |                                                                                       |                  |                                                                                                          |                            |



| Project Name:                                                                                                                                                                                            | Eversource: Seacost Reliabilit                                                         | y Projec              | t                                                                                                     | Proj. #: 22860.006            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|
| Site Name:                                                                                                                                                                                               | Little Bay                                                                             |                       |                                                                                                       | Task #: 05                    |
| City:                                                                                                                                                                                                    | Newington                                                                              | State:                | NH                                                                                                    | Date: 09/21/16                |
| Field Team Leader(s):<br>Field Crew: CJR, BJA<br>Station ID #: C-5                                                                                                                                       | , AT                                                                                   |                       | Field Team Safety Coordinator:<br>Arrival & Departure Times: 08:25-08<br>Weather: Clear Cloudy        | Rain Other                    |
| Photos: Y N                                                                                                                                                                                              | Roll No./Exposure No.: NA                                                              |                       | Wind Conditions (Speed/Direction):                                                                    | 5-10 MPH WEST                 |
| FIELD DATA<br>Water Depth:3.7<br>PID: N/A                                                                                                                                                                | ft. Tide: Ebb<br>Redox Potential: N/A                                                  | Flood<br>pH: <b>I</b> |                                                                                                       | Other<br>Air Temp.: <b>NA</b> |
|                                                                                                                                                                                                          |                                                                                        | Coring N              | Penetration Depth: <b>55''</b><br>laterial CAB / luminum / SS Co<br>Sampling Equipment Deconned or Re | re Diameter (OD): 23 4"       |
| •                                                                                                                                                                                                        |                                                                                        | Coring N              | Penetration Depth:ft. (<br>laterial: CAB / Aluminum / SS Co<br>Sampling Equipment Deconned or Re      |                               |
| à                                                                                                                                                                                                        | Coring Time:<br>/ibracore / Piston Core / Manual<br>ler / PVL / Portable Clamp-on / NA |                       | Penetration Depth:ft. (<br>laterial: CAB / Aluminum / SS Co<br>Sampling Equipment Deconned or Re      | re Diameter (OD): 2" 3" 4"    |
| DGPS DATA           Operator:         JBS           File Name:         C-5-1           Lat         N:         43.102           Lon         /         E:         70.8645           PDOP of SVs:         9 |                                                                                        |                       | Coordinate Units:<br>Datum: WGS84 Y N Othe<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH             | rey Feet                      |
|                                                                                                                                                                                                          |                                                                                        | ·<br>·<br>·           | North isl                                                                                             | and                           |
| Ft. Tube Used=5'<br>Preparer's Initial: JBS                                                                                                                                                              |                                                                                        |                       |                                                                                                       |                               |



Page 1 of 1

| Project Name:                                                                       | Eversource: Seacos                      | st Reliabilit | y Proje  | ct                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proj. #: 228                                     | 60.006     |
|-------------------------------------------------------------------------------------|-----------------------------------------|---------------|----------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|
| Site Name:                                                                          | Little Bay                              |               |          |                        | ********************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Task #: 05                                       |            |
| City:                                                                               | Newington                               |               | State:   | NH                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: 09/20                                      | /16        |
| Field Team Leader(s):                                                               | JBS                                     |               | _        | Field Tear             | n Safety Coo           | ordinator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JBS                                              |            |
| Field Crew: CJR, BJA                                                                | N, AT                                   |               |          | Arrival & D            | Departure Tin          | nes: <b>10:00-1</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1:15                                             |            |
| Station ID #: C-6                                                                   |                                         |               |          | Weather:               | Clear                  | Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rain (                                           | Other      |
| Photos: Y                                                                           | Roll No./Exposur                        | re No.: NA    |          | Wind Con               | ditions (Spee          | d/Direction):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                              |            |
| FIELD DATA                                                                          |                                         |               |          |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |
| Water Depth: 9.4                                                                    | ft. Tide:                               | Ebb           | Floo     | d Low                  | Slack                  | High Slack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other                                            |            |
| PID: N/A                                                                            | Redox Potential:                        | N/A           | pH:      | N/A                    | H <sup>2</sup> O Temp  | o.: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Air Temp.:                                       | NA         |
| Core ID#: C-6                                                                       |                                         | g Time:'      | 10:10    | Penetrati              | on Depth:              | _66''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core Recovery                                    | c:63"      |
| Sample Method: Ponar                                                                | Vibracore / Histon Core / M             | anual         | Coring N | Aaterial CAE           | B / Juminum / S        | s Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore Diameter (OI                                 | )): 23" 4" |
| Vibracore Type: Rossfeld                                                            | der PVL / Portable Clan                 | np-on / NA    |          | Sampling               | Equipment D            | econned or Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eplaced: (Y) N                                   |            |
| SAMPLE/PUSH #2<br>Core ID#: C-6                                                     | Coring                                  | g Time:1      | 0:35     | Penetrati              | on Depth:              | _54''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core Recovery                                    |            |
| Sample Method: Ponar                                                                | Vibracore / Piston Core / M             | anual         | Coring N | Aaterial CAE           | 3 / Juminum / S        | s Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore Diameter (OD                                 | ): 23 4"   |
| Vibracore Type: Rossfeld                                                            | der / PVL / Portable Clan               | np-on / NA    |          | Sampling               | Equipment D            | econned or Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eplaced: 🕥 N                                     |            |
| SAMPLE/PUSH #3<br>Core ID#: C-6<br>Sample Method: Ponar<br>Vibracore Type: Rossfeld | Vibracore / Pston Core / M              | anual         | Coring N | Aaterial CAE           | Juminum / S            | s Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Core Recovery<br>ore Diameter (OE<br>eplaced: () |            |
| DGPS DATA                                                                           |                                         |               |          |                        | _                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |
| Operator: JBS<br>File Name: C-6-1                                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |               |          | Coordinate<br>Datum: W |                        | on US Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |            |
| $\sim$                                                                              | 173482                                  |               | •        | Proj.: N/A             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er                                               |            |
| Lon / E: 70.863                                                                     | 41289                                   |               |          | GPS Serial             | #: 88951-00            | Geo XH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |            |
| PDOP or SVs: 11                                                                     |                                         |               | •        |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |
| COMMENTS / NOTES                                                                    |                                         |               |          | <u>^</u>               | T                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 1          |
| C-6-2 N:43.10174205<br>W: 70.8633803                                                |                                         |               |          | Narth                  | /                      | and the second se | land.                                            |            |
|                                                                                     |                                         |               |          |                        |                        | i IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | land                                             |            |
| C-6-3 N: 43.10168208                                                                | 8                                       |               |          |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |
| W: 70.8634023                                                                       | 34                                      |               |          |                        | ľ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |
| Used Push #1 for sam                                                                | ple                                     |               |          | brick build            | ing                    | 🔶 C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6                                               |            |
| Ft. Tube Used=9'                                                                    | · · · ·                                 |               |          |                        | geoviewezeweg          | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |            |
| Preparer's Initial: JBS                                                             |                                         |               |          | dock                   | - the second second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |            |



| FIELD DATA S                             | HEET                             |                                                                                                                                              | Page 1 of 1                                   |
|------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Project Name:                            | Eversource: Seacost Reliabili    | ty Project Pro                                                                                                                               | oj. #: 22860.006                              |
| Site Name:                               | Little Bay                       | Та                                                                                                                                           | sk #: 05                                      |
| City:                                    | Newington                        | State: NH Da                                                                                                                                 | ite: 09/20/16                                 |
| Field Team Leader(s):                    | JBS                              | Field Team Safety Coordinator:JB                                                                                                             | ŝ                                             |
| Field Crew: CJR, BJA                     | λ, AT                            | Arrival & Departure Times: 11:55-12:35                                                                                                       |                                               |
| Station ID #: C-7                        |                                  | Weather: Clear Cloudy R                                                                                                                      | ain Other                                     |
| Photos: Y N                              | Roll No./Exposure No.: NA        | Wind Conditions (Speed/Direction): N/A                                                                                                       | ۱ <u>ــــــــــــــــــــــــــــــــــــ</u> |
| FIELD DATA                               |                                  |                                                                                                                                              |                                               |
| Water Depth: 20.0                        | ft. Tide: Ebb 🕻                  | Flood Low Slack High Slack                                                                                                                   | Other                                         |
| PID: N/A                                 | Redox Potential: N/A             | pH: N/A H <sup>2</sup> O Temp.: N/A Air                                                                                                      | Temp.: NA                                     |
|                                          | Vibracore / Piston Core / Manual | 12:02 Penetration Depth:60'' Co<br>Coring Material CAB / Juminum / SS Core D                                                                 | Diameter (OD): 23" 4"                         |
| Vibracore Type: Rossfel                  | der PVL / Portable Clamp-on / NA | Sampling Equipment Deconned or Replac                                                                                                        | :ed: (Y) N                                    |
| SAMPLE/PUSH #2<br>Core ID#: C-7          |                                  | 12:10 Penetration Depth:15" Co                                                                                                               |                                               |
|                                          |                                  | Coring Material CAB / Juminum / SS Core D                                                                                                    |                                               |
| Vibracore Type: Rossfel                  | der PVL / Portable Clamp-on / NA | Sampling Equipment Deconned or Replac                                                                                                        | ed: Y N                                       |
|                                          |                                  | 12:19 Penetration Depth:       58" Co         Coring Material CAB / Juminum / SS       Core D         Sampling Equipment Deconned or Replace | Diameter (OD): 23" 4"                         |
| DGPS DATA                                |                                  |                                                                                                                                              |                                               |
| Operator: JBS                            |                                  | Coordinate Units: Coordinate Units: Coordinate Units:                                                                                        | Feet                                          |
| File Name: C-7-1                         |                                  |                                                                                                                                              |                                               |
| Lat N: 43.10<br>Lon / E: 70.862          |                                  | Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH                                                                                                  |                                               |
| PDOP of SVs: 9                           |                                  |                                                                                                                                              |                                               |
| COMMENTS / NOTES                         | 8                                | <u>E na la nomena de la contra de la</u>                       |                                               |
| Saved Push # 1 & 3 fo<br>#1 for sampling | r sampling but only used         | North island                                                                                                                                 |                                               |
|                                          |                                  | - brick building C-7                                                                                                                         |                                               |
| Ft. Tube Used=16'                        |                                  |                                                                                                                                              |                                               |
| Preparer's Initial: JBS                  |                                  | dock                                                                                                                                         |                                               |



Page 1 of 2

| Project Name:                                                           | Eversource: Seacost Reliabili                                                         | ty Proje    | ct                                                      | *******                 |                    | Proj. #: 2    | 2860.006     |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|---------------------------------------------------------|-------------------------|--------------------|---------------|--------------|
| Site Name:                                                              | Little Bay                                                                            |             |                                                         | <u>, ,</u>              |                    | Task #: 05    |              |
| City:                                                                   | Newington                                                                             | State:      | NH                                                      |                         |                    | Date: 09/     | /21/16       |
| Field Team Leader(s):                                                   | JBS                                                                                   |             | Field Team                                              | Safety Coordin          | ator:              | JBS           |              |
| Field Crew: CJR, BJA                                                    | A, AT                                                                                 | -           | Arrival & De                                            | eparture Times:         | 09:30-10           | :30           |              |
| Station ID #: C-8                                                       |                                                                                       | _           | Weather:                                                | Clear Cl                | oudy               | Rain          | Other        |
| Photos: Y N                                                             | Roll No./Exposure No.: NA                                                             |             | Wind Cond                                               | itions (Speed/Di        | rection): <b>{</b> | 5-10 MPH V    | VEST         |
| FIELD DATA                                                              |                                                                                       |             |                                                         |                         |                    |               |              |
| Water Depth:31.0                                                        | ft. Tide: Ebb                                                                         | Floo        | d Low S                                                 | Slack High              | Slack              | Other         |              |
| PID: N/A                                                                | Redox Potential: N/A                                                                  | pH:         | N/A                                                     | H <sup>2</sup> O Temp.: | N/A                | Air Temp.:    | NA           |
|                                                                         | Coring Time:<br>Vibracore / Piston Core / Manual<br>Ider PVL / Portable Clamp-on / NA | Coring I    | Material CAB                                            |                         | Co                 | re Diameter ( | (OD): 23 4'  |
| SAMPLE/PUSH #2<br>Core ID#: C-8                                         | Coring Time:                                                                          | 09:55       | Penetratic                                              | on Depth: <b>0''</b> _  |                    | Core Reco     | very:0''     |
| Sample Method: Ponar                                                    | Vibracore / Poton Core / Manual                                                       | Coring I    | Material CAB                                            | luminum / SS            | Co                 | re Diameter ( | (OD): 2 3 4' |
| Vibracore Type: Rossfel                                                 | Ider / PVL / Portable Clamp-on / NA                                                   |             | Sampling E                                              | Equipment Decon         | ned or Re          | placed: 🕥     | N            |
|                                                                         | Coring Time:<br>Vibracore / Piston Core / Manual                                      | Coring I    | Material CAB /                                          | Juminum / SS            | Co                 | re Diameter ( | (OD): 23" 4" |
|                                                                         | Ider / PVL / Portable Clamp-on / NA                                                   |             | Sampling                                                | Equipment Decon         | ned or Rej         | placed.       | N            |
|                                                                         | 015022<br>)68765                                                                      | -<br>-<br>- | Coordinate L<br>Datum: WG<br>Proj.: N/A<br>GPS Serial # |                         | N Othe             | rey Feet      |              |
| COMMENTS / NOTES                                                        | ŝ                                                                                     |             |                                                         |                         |                    |               |              |
| Push 1 layed over due<br>Push 2 layed over due<br>Push 3 layed over due | e to hard bottom                                                                      | -<br>-<br>- | North                                                   |                         | isla               | and           |              |
|                                                                         |                                                                                       | -           | brick buildir                                           | ng                      |                    | C-8           |              |
| Ft. Tube Used=24'                                                       | ***************************************                                               | -           |                                                         |                         |                    |               |              |
| Preparer's Initial: JBS                                                 | ***************************************                                               | -           |                                                         |                         |                    |               |              |



| Project Name:                          | Eversource: Seacost Reliabili        | ity Project Proj.                                                                          | #: 22860.006                           |
|----------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|
| Site Name:                             | Little Bay                           | Task                                                                                       | #: 05                                  |
| City:                                  | Newington                            | State: NH Date:                                                                            | 09/21/16                               |
| Field Team Leader(s)                   | ): JBS                               | Field Team Safety Coordinator:                                                             |                                        |
| Field Crew: CJR, BJ                    | A, AT                                | Arrival & Departure Times: 12:45-13:15                                                     |                                        |
| Station ID #: C-8                      |                                      | _ Weather: Clear Cloudy Rain                                                               | Other                                  |
| Photos: Y                              | Roll No./Exposure No.: NA            | Wind Conditions (Speed/Direction): 5-10 M                                                  | PH NW                                  |
| FIELD DATA                             |                                      |                                                                                            | ······································ |
| Water Depth: 33.4                      | ft. Tide: Ebb                        | Flood Low Slack High Slack Oth                                                             | 1er                                    |
| PID: N/A                               | Redox Potential: N/A                 | pH: N/A H <sup>2</sup> O Temp.: N/A Air Te                                                 | mp.: NA                                |
| SAMPLE/PUSH #4<br>Core ID#: C-8        |                                      | _12:50 Penetration Depth:12'' Core F                                                       | -                                      |
|                                        |                                      |                                                                                            | neter (OD): 23" 4"                     |
|                                        | elder PVL / Portable Clamp-on / NA   | Sampling Equipment Deconned or Replaced:                                                   |                                        |
| SAMPLE/PUSH #5<br>Core ID#: <u>C-8</u> | Coring Time:                         | _13:00 Penetration Depth:38'' Core F                                                       | Recovery:36''                          |
| Sample Method: Ponar                   | Vibracore / Pston Core / Manual      | Coring Material CAB / Juminum / SS Core Dian                                               | neter (OD): 2"3" 4"                    |
| Vibracore Type: Rossfe                 | elder PVL / Portable Clamp-on / NA   | Sampling Equipment Deconned or Replaced:                                                   | <u>()</u> N                            |
| SAMPLE/PUSH #3<br>Core ID#:            | Coring Time:                         | Penetration Depth: Co                                                                      | re Recovery:                           |
| Sample Method: Ponar                   | / Vibracore / Piston Core / Manual   | Coring Material: CAB / Aluminum / SS Core Dian                                             | neter (OD): 2" 3" 4"                   |
| Vibracore Type. Rossfe                 | elder / PVL / Portable Clamp-on / NA | Sampling Equipment Deconned or Replaced:                                                   | Y N                                    |
|                                        | 0045758<br>138433                    | Coordinate Units:<br>Datum: WGS84 Y N Other<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH | t                                      |
| COMMENTS / NOTE                        | S                                    |                                                                                            |                                        |
| Re-located C-8 per Sa                  |                                      | North island                                                                               |                                        |
|                                        | OTAL USED AT C-8= 40'                | _ /                                                                                        |                                        |
| Preparer's Initial: JBS                |                                      |                                                                                            |                                        |



| Ρ | age | 1 | of | 1 |
|---|-----|---|----|---|
|   |     |   |    |   |

| Project Name:                                                                                                                                                                                 | Eversource: Seacost Reliabili | ty Projec | et                                                                                            | Proj. #: 22860.006       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-----------------------------------------------------------------------------------------------|--------------------------|
| Site Name:                                                                                                                                                                                    | Little Bay                    |           |                                                                                               | Task #: 05               |
| City:                                                                                                                                                                                         | Newington                     | State:    | NH                                                                                            | Date: 09/21/16           |
| Field Team Leader(s):                                                                                                                                                                         | JBS                           |           | Field Team Safety Coordinator:                                                                | JBS                      |
| Field Crew: CJR, BJA                                                                                                                                                                          | A, AT                         | -         | Arrival & Departure Times: 11:25-11                                                           | :50                      |
| Station ID #: C-9                                                                                                                                                                             |                               | _         | Weather: Clear Cloudy                                                                         | Rain Other               |
| Photos: Y N                                                                                                                                                                                   | Roll No./Exposure No.: NA     |           | Wind Conditions (Speed/Direction):                                                            | 10-15 MPH WEST           |
| FIELD DATA                                                                                                                                                                                    |                               |           |                                                                                               |                          |
| Water Depth:29.0_                                                                                                                                                                             | ft. Tide: Ebb                 | Flood     | Low Slack High Slack                                                                          | Other                    |
| PID: N/A                                                                                                                                                                                      | Redox Potential: N/A          | pH: I     | N/A H <sup>2</sup> O Temp.: N/A                                                               | Air Temp.: NA            |
|                                                                                                                                                                                               |                               | Coring N  | Penetration Depth:0''<br>laterial CAB / luminum / SS Co<br>Sampling Equipment Deconned or Re  | re Diameter (OD): 23 4"  |
|                                                                                                                                                                                               |                               | Coring N  | Penetration Depth:0''<br>laterial CAB / Juminum / SS Co<br>Sampling Equipment Deconned or Re  | re Diameter (OD): 7 3 4" |
|                                                                                                                                                                                               |                               | Coring N  | Penetration Depth:15''<br>laterial CAB / Juminum / SS Co<br>Sampling Equipment Deconned or Re | re Diameter (OD): 23 4"  |
| DGPS DATA           Operator:         JBS           File Name:         C-9-1           Lat         N:         43.09           Lon         E:         70.859           PDOP of SVs:         10 | 932377<br>934893              | -         | Coordinate Units:<br>Datum: WGS84 Y N Othe<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH     | rey Feet<br>rr           |
| COMMENTS / NOTES                                                                                                                                                                              | S                             |           |                                                                                               |                          |
|                                                                                                                                                                                               |                               | -         | North                                                                                         | C-9                      |
| Ft. Tube Used=8'                                                                                                                                                                              |                               |           |                                                                                               |                          |
| Preparer's Initial: JBS                                                                                                                                                                       |                               | _         | /                                                                                             |                          |



| Pag | ie | 1 | of | 1 |
|-----|----|---|----|---|
|     |    |   |    |   |

| Project Name:           | Eversource: Seacost Reliabili                                                           | ty Proje | ct                                                                                                      | Proj. #: 22860.006                                            |
|-------------------------|-----------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Site Name:              | Little Bay                                                                              |          |                                                                                                         | Task #: 05                                                    |
| City:                   | Newington                                                                               | State:   | NH                                                                                                      | Date: 09/21/16                                                |
| Field Team Leader(s):   | JBS                                                                                     |          | Field Team Safety Coordinator:                                                                          | JBS                                                           |
| Field Crew: CJR, BJ     | A, AT                                                                                   |          | Arrival & Departure Times: 12:05-12                                                                     | 2:27                                                          |
| Station ID #: C-10      |                                                                                         |          | Weather: Clear Cloudy                                                                                   | Rain Other                                                    |
| Photos: Y               | Roll No./Exposure No.: NA                                                               |          | Wind Conditions (Speed/Direction):                                                                      | 10-15 MPH NW                                                  |
| FIELD DATA              |                                                                                         |          |                                                                                                         |                                                               |
| Water Depth:18.5        | ft. Tide: Ebb                                                                           | Floor    | D Low Slack High Slack                                                                                  | Other                                                         |
| PID: N/A                | Redox Potential: N/A                                                                    | pH:      | N/A H <sup>2</sup> O Temp.: N/A                                                                         | Air Temp.: NA                                                 |
|                         | Coring Time:<br>Vibracore / iston Core / Manual<br>Ider PVL / Portable Clamp-on / NA    | Coring N | Penetration Depth:14''<br>Material CAB / Juminum / SS Co<br>Sampling Equipment Deconned or Re           | ore Diameter (OD): 23 4"                                      |
|                         | Coring Time:<br>Vibracore / Piston Core / Manual<br>Ider PVL / Portable Clamp-on / NA   | Coring N | Penetration Depth:24''<br>Material CAB / Juminum / SS Co<br>Sampling Equipment Deconned or Re           | ore Diameter (OD): 2'3" 4"                                    |
|                         | Coring Time:<br>Vibracore / Piston Core / Manuel<br>Ider / PVL / Portable Clamp-on / NA |          | Penetration <u>Depth:</u><br>Material: CAB / Aluminum / SS Co<br>Sampling Equipment Deconned or Re      | Core Recovery:<br>ore Diameter (OD): 2" 3" 4"<br>eplaced: Y N |
|                         | 852463<br>790776                                                                        |          | Coordinate Units: dt/Lon US Sun<br>Datum: WGS84 Y N Othe<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo XH | vey Feet<br>er                                                |
| COMMENTS / NOTES        | S                                                                                       |          |                                                                                                         |                                                               |
| Hard refusal on both p  |                                                                                         |          | North is<br>brick building                                                                              | C-10                                                          |
| Ft. Tube Used=8'        |                                                                                         |          |                                                                                                         |                                                               |
| Preparer's Initial: JBS |                                                                                         |          |                                                                                                         |                                                               |



| Project Name:                         | Eversource: Seacost Reliabili       | Project                                                                                     | Proj. #: 22860.006           |
|---------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|
| Site Name:                            | Little Bay                          |                                                                                             | Task #: 05                   |
| City:                                 | Newington                           | State: NH                                                                                   | Date: 09/21/16               |
| Field Team Leader(s):                 | JBS                                 | Field Team Safety Coordinate                                                                | or: JBS                      |
| Field Crew: CJR, BJ                   | ۹, АТ                               | Arrival & Departure Times: 08                                                               | 3:56-09:15                   |
| Station ID #: C-11                    |                                     | Weather: Clear Clou                                                                         | dy Rain Other                |
| Photos: Y N                           | Roll No./Exposure No.: NA           | Wind Conditions (Speed/Dire                                                                 | ction): 5-10 MPH WEST        |
| FIELD DATA                            |                                     |                                                                                             |                              |
| Water Depth: 13.5                     | ft. Tide: Ebb                       | Flood Low Slack High S                                                                      | Black Other                  |
| PID: N/A                              | Redox Potential: N/A                | H: <b>N/A</b> H <sup>2</sup> O Temp.:                                                       | N/A Air Temp.: NA            |
| SAMPLE/PUSH #1<br>Core ID#: C-11      |                                     | 9:03 Penetration Depth:94"                                                                  |                              |
|                                       |                                     | Coring Material CAB / Juminum / SS                                                          |                              |
| Vibracore Type: Rossfel               | der PVL / Portable Clamp-on / NA    | Sampling Equipment Deconne                                                                  | ed or Replaced: (Y) N        |
| SAMPLE/PUSH #2<br>Core ID#:           | Coring Time:                        | Penetration Depth:                                                                          | ft. Core Recovery:ft         |
| Sample Method: Ponar /                | Vibracore / Piston Core / Manual    | Coring Material: CAB / Aluminum / SS                                                        | Core Diameter (OD): 2" 3" 4" |
| Vibracore Type: Rossfel               | lder / PVL / Portable Clamp-on / NA | Sampling Equipment Deconne                                                                  | ed or Replaced: Y N          |
| SAMPLE/PUSH #3<br>Core ID#:           | Coring Time:                        | Penetration Depth:                                                                          | _ft. Core Recovery:ft        |
| Sample Method: Penal 7                | Vibracore / Piston Core / Manual    | Coring Material: CAB / Aluminum / SS                                                        | Core Diameter (OD): 2" 3" 4" |
| Vibracore Type: Rossfel               | lder / PVL / Portable Clamp-on / NA | Sampling Equipment Deconne                                                                  | ed or Replaced: Y N          |
| · · · · · · · · · · · · · · · · · · · | 780746<br>560320                    | Coordinate Units: at/Lon<br>Datum: WGS84 Y N<br>Proj.: N/A<br>GPS Serial #: 88951-00 Geo Xł | US Survey Feet<br>Other      |
|                                       | 5                                   | North                                                                                       | C-11 dock                    |
| Ft. Tube Used=9'                      |                                     |                                                                                             |                              |
| Preparer's Initial: JBS               |                                     | L/                                                                                          |                              |



rev:11/08

Page 1 of 1

| Project Name: Everso                                                                                                                                                                                                         | ource: Seacost Reliability             | y Projec                              | t                                                                  |                             |            | Proj. #: 22   | 860.006               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------|-----------------------------|------------|---------------|-----------------------|
| Site Name: Little E                                                                                                                                                                                                          | Зау                                    |                                       |                                                                    |                             |            | Task #: 05    |                       |
| City: Newin                                                                                                                                                                                                                  | gton                                   | State:                                | NH                                                                 |                             |            | Date: 09/2    | 21/16                 |
| Field Team Leader(s):JB                                                                                                                                                                                                      | S                                      |                                       | Field Team                                                         | Safety Coordina             | tor:       | JBS           |                       |
| Field Crew: CJR, BJA, AT                                                                                                                                                                                                     |                                        |                                       | Arrival & De                                                       | eparture Times: 0           | 8:41-08:   | :50           |                       |
| Station ID #: C-12                                                                                                                                                                                                           |                                        |                                       | Weather: (                                                         | Clear Clo                   | udy        | Rain          | Other                 |
| Photos: Y N Ro                                                                                                                                                                                                               | II No./Exposure No.: NA                |                                       | Wind Cond                                                          | itions (Speed/Dire          | ection): 5 | 5-10 MPH W    | EST                   |
| FIELD DATA                                                                                                                                                                                                                   |                                        |                                       |                                                                    |                             |            |               |                       |
| Water Depth: <u>2.6</u> ft.                                                                                                                                                                                                  | Tide: Ebb                              | Flood                                 | Low                                                                | Slack High                  | Slack      | Other         |                       |
| PID: N/A Redox                                                                                                                                                                                                               | Potential: N/A                         | pH: N                                 | N/A                                                                | H <sup>2</sup> O Temp.:     | N/A        | Air Temp.:    | NA                    |
| SAMPLE/PUSH #1<br>Core ID#: C-12                                                                                                                                                                                             | Coring Time:0                          |                                       |                                                                    |                             |            |               |                       |
| Sample Method: Ponar Vibracore                                                                                                                                                                                               |                                        | -                                     |                                                                    | luminum / SS                |            | $\sim$        |                       |
| Vibracore Type: Rossfelder PVL                                                                                                                                                                                               | - / Portable Clamp-on / NA             |                                       | Sampling I                                                         | Equipment Deconn            | ed or Rep  | placed: (Y)   | N                     |
| SAMPLE/PUSH #2<br>Core ID#:                                                                                                                                                                                                  | Coring Time:                           |                                       | Penetratior                                                        | Depth:                      | _ft. C     | Core Recever  | /:ft                  |
| Sample Method: Ponar / Vibracore                                                                                                                                                                                             | / Piston Core / Manual                 | Coring M                              | aterial: CAB                                                       | Aluminum / SS               | Cor        | e Diameter (C | DD): 2" 3" 4"         |
| Vibracore Type: Rossfelder / PVL                                                                                                                                                                                             | _ / Portable Clamp-on / NA             |                                       | Sampling                                                           | Equipment Deconn            | ed or Rep  | olaced: Y     | N                     |
| SAMPLE/PUSH #3<br>Core ID#:<br>Sample Method: <u>Benar</u> 7 Vibracore                                                                                                                                                       | Coring Time:                           |                                       |                                                                    | n Depth:<br>/ Aluminum / SS |            |               | y:ft<br>DD): 2" 3" 4" |
| Vibracore Type: Rossfelder / PVL                                                                                                                                                                                             |                                        | e e i nig in                          |                                                                    | Equipment Deconn            |            |               | ·                     |
| DGPS DATA           Operator:         JBS           File Name:         C-12-1           Lat         N:         43.09762305           Lon         /         E:         70.85488882           PDOP of SVs:         9         9 |                                        |                                       | Coordinate L<br>Datum: WG<br>Proj.: N/A<br>GPS Serial <del>/</del> |                             | Othei      | ey Feet<br>r  |                       |
| COMMENTS / NOTES                                                                                                                                                                                                             |                                        | · · · · · · · · · · · · · · · · · · · | North                                                              | ng                          |            |               | ock                   |
|                                                                                                                                                                                                                              | •••••••••••••••••••••••••••••••••••••• | •                                     |                                                                    | 1                           |            | •             |                       |

Preparer's Initial: JBS

Q.C3 Kem 1/21/16



22860.006 Task 5

PROJECT NUMBER:

BORING NUMBER C-1

SHEET \_1\_ OF \_1\_

| PROJEC | CT :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eversou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rce: Seac                                                                                                       | oast Reliability Pr | oject                  | LOCATIC          | N : Newington, NH  |    |                                 |   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|------------------------|------------------|--------------------|----|---------------------------------|---|
| ELEVAT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                     |                        | DRILLING         | G CONTRACTOR :     |    | Normandeau                      |   |
|        | THE OWNER AND ADDRESS OF THE ADDRESS | CONTRACTOR OF A DESCRIPTION OF A DESCRIP | And the state of the second | INT USED :          | Vibracore              | 40.50            | END 40.05          |    |                                 |   |
|        | LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | STANDARD            | START :                | 12:52            | END : 13:05        |    | LOGGER : JBS<br>COMMENTS        |   |
| DEPINE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JRFACE (II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N)                                                                                                              |                     |                        | CORE DESCRIPTION |                    |    | COMMENTS                        |   |
|        | INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RY (IN)                                                                                                         | PENETRATION<br>TEST | SOIL NAME              | , USCS GRO       | OUP SYMBOL, COLOR, |    | DEPTH OF CASING, DRILLING RATE, |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #/TYPE                                                                                                          | RESULTS             |                        |                  | RELATIVE DENSITY   |    | DRILLING FLUID LOSS,            |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 6"-6"-6"-6"         |                        |                  | IL STRUCTURE,      |    | TESTS, AND INSTRUMENTATION.     |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | (N)                 | MINERALO               | ٤Υ.              |                    |    |                                 |   |
| 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | medium                 |                  |                    | -  | some shells in top 12"          | - |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | gley 1 4/ <sup>.</sup> | 10Y              |                    | _  |                                 | _ |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | medium                 | plasticity       | ,                  | _  |                                 | _ |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | wet                    |                  |                    |    |                                 | _ |
| 12     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | cohesive               |                  |                    |    |                                 |   |
| 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | uniform t              | hrougho          | +                  | -  |                                 | - |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        | mougno           | ui                 |    |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 | _ |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 | _ |
| 24     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | trace san              | d                |                    | ]  |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 | _ |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | fine grain             | bod              |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        | leu              |                    | -  |                                 | - |
| 36     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     | fat clay               |                  |                    |    |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 | _ |
| _      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 | _ |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
| 48_    | 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -1 |                                 | - |
| ``     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | _  |                                 | _ |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | ]  |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
| 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 |   |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    | -  |                                 | - |
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 | - |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                     |                        |                  |                    |    |                                 |   |



PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER C-2

SHEET \_1\_ OF \_1\_

| PROJEC                 | CT :    | Eversou    | rce: Seac | oast Reliability Pr | oject        | LOCATIC    | N : Newington, NH                      |                                                         |
|------------------------|---------|------------|-----------|---------------------|--------------|------------|----------------------------------------|---------------------------------------------------------|
|                        |         |            |           |                     | CONTRACTOR : | Normandeau |                                        |                                                         |
|                        |         |            |           | ENT USED :          | Vibracore    | 40.40      |                                        |                                                         |
| -                      | LEVELS  |            |           | 074110400           | START :      | 13:10      | END : 13:25                            | LOGGER : JBS                                            |
| DEPTHB                 | ·····   | JRFACE (II | N)        | STANDARD            |              | CORE DI    | ESCRIPTION                             | COMMENTS                                                |
|                        | INTERVA |            |           | PENETRATION<br>TEST |              |            |                                        |                                                         |
|                        |         | RECOVE     | #/TYPE    | RESULTS             |              |            | OUP SYMBOL, COLOR,<br>RELATIVE DENSITY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS, |
|                        |         |            | #/11/C    | 6"-6"-6"-6"         | 1            |            | IL STRUCTURE,                          | TESTS, AND INSTRUMENTATION.                             |
|                        |         |            |           | (N)                 | MINERALO     |            |                                        |                                                         |
| 0                      |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     | stiff dens   | sitv       |                                        | some shells in top 12"                                  |
| -                      |         |            | l         |                     | gley 1 4/    |            |                                        |                                                         |
| -                      |         |            |           |                     |              |            |                                        |                                                         |
| -                      |         |            |           |                     | high plas    | sucity     |                                        | -1                                                      |
| -                      |         |            |           |                     | wet          |            |                                        | -                                                       |
| 12                     |         |            |           |                     | cohesive     | •          |                                        |                                                         |
| 1                      |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     | uniform      | throuaho   | ut                                     |                                                         |
| _                      |         |            |           |                     |              | 5          |                                        |                                                         |
| -                      | ,       |            |           |                     | ł            |            |                                        |                                                         |
| -                      |         |            |           |                     | I.           |            |                                        | -                                                       |
| 24                     |         |            |           |                     | trace sai    | าด         |                                        |                                                         |
|                        |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     |              |            |                                        |                                                         |
| -                      |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     | fine grain   | had        |                                        |                                                         |
| -                      |         |            |           |                     | -            | icu        |                                        | -                                                       |
| 36                     |         |            |           |                     | fat clay     |            |                                        |                                                         |
| - 1                    |         |            |           |                     |              |            |                                        | _                                                       |
|                        |         |            |           |                     |              |            |                                        | -                                                       |
|                        |         |            |           |                     |              |            |                                        |                                                         |
| -                      |         |            |           |                     |              |            |                                        |                                                         |
| 48                     | 4'      |            |           |                     |              |            |                                        |                                                         |
| <b>↓</b> <sup>40</sup> | -       |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     |              |            |                                        | -                                                       |
| _                      |         | 59"        |           |                     |              |            |                                        | -                                                       |
| _                      |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     |              |            |                                        |                                                         |
| -                      | 1       |            |           |                     |              |            |                                        |                                                         |
| -                      |         |            |           |                     |              |            |                                        |                                                         |
| -                      | 1       |            |           |                     |              |            |                                        | -                                                       |
| -                      |         |            |           |                     |              |            |                                        | -                                                       |
|                        |         |            |           |                     |              |            |                                        | _                                                       |
|                        |         |            |           |                     |              |            |                                        |                                                         |
|                        |         |            |           |                     |              |            |                                        |                                                         |
| -                      |         |            |           |                     |              |            |                                        |                                                         |
| L                      | 1       | I          | L         | I                   | j            |            |                                        |                                                         |

PROJECT NUMBER:

22860.006 Task 5

BORING NUMBER C-3

SHEET \_1\_ OF \_1\_

| PROJEC       | СТ :    | Eversou    | rce: Seac | oast Reliability Pr | oject                 | LOCATIC  | N : Newington, NH  |    |                                 |   |
|--------------|---------|------------|-----------|---------------------|-----------------------|----------|--------------------|----|---------------------------------|---|
| ELEVAT       |         | NA         |           |                     | DRILLING CONTRACTOR : |          |                    |    | Normandeau                      |   |
| AMERICAN INC |         |            |           | NT USED :           | Vibracore             |          |                    |    |                                 |   |
| WATER        |         |            |           |                     | START :               | 13:30    | END : 13:45        | l  |                                 |   |
| DEPTH B      |         | IRFACE (II | V)        | STANDARD            | CORE DESCRIPTION      |          |                    |    | COMMENTS                        |   |
|              | INTERVA |            |           | PENETRATION         |                       |          |                    |    |                                 |   |
|              |         | RECOVE     |           | TEST                |                       |          | OUP SYMBOL, COLOR, |    | DEPTH OF CASING, DRILLING RATE, |   |
|              |         |            | #/TYPE    | RESULTS             |                       |          | RELATIVE DENSITY   |    | DRILLING FLUID LOSS,            |   |
|              |         |            |           | 6"-6"-6"-6"         |                       |          | IL STRUCTURE,      |    | TESTS, AND INSTRUMENTATION.     |   |
|              |         |            |           | (N)                 | MINERALC              |          |                    |    |                                 |   |
| 0            |         |            |           |                     |                       |          |                    |    |                                 |   |
| _            |         |            |           |                     | stiff den             | sity     |                    | _[ | some shells in top 12"          | _ |
|              |         |            |           |                     | gley 1 4/             | '10Y     |                    |    |                                 |   |
|              |         |            |           |                     | high plas             |          |                    |    |                                 |   |
| -            |         |            |           |                     |                       | stiony   |                    | -  |                                 | - |
|              |         |            |           |                     | wet                   |          |                    | -  |                                 | - |
| 12           |         |            |           |                     | cohesive              | 3        |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| -            |         |            |           |                     | uniform               | througho | ut                 |    |                                 |   |
| -            |         |            |           |                     |                       |          |                    |    |                                 | - |
| -            |         |            |           |                     |                       |          |                    | -  |                                 | - |
| -            |         |            |           |                     |                       |          |                    |    |                                 | _ |
| 24           |         |            |           |                     | trace sa              | nd       |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| -            |         |            |           |                     |                       |          |                    | -  |                                 | - |
|              |         |            |           |                     |                       |          |                    | -  |                                 | - |
|              |         |            |           |                     |                       |          |                    |    |                                 | _ |
| _            |         |            |           |                     | fine grai             | ned      |                    | _  |                                 | _ |
| 36           |         |            |           |                     | fat clay              |          |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    | -1 |                                 | - |
|              |         |            |           |                     |                       |          |                    | -  |                                 | - |
|              |         |            |           |                     |                       |          |                    | _  |                                 | _ |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| 48_          | 4'      |            |           |                     |                       |          |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| -            |         |            |           |                     |                       |          |                    | -  |                                 | - |
| _            |         | 58"        |           |                     |                       |          |                    | _  |                                 | _ |
| _            |         |            |           |                     |                       |          |                    |    |                                 | _ |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| -            |         |            |           |                     |                       |          |                    |    |                                 |   |
|              |         |            |           |                     |                       |          |                    |    |                                 | - |
|              |         |            |           |                     |                       |          |                    |    |                                 |   |
| 1 _          |         |            |           |                     |                       |          |                    | _  |                                 |   |
| 1            |         |            |           |                     |                       |          |                    |    |                                 |   |
| -            |         |            |           |                     |                       |          |                    | -  |                                 | - |
| -            |         |            |           |                     |                       |          |                    | -  |                                 | - |
| -            |         |            |           |                     |                       |          |                    | _  |                                 | _ |
|              | 1       |            |           |                     |                       |          |                    |    |                                 |   |



NORMANDEAU ASSOCIATES ENVIRONMENTAL CONSULTANTS PROJECT NUMBER:

BORING NUMBER

SHEET \_1\_ OF \_1\_

22860.006 Task 5

C-4

| PROJEC | ст:     | Eversour  | ce: Seac | oast Reliability Pr | oject LOCATIC      | N : Newington, NH         |                                 |
|--------|---------|-----------|----------|---------------------|--------------------|---------------------------|---------------------------------|
| ELEVAT |         | NA        |          |                     |                    | G CONTRACTOR :            | Normandeau                      |
|        |         |           | EQUIPME  | NT USED :           | Vibracore          |                           |                                 |
| WATER  |         |           | 0        | OTANDADD            | START : 14:00      | END : 14:15<br>ESCRIPTION | LOGGER : JBS<br>COMMENTS        |
| 1      |         | RFACE (IN | 4)       | STANDARD            | CORE D             | ESCRIPTION                | COMMENTS                        |
|        | INTERVA | P         |          | PENETRATION<br>TEST |                    | OUP SYMBOL, COLOR,        | DEPTH OF CASING, DRILLING RATE, |
|        |         | RECOVE    | #/TYPE   | RESULTS             | MOISTURE CONTENT,  |                           | DRILLING FLUID LOSS,            |
|        |         |           |          | 6"-6"-6"-6"         | OR CONSISTENCY, SC |                           | TESTS, AND INSTRUMENTATION.     |
|        |         |           |          | (N)                 | MINERALOGY.        |                           | ·                               |
| 0      |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     | stiff density      |                           | _some shells in top 12"         |
| -      |         |           |          |                     | gley 1 4/10Y       |                           |                                 |
| -      |         |           |          |                     | high plasticity    |                           | -                               |
| -      |         |           |          |                     |                    |                           |                                 |
| -      |         |           |          |                     | wet                |                           |                                 |
| 12     |         |           |          |                     | cohesive           |                           | _  _                            |
|        |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     | uniform througho   | ut                        |                                 |
| _      |         |           |          |                     | _                  |                           |                                 |
| -      |         |           |          |                     |                    |                           | -                               |
| -      |         |           |          |                     | trace sand         |                           | -                               |
| 24     |         |           |          |                     | liace sanu         |                           |                                 |
| _      |         |           |          |                     |                    |                           |                                 |
| _      |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     |                    |                           |                                 |
| -      |         |           |          |                     | fine grained       |                           |                                 |
| 36     |         |           |          |                     | fat clay           |                           |                                 |
|        |         |           |          |                     | lat oldy           |                           | -                               |
| -      |         |           |          |                     |                    |                           |                                 |
| _      |         |           |          |                     |                    |                           |                                 |
| _      |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     |                    |                           |                                 |
| 48     | 4'      |           |          |                     |                    |                           | _                               |
|        | -       |           |          |                     |                    |                           |                                 |
| -      |         |           |          |                     |                    |                           | -                               |
| -      |         | 55"       |          |                     |                    |                           |                                 |
| -      |         |           |          |                     |                    |                           |                                 |
| _      |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     |                    |                           |                                 |
|        |         |           |          |                     |                    |                           |                                 |
| -      |         |           |          |                     |                    |                           | -                               |
| -      |         |           |          |                     |                    |                           | -                               |
| -      |         |           |          |                     |                    |                           |                                 |
| _      |         |           |          |                     |                    |                           | -                               |
| _      |         |           |          |                     |                    |                           |                                 |
|        | · ·     |           |          |                     |                    |                           |                                 |



ENVIRONMENTAL CONSULTANTS

BORING NUMBER

SHEET \_1\_ OF \_1\_

#### 22860.006 Task 5

PROJECT NUMBER:

C-5

| PROJEC                                  | CT :    | Eversou                                                                                                        | rce: Seac                                                            | oast Reliability Pr | roject LOCATIO     | ON : Newington, NH         |                                 |
|-----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|--------------------|----------------------------|---------------------------------|
| ELEVAT                                  |         | NA                                                                                                             |                                                                      |                     | DRILLIN            | G CONTRACTOR :             | Normandeau                      |
| A 1000000000000000000000000000000000000 |         | and the base of the second | terrore a descentario de defensacione de defensaciones de administra | ENT USED :          | Vibracore          |                            |                                 |
|                                         | LEVELS  | 3.7<br>JRFACE (II                                                                                              |                                                                      | STANDARD            | START : 8:25       | END : 08:40<br>DESCRIPTION | LOGGER : JBS<br>COMMENTS        |
| DEFIND                                  | INTERVA |                                                                                                                | N)                                                                   | PENETRATION         | CORE L             | ESCRIPTION                 | COMMENTS                        |
|                                         |         | RECOVE                                                                                                         | RY (IN)                                                              | TEST                | SOIL NAME LISCS GR | OUP SYMBOL, COLOR,         | DEPTH OF CASING, DRILLING RATE, |
|                                         |         |                                                                                                                | #/TYPE                                                               | RESULTS             | MOISTURE CONTENT   |                            | DRILLING FLUID LOSS,            |
|                                         |         |                                                                                                                |                                                                      | 6"-6"-6"-6"         | OR CONSISTENCY, SO | OIL STRUCTURE,             | TESTS, AND INSTRUMENTATION.     |
|                                         | ļ       |                                                                                                                |                                                                      | (N)                 | MINERALOGY.        |                            |                                 |
| 0                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| _                                       |         |                                                                                                                |                                                                      |                     | stiff density      |                            | _some shells in top 12"         |
| _                                       |         |                                                                                                                |                                                                      |                     | gley 1 4/10Y       |                            |                                 |
|                                         |         |                                                                                                                |                                                                      |                     | medium plasticity  | v                          |                                 |
| -                                       | 1       |                                                                                                                |                                                                      |                     | wet                | ,                          |                                 |
| 10                                      |         |                                                                                                                |                                                                      |                     | cohesive           |                            |                                 |
| 12                                      |         |                                                                                                                |                                                                      |                     | CONCONC            |                            |                                 |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -                               |
| -                                       |         |                                                                                                                |                                                                      |                     | uniform througho   | out                        | -                               |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            | _                               |
| _                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| 24                                      |         |                                                                                                                |                                                                      |                     | trace sand         |                            |                                 |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -                               |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -                               |
| -                                       |         |                                                                                                                |                                                                      |                     | fine main ad       |                            | -                               |
|                                         |         |                                                                                                                |                                                                      |                     | fine grained       |                            | -                               |
| 36                                      |         |                                                                                                                |                                                                      |                     | fat clay           |                            |                                 |
| _                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| _                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| 48                                      | 4'      |                                                                                                                |                                                                      |                     |                    |                            | -                               |
| <sup></sup> _                           |         |                                                                                                                |                                                                      |                     |                    |                            | -                               |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            | -                               |
| -                                       |         | 54"                                                                                                            |                                                                      |                     |                    |                            | -                               |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -1                              |
| _                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| _                                       |         |                                                                                                                |                                                                      |                     |                    |                            | _]                              |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            | _                               |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | 1                               |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -1                              |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -1                              |
| -                                       |         |                                                                                                                |                                                                      |                     |                    |                            | -1                              |
|                                         |         |                                                                                                                |                                                                      |                     |                    |                            |                                 |



PROJECT NUMBER:

BORING NUMBER C-6

SHEET \_1\_ OF \_1\_

#### 22860.006 Task 5

| PROJEC        | CT :    | Eversou    | rce: Seac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oast Reliability Pr                                  | oject                   | LOCATIO    | I : Newington, NH                                  | 1 |                                                                                        |       |
|---------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|------------|----------------------------------------------------|---|----------------------------------------------------------------------------------------|-------|
| ELEVAT        |         | NA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         | DRILLING   | CONTRACTOR :                                       |   | Normandeau                                                                             |       |
|               |         |            | and the second sec | NT USED :                                            | Vibracore               |            |                                                    |   |                                                                                        |       |
| WATER         |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | START :                 | 10:00      | END : 11:15                                        |   | LOGGER : JBS                                                                           |       |
|               |         | JRFACE (II | N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STANDARD                                             |                         | CORE DE    | SCRIPTION                                          |   | COMMENTS                                                                               |       |
|               | INTERVA | RECOVE     | RY (IN)<br>#/TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PENETRATION<br>TEST<br>RESULTS<br>6"-6"-6"-6"<br>(N) | MOISTURE                | CONTENT, F | JP SYMBOL, COLC<br>ELATIVE DENSITY<br>- STRUCTURE, |   | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS, AND INSTRUMENTATION. | ,     |
| 0<br><br>     |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | stiff dens<br>gley 1 4/ |            |                                                    |   | some shells in top 12"                                                                 |       |
|               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | high plas<br>wet        |            |                                                    | - |                                                                                        |       |
| 12<br>_       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | cohesive                | hroughou   | ŧ                                                  | - |                                                                                        | <br>· |
|               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         | mougnot    | ι                                                  | - |                                                                                        |       |
| 24            |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | trace sar               | nd         |                                                    | _ |                                                                                        |       |
| -             |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | <i>a</i>                | ·          |                                                    |   |                                                                                        |       |
| -<br>36       |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | fine grair<br>fat clay  | ied        |                                                    |   |                                                                                        |       |
| -             |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | - |                                                                                        |       |
| _<br><br>48   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | _ |                                                                                        |       |
|               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         | S ABOVE    |                                                    | - |                                                                                        |       |
| -<br>-<br>63_ |         | 63"        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | _ |                                                                                        |       |
|               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | - |                                                                                        | -     |
|               |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | - |                                                                                        | -     |
| _             |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                         |            |                                                    | - |                                                                                        |       |



PROJECT NUMBER:

BORING NUMBER C-7

SHEET \_1\_ OF \_1\_

# 22860.006 Task 5

| ELEVATION:     NA     DRILLING CONTRACTOR;     Normandeau       WATER LEVELS     20     STANTART:     11:55     END:12:35     LOGGER:     JBS       DEPTH BELOW BURACE (NR)     STANDARD     CORE DESCRIPTION     CORE DESCRIPTION     DepTh OF CASING, DRILLING PATE,                                                                                                                                                                                    | PROJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ст :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eversou                                       | rce: Seac | oast Reliability Pr | oject LOCATION : Newington, NH |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|---------------------|--------------------------------|-----------------------------|
| WATER LEVELS     20     START:     11:55     END: 12:35     LOGGER:     JBS       DEPTH BELOW SURFACE (N)     FEADDARD     CORE DESCRIPTION     COMMENTS       INTERVAL (FT)     FECOVERY (N)     FEST     SOIL NAME, USCS GROUP SYMBOL, COLOR,<br>B#/TYPE     DEPTH OF CASING, DRILLING RATE,<br>B*/FYEF     DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS,<br>TESTS, AND INSTRUMENTATION.       0     0     medium density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELEVATION : NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | Normandeau                  |
| DEPTH BELOW SURFACE (IN)  PENETRATION  PENET | COMPLETE AND A COMPLE | THE OWNER PROVIDE A DESCRIPTION OF THE PROPERTY OF THE PROVIDE A DESCRIPTION OF THE PROPERTY O | CARD ROOM AND A CARD AND A CONTRACT OF A CARD |           | NT USED :           |                                |                             |
| INTERVAL ((T)       PENETRATION         RECOVERY (IN)       TEST         Ø.       Ø******         Ø.       Ø*******         Ø.       Ø*******         Ø.       Ø*******         Ø.       Ø*******         Ø.       Ø********         Ø.       Ø********         Ø.       Ø********         Ø.       Ø*********         Ø.       Ø*********         Ø.       Ø*********         Ø.       Ø*********         Ø.       Ø**********         Ø.       Ø***********         Ø.       Ø.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| RECOVERY (IM)     TEST<br>RESULTS<br>(%" 4" 4"<br>(%)     SOIL NAME, LSOS GROUP SYMBOL, COLOR,<br>MOISTURE CONTENT, RELATIVE DENSITY<br>OC CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY.     DEPTH OF CASING, DRILLING FLUID LOSS,<br>TESTS, AND INSTRUMENTATION.       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | ۷)        |                     | CORE DESCRIPTION               | COMMENTS                    |
| MITTYPE     RESULTS<br>6*:5*:5*     MOISTURE CONTENT, RELATIVE DENSITY<br>OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY.     DRILLING FLUID LOSS.<br>TESTS, AND INSTRUMENTATION.       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTERVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |           |                     |                                |                             |
| 0_     0*******     OR CONSISTENCY, SOIL STRUCTURE,<br>MINERALOGY.     TESTS, AND INSTRUMENTATION.       0_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| Image: Construction of the system of the                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | #/ITPE    |                     |                                | 1                           |
| 0_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | TEOTO, AND INSTRUMENTATION. |
| medium density some shells in top 12"   gley 1 4/10Y low plasticity   wet, cohesive uniform fat clay w/ sand   gley 1 4/10Y gley 1 4/10Y   gley 1 4/10Y high plasticity   uniform fat clay w/ sand -   gley 1 4/10Y -   gl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                             |           |                     |                                |                             |
| gley 1 4/10Y   low plasticity   wet, cohesive   uniform fat clay w/ sand     gley 1 4/10Y   gley 1 4/10Y   high plasticity   wet   cohesive   uniform throughout   fine grained   fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>–</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | -                              |                             |
| 12 low plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | _ some shells in top 12 _   |
| 12 wet, cohesive   12 uniform fat clay w/ sand     -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | gley 1 4/10Y                   |                             |
| 12_       uniform fat clay w/ sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b> </b> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | low plasticity                 |                             |
| 12_       uniform fat clay w/ sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | wet, cohesive                  |                             |
| stiff density   gley 1 4/10Y   high plasticity   wet   cohesive   uniform throughout   fine grained   fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| _ gley 1 4/10Y _   _ high plasticity _   _ wet _   _ cohesive _   _ uniform throughout _   _ fine grained _   _ fat clay _                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| _ gley 1 4/10Y _   _ high plasticity _   _ wet _   _ cohesive _   _ uniform throughout _   _ fine grained _   _ fat clay _                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| high plasticity   wet   cohesive   uniform throughout   fine grained   fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | -                              |                             |
| wet   cohesive   uniform throughout   fat clay   fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | gley 1 4/10Y                   |                             |
| fat clay - <td></td> <td></td> <td></td> <td></td> <td></td> <td>high plasticity</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | high plasticity                |                             |
| fat clay - <td></td> <td></td> <td></td> <td></td> <td></td> <td>wet</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | wet                            |                             |
| - uniform throughout -   - fine grained -   - fat clay - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| fine grained         fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| fat clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | -                              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     | fat clay                       |                             |
| $ \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ 54 \end{bmatrix} \\ \begin{bmatrix} 54 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| $ \begin{bmatrix} - \\ - \\ - \\ - \\ 54 \end{bmatrix} = \begin{bmatrix} - \\ 54 \end{bmatrix} = \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | -                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | -  -                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
| 54_       54       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                             |           |                     |                                | _  _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                            |           |                     |                                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | -                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | -  -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | -  -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                | <b>_</b>                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |                     |                                |                             |



NORMANDEAU ASSOCIATES ENVIRONMENTAL CONSULTANTS PROJECT NUMBER:

BORING NUMBER

SHEET \_1\_ OF \_1\_

#### 22860.006 Task 5

| Soil E | Boring | Log |
|--------|--------|-----|
|--------|--------|-----|

| PROJEC                                      |                                                                                    |        |        |                     |                       |           |                    |                                 |
|---------------------------------------------|------------------------------------------------------------------------------------|--------|--------|---------------------|-----------------------|-----------|--------------------|---------------------------------|
| ELEVAT                                      |                                                                                    | NA     |        |                     | DRILLING CONTRACTOR : |           |                    | Normandeau                      |
| vision and some many second states and some | THE REAL PROPERTY AND ADDRESS OF TAXABLE PROPERTY AND ADDRESS OF TAXABLE PROPERTY. |        |        | ENT USED :          | Vibracore             | 40.45     |                    |                                 |
| WATER                                       |                                                                                    |        |        | OTANDADD            | START :               | 12:45     | END : 13:15        | LOGGER : JBS                    |
| DEPTH B                                     | PTT-10-10-10-10-10-10-10-10-10-10-10-10-10-                                        |        | N)     | STANDARD            |                       | CORE DE   | SCRIPTION          | COMMENTS                        |
|                                             | INTERVA                                                                            | RECOVE |        | PENETRATION<br>TEST | SOIL NAME             |           | OUP SYMBOL, COLOR, | DEPTH OF CASING, DRILLING RATE, |
|                                             |                                                                                    |        | #/TYPE | RESULTS             |                       |           | RELATIVE DENSITY   | DRILLING FLUID LOSS,            |
|                                             |                                                                                    |        |        | 6"-6"-6"-6"         | 1                     |           | IL STRUCTURE,      | TESTS, AND INSTRUMENTATION.     |
|                                             |                                                                                    |        |        | (N)                 | MINERALO              |           |                    |                                 |
| o                                           |                                                                                    |        |        |                     |                       |           |                    |                                 |
|                                             |                                                                                    |        |        |                     | stiff dens            | sity      |                    | _some shells in top 6"          |
|                                             |                                                                                    |        |        |                     | gley 1 2.             |           |                    |                                 |
| -                                           |                                                                                    |        |        |                     | fine sand             |           |                    |                                 |
| -                                           |                                                                                    |        |        |                     | 1                     |           |                    | -                               |
|                                             |                                                                                    |        |        |                     | noń plas              | 10        |                    |                                 |
|                                             |                                                                                    |        |        |                     | wet                   |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     | non-coh               |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     | uniform               | fine sand |                    | -                               |
|                                             |                                                                                    |        |        |                     |                       |           |                    |                                 |
|                                             |                                                                                    |        |        |                     |                       |           |                    |                                 |
| 19                                          |                                                                                    |        |        |                     |                       |           |                    |                                 |
|                                             |                                                                                    |        |        |                     |                       |           |                    |                                 |
| -                                           |                                                                                    |        |        |                     | stiff dens            | situ      |                    |                                 |
| -                                           |                                                                                    |        |        |                     |                       | -         |                    | -                               |
|                                             |                                                                                    |        |        |                     | gley 1 4/             |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     | high plas             | sticity   |                    |                                 |
|                                             |                                                                                    |        |        |                     | wet                   |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     | cohesive              | <b>;</b>  |                    | -                               |
|                                             |                                                                                    |        |        |                     | uniform               |           |                    |                                 |
|                                             |                                                                                    |        |        |                     | fat clay              |           |                    |                                 |
|                                             |                                                                                    |        |        |                     | ,                     |           |                    |                                 |
| -                                           |                                                                                    | 0.01   |        |                     |                       |           |                    |                                 |
| 36                                          |                                                                                    | 36"    |        |                     |                       |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     |                       |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     |                       |           |                    | -                               |
| _                                           |                                                                                    |        |        |                     |                       |           |                    |                                 |
|                                             |                                                                                    |        |        |                     |                       |           |                    |                                 |
|                                             |                                                                                    |        |        |                     |                       |           |                    | _                               |
|                                             |                                                                                    |        |        |                     |                       |           |                    | -                               |
|                                             |                                                                                    |        |        |                     |                       |           |                    | -                               |
| -                                           |                                                                                    |        |        |                     |                       |           |                    | -                               |
| -                                           |                                                                                    |        |        |                     |                       |           |                    | -                               |
| _                                           |                                                                                    |        |        |                     |                       |           |                    |                                 |
| _                                           |                                                                                    |        |        |                     |                       |           |                    | -                               |
|                                             |                                                                                    |        |        |                     |                       |           |                    |                                 |



BORING NUMBER C-9

SHEET \_1\_ OF \_1\_

22860.006 Task 5

PROJECT NUMBER:

| Soil Boring Log | J |
|-----------------|---|
|-----------------|---|

| PROJECT : Eversource: Seacoast Reliability Pr |         |        |                   |                 |              |            |                    |            |                                                         |
|-----------------------------------------------|---------|--------|-------------------|-----------------|--------------|------------|--------------------|------------|---------------------------------------------------------|
| ELEVATION : NA                                |         |        |                   |                 |              |            |                    | Normandeau |                                                         |
|                                               |         |        |                   |                 | Vibracore    |            |                    | -          |                                                         |
|                                               |         |        |                   |                 | START :      | 11:25      | END : 11:50        |            | LOGGER : JBS                                            |
| DEPTH E                                       |         |        | (7                | STANDARD        |              | CORE D     | ESCRIPTION         |            | COMMENTS                                                |
|                                               | INTERVA |        |                   | PENETRATION     |              |            |                    |            |                                                         |
|                                               |         | RECOVE | RY (IN)<br>#/TYPE | TEST            |              |            | DUP SYMBOL, COLOR, |            | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS, |
|                                               |         |        | #/IYPE            | RESULTS         |              |            |                    |            | TESTS, AND INSTRUMENTATION.                             |
|                                               |         |        |                   | 6"-6"-6"<br>(N) | MINERALO     |            | IL STRUCTURE,      |            | TESTS, AND INSTRUMENTATION.                             |
|                                               | +       |        |                   |                 |              |            |                    |            |                                                         |
| 0                                             | -       |        |                   |                 |              | · .        |                    |            |                                                         |
| -                                             | -       |        |                   |                 | stiff dens   |            |                    | -          |                                                         |
| _                                             | -       |        |                   |                 | gley 1 2.    | 5/N        |                    | _          | _                                                       |
| _                                             | _       |        |                   |                 | medium       | sand       |                    | _          |                                                         |
|                                               |         |        |                   |                 | non plast    | tic        |                    |            |                                                         |
| -                                             | -       |        |                   |                 | wet          |            |                    |            | _                                                       |
|                                               | -       |        |                   |                 | non-cohe     |            |                    |            |                                                         |
| -                                             | -       |        |                   |                 | non-cone     | SIVE       |                    | -          | -                                                       |
| -                                             | -       |        |                   |                 |              |            |                    | _          |                                                         |
| I _                                           | _       |        |                   |                 |              |            |                    |            | _                                                       |
|                                               |         |        |                   |                 |              |            |                    |            |                                                         |
| 9                                             |         |        |                   |                 |              |            |                    |            |                                                         |
|                                               | -       | 1      |                   |                 |              |            |                    |            |                                                         |
|                                               | -       |        |                   |                 | at the stars | : <b>.</b> |                    | -          |                                                         |
| -                                             | -       |        |                   |                 | stiff dens   |            |                    | -          | -                                                       |
| - 1                                           | -       |        |                   |                 | gley 1 5/I   | N          |                    | _          | -                                                       |
| _                                             |         |        |                   |                 | low plast    | icity      |                    | _          |                                                         |
|                                               |         |        |                   |                 | wet          |            |                    |            |                                                         |
|                                               | -       |        |                   |                 | cohesive     |            |                    |            |                                                         |
|                                               | -       |        |                   |                 | uniform      |            |                    | -          | -                                                       |
| -                                             | -       |        |                   |                 |              | , .        |                    | -          |                                                         |
| -                                             | -       |        |                   |                 | fat clay w   | //sand     |                    | _          |                                                         |
|                                               |         |        |                   |                 |              |            |                    |            |                                                         |
| 14                                            |         | 14"    |                   |                 |              |            |                    |            |                                                         |
|                                               | ·       |        |                   |                 |              |            |                    |            |                                                         |
| -                                             | -       |        |                   |                 |              |            |                    | -          | -                                                       |
| -                                             | -]      |        |                   |                 |              |            |                    | -          |                                                         |
| -                                             | -       |        |                   |                 |              |            |                    | -          | -                                                       |
| -                                             | _]      |        |                   |                 |              |            |                    |            |                                                         |
|                                               | _       |        |                   |                 |              |            |                    |            |                                                         |
|                                               |         |        |                   |                 |              |            |                    |            |                                                         |
| -                                             | 1       |        |                   |                 |              |            |                    | -          |                                                         |
| -                                             | -       |        |                   |                 |              |            |                    | -          |                                                         |
| -                                             | -       |        |                   |                 |              |            |                    |            |                                                         |
| - 1                                           | -       |        |                   |                 |              |            |                    | _          |                                                         |
|                                               | _       |        |                   |                 |              |            |                    |            |                                                         |
|                                               |         |        |                   |                 |              |            |                    |            |                                                         |



PROJECT NUMBER:

BORING NUMBER C-10

SHEET \_1\_ OF \_1\_

#### 22860.006 Task 5

| PROJEC  | CT :    | Eversour   | ce: Seac | oast Reliability Pr | oject      | LOCATION : Newington, NH     |                                 |   |  |
|---------|---------|------------|----------|---------------------|------------|------------------------------|---------------------------------|---|--|
| ELEVAT  |         | NA         |          |                     |            | DRILLING CONTRACTOR :        | Normandeau                      |   |  |
|         |         |            | EQUIPME  | NT USED :           | Vibracore  |                              |                                 |   |  |
| WATER   |         |            |          |                     | START :    | 12:05 END : 12:27            | LOGGER : JBS                    |   |  |
| DEPTH B | ELOW SU | JRFACE (IN | 1)       | STANDARD            |            | CORE DESCRIPTION             | COMMENTS                        |   |  |
|         | INTERVA | L (FT)     |          | PENETRATION         |            |                              |                                 |   |  |
|         |         | RECOVER    | RY (IN)  | TEST                | SOIL NAME  | E, USCS GROUP SYMBOL, COLOR, | DEPTH OF CASING, DRILLING RATE, |   |  |
|         |         |            | #/TYPE   | RESULTS             |            | CONTENT, RELATIVE DENSITY    | DRILLING FLUID LOSS,            |   |  |
|         |         |            |          | 6"-6"-6"-6"         | OR CONSI   | STENCY, SOIL STRUCTURE,      | TESTS, AND INSTRUMENTATION.     |   |  |
|         |         |            |          | (N)                 | MINERALO   |                              |                                 |   |  |
| 0       |         |            |          |                     |            |                              |                                 |   |  |
| Ŭ       |         |            |          |                     | stiff dens | sity                         | -                               | - |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
| _       |         |            |          |                     | fine sand  |                              | -                               |   |  |
| _       |         |            |          |                     | gley 1 3/  | 10Y                          |                                 |   |  |
|         |         |            |          |                     | non plas   |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     | wet        |                              |                                 | - |  |
| _       |         |            |          |                     | non-coh    | esive                        | _                               |   |  |
|         |         |            |          |                     | uniform    |                              |                                 |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     |            | ٠                            | _                               |   |  |
|         |         |            |          |                     |            |                              |                                 | - |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
|         |         |            |          |                     |            |                              |                                 | - |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
| _       |         |            |          |                     |            |                              | _                               |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
| -       |         |            |          |                     |            |                              | -1                              |   |  |
| 23      |         | 23"        |          |                     |            |                              |                                 | - |  |
|         |         |            |          |                     |            |                              | _1                              |   |  |
| _       |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -1                              |   |  |
| _       |         |            |          |                     |            |                              |                                 | - |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
|         |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     |            |                              | -                               |   |  |
| -       |         |            |          |                     |            |                              | _                               |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |
| -       |         |            |          |                     |            |                              | -                               |   |  |
| _       |         |            |          |                     |            |                              | -                               |   |  |
|         |         |            |          |                     |            |                              | _]                              |   |  |
|         |         |            |          |                     |            |                              |                                 |   |  |



BORING NUMBER

SHEET  $_1$  OF  $_1$ 

22860.006 Task 5

PROJECT NUMBER:

C-11

| PROJECT : Eversource: Seacoast Reliability Pr                      |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | oject LOCA      | TION : Newington, NH         |                                 |
|--------------------------------------------------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|------------------------------|---------------------------------|
| ELEVATION : NA<br>DRILLING METHOD AND EQUIPMENT USED :             |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 | LING CONTRACTOR :            | Normandeau                      |
| والداد والاستقادية والبالية الورسية الوار كالركام والمركبي والمركب |         |        | NAMES OF A DESCRIPTION OF<br>A DESCRIPTION OF A DESCRIPTIONO | INT USED :          | Vibracore       |                              |                                 |
|                                                                    | LEVELS  | 13.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CTANDADD            | START : 8:56    | END : 09:15<br>E DESCRIPTION | LOGGER : JBS<br>COMMENTS        |
| DEPTHB                                                             | P       |        | N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD            | COR             | E DESCRIPTION                | COMMENTS                        |
|                                                                    | INTERVA | RECOVE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PENETRATION<br>TEST | COIL NAME LICCO | GROUP SYMBOL, COLOR,         | DEPTH OF CASING, DRILLING RATE, |
|                                                                    |         |        | #/TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RESULTS             |                 | ENT, RELATIVE DENSITY        | DRILLING FLUID LOSS,            |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6"-6"-6"-6"         |                 | , SOIL STRUCTURE,            | TESTS, AND INSTRUMENTATION.     |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (N)                 | MINERALOGY.     | ,                            |                                 |
| 0                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | soft density    |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | gley 1 4/10Y    |                              | _some shells top 12"            |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | low plasticity  |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | wet             |                              | -                               |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | cohesive        |                              | -                               |
| 14                                                                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | silt w/ sand    |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | stiff density   |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | gley 1 4/10Y    |                              |                                 |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | high plasticity |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | wet             |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | cohesive        |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | uniform         |                              |                                 |
| - 1                                                                |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | fat clay        |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| 1                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| 89                                                                 |         | 89"    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| ``                                                                 |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| -                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |
| _                                                                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              | -                               |
|                                                                    |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                 |                              |                                 |



PROJECT NUMBER:

BORING NUMBER C-12

SHEET \_1\_ OF \_1\_

22860.006 Task 5

\_\_\_\_\_

| Soil Borin | ng Log |
|------------|--------|
|------------|--------|

| PROJEC       | CT :    | Eversou    | rce: Seac | oast Reliability Pr                   | oject        | LOCATIO    | N : Newington, NH                      |                                                         |
|--------------|---------|------------|-----------|---------------------------------------|--------------|------------|----------------------------------------|---------------------------------------------------------|
| ELEVAT       |         | NA         |           |                                       |              | DRILLIN    | G CONTRACTOR :                         | Normandeau                                              |
|              |         |            |           | ENT USED :                            | Vibracore    | ~          |                                        |                                                         |
| WATER        |         |            |           |                                       | START :      | 8:41       | END : 08:50                            | LOGGER : JBS                                            |
|              |         | JRFACE (IN | N)        | STANDARD                              |              | CORE D     | ESCRIPTION                             | COMMENTS                                                |
|              | INTERVA |            |           | PENETRATION                           | 0.011 114145 |            |                                        |                                                         |
|              |         | RECOVE     | #/TYPE    | TEST<br>RESULTS                       |              |            | OUP SYMBOL, COLOR,<br>RELATIVE DENSITY | DEPTH OF CASING, DRILLING RATE,<br>DRILLING FLUID LOSS, |
|              |         |            | #/118 L   | 6"-6"-6"-6"                           |              |            | NELATIVE DENSITY                       | TESTS, AND INSTRUMENTATION.                             |
|              |         |            |           | (N)                                   | MINERALO     |            | AL OTROOTORE,                          |                                                         |
| 0            |         |            |           | · · · · · · · · · · · · · · · · · · · |              |            |                                        |                                                         |
| <u> </u>     |         |            |           |                                       |              |            |                                        | some shells top 12"                                     |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       | very stiff   |            |                                        |                                                         |
|              |         |            |           |                                       | gley 1 4/    | 10Y        |                                        |                                                         |
| _            |         |            |           |                                       | wet          |            |                                        |                                                         |
|              |         |            |           |                                       | medium       | plasticity | 1                                      |                                                         |
| —            |         |            |           |                                       | cohesive     |            |                                        |                                                         |
| -            |         |            |           |                                       |              | ;          |                                        |                                                         |
|              |         |            |           |                                       | uniform      |            |                                        |                                                         |
|              |         |            |           |                                       | fat clay v   | v/ sand    |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        | _                                                       |
|              |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| _            |         |            |           |                                       |              |            |                                        | -                                                       |
|              |         |            |           |                                       |              |            |                                        |                                                         |
| 36           |         | 36"        |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| _            |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        | 7                                                       |
|              |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        | -  -                                                    |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| _            |         |            |           |                                       |              |            |                                        | -                                                       |
|              |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        | -                                                       |
| -            |         |            |           |                                       |              |            |                                        |                                                         |
| -            |         |            |           |                                       |              |            |                                        | -  -                                                    |
| _            |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        |                                                         |
|              |         |            |           |                                       |              |            |                                        | -                                                       |
| -            |         |            |           |                                       |              |            |                                        | -                                                       |
| NAI-Boring L |         | 2/05       |           |                                       | l            |            |                                        |                                                         |

Appendix C: Analytical Results



#### ANALYTICAL REPORT

| Lab Number:     | L1629727              |  |
|-----------------|-----------------------|--|
| Client:         | Normandeau Associates |  |
|                 | 25 Nashua Rd.         |  |
|                 | Bedford, NH 03110     |  |
|                 |                       |  |
| ATTN:           | Ann Pembroke          |  |
| Phone:          | (603) 637-1169        |  |
| Project Name:   | SRP                   |  |
| Project Number: | 23840.003             |  |
| Report Date:    | 10/27/16              |  |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name:SRPProject Number:23840.003

 Lab Number:
 L1629727

 Report Date:
 10/27/16

| Alpha<br>Sample ID | Client ID    | Matrix   | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|--------------|----------|--------------------|-------------------------|--------------|
| L1629727-01        | C-6 (0-48)   | SEDIMENT | LITTLE BAY         | 09/20/16 10:10          | 09/20/16     |
| L1629727-02        | C-7 (0-48)   | SEDIMENT | LITTLE BAY         | 09/20/16 12:02          | 09/20/16     |
| L1629727-03        | C-1          | SEDIMENT | LITTLE BAY         | 09/20/16 12:58          | 09/20/16     |
| L1629727-04        | C-2          | SEDIMENT | LITTLE BAY         | 09/20/16 13:05          | 09/20/16     |
| L1629727-05        | C-3          | SEDIMENT | LITTLE BAY         | 09/20/16 13:36          | 09/20/16     |
| L1629727-06        | C-4          | SEDIMENT | LITTLE BAY         | 09/20/16 14:05          | 09/20/16     |
| L1629727-07        | C-6 (48-61)  | SEDIMENT | LITTLE BAY         | 09/20/16 10:10          | 09/20/16     |
| L1629727-08        | C-7 (48-54)  | SEDIMENT | LITTLE BAY         | 09/20/16 12:02          | 09/20/16     |
| L1629727-09        | C-5          | SEDIMENT | LITTLE BAY         | 09/21/16 08:35          | 09/21/16     |
| L1629727-10        | C-8          | SEDIMENT | LITTLE BAY         | 09/21/16 13:00          | 09/21/16     |
| L1629727-11        | C-9          | SEDIMENT | LITTLE BAY         | 09/21/16 11:45          | 09/21/16     |
| L1629727-12        | C-10         | SEDIMENT | LITTLE BAY         | 09/21/16 12:20          | 09/21/16     |
| L1629727-13        | C-11 (0-48)  | SEDIMENT | LITTLE BAY         | 09/21/16 09:03          | 09/21/16     |
| L1629727-14        | C-12         | SEDIMENT | LITTLE BAY         | 09/21/16 08:44          | 09/21/16     |
| L1629727-15        | C-11 (48-89) | SEDIMENT | LITTLE BAY         | 09/21/16 09:03          | 09/21/16     |



## Project Name:SRPProject Number:23840.003

### Lab Number: L1629727 Report Date: 10/27/16

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

#### HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.



Project Name: SRP Project Number: 23840.003

 Lab Number:
 L1629727

 Report Date:
 10/27/16

#### **Case Narrative (continued)**

#### **Report Reissue**

This report replaces the report issued on October 25, 2016. The project name has been revised.

#### Report Submission

The analysis of Dioxin by 1631B was subcontracted to Cape Fear Analytical in Wilmington NC. A copy of the laboratory report is included as an addendum.

The analysis of PFOA/PFOS was subcontracted to Vista Analytical Lab, El Dorado Hills, CA. A copy of the laboratory report is included as an addendum.

Please note: The subcontracted data is only available in PDF format and is not available electronically.

#### Semivolatile Organics

The WG937275-4 SRM recoveries, are outside the acceptance criteria for CL6-BZ#128 (164%). The WG937275-6/-7 MS/MSD recoveries, performed on L1629727-01, are outside the acceptance criteria for Naphthalene (39%/40%), Acenaphthylene (42%/43%), Acenaphthene (45%/45%), Fluorene (47%/47%), Phenanthrene (49%/49%), Anthracene (45%/46%), Fluoranthene (50% MS only), Pyrene (48%/48%) and CL3-BZ#18 (49%/49%).

#### Petroleum Hydrocarbon Quantitation

WG938023-1: A Matrix Spike and Matrix Spike Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the matrix spike and Matrix Spike Duplicate results could not be reported.

#### Total Organic Carbon

The WG940886-4/-5 MS/MSD RPD for Total Organic Carbon (Rep2) (47%), performed on L1629727-01, is above the acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Galt Por Elizabeth Porta

Title: Technical Director/Representative

Date: 10/27/16



# ORGANICS



## SEMIVOLATILES



|                    |                      |                | Serial_No        | p:10271613:37  |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-01          |                | Date Collected:  | 09/20/16 10:10 |
| Client ID:         | C-6 (0-48)           |                | Date Received:   | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 15:55       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 68%                  |                | -                |                |
|                    |                      |                |                  |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           |       | 7.37  |     | 1               |
|                             |                      |           | ug/kg |       |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 7.37  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg | 7.37  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 7.37  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg | 7.37  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 7.37  |     | 1               |
| Fluoranthene                | ND                   |           | ug/kg | 7.37  |     | 1               |
| Pyrene                      | ND                   |           | ug/kg | 7.37  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg | 7.37  |     | 1               |
| Chrysene                    | ND                   |           | ug/kg | 7.37  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg | 7.37  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg | 7.37  |     | 1               |
| Benzo(a)pyrene              | ND                   |           | ug/kg | 7.37  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg | 7.37  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 7.37  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg | 7.37  |     | 1               |
| CI2-BZ#8                    | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI4-BZ#52                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.737 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.737 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg | 0.737 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg | 0.737 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg | 0.737 |     | 1               |
|                             |                      |           | 5 5   |       |     |                 |



|                  |                     |               |           |       | Ş         | Serial_N | o:10271613:37   |
|------------------|---------------------|---------------|-----------|-------|-----------|----------|-----------------|
| Project Name:    | SRP                 |               |           |       | Lab Nu    | mber:    | L1629727        |
| Project Number:  | 23840.003           |               |           |       | Report    | Date:    | 10/27/16        |
|                  |                     | SAMP          |           | 6     |           |          |                 |
| Lab ID:          | L1629727-01         |               |           |       | Date Col  | lected:  | 09/20/16 10:10  |
| Client ID:       | C-6 (0-48)          |               |           |       | Date Red  | ceived:  | 09/20/16        |
| Sample Location: | LITTLE BAY          |               |           |       | Field Pre | p:       | Not Specified   |
| Parameter        |                     | Result        | Qualifier | Units | RL        | MDL      | Dilution Factor |
| RIM PAHs/PCB Co  | ongeners by GC/MS - | Mansfield Lab |           |       |           |          |                 |
| CI7-BZ#170       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| CI7-BZ#180       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| CI7-BZ#183       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| CI7-BZ#184       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| CI7-BZ#187       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| Cl8-BZ#195       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| Cl9-BZ#206       |                     | ND            |           | ug/kg | 0.737     |          | 1               |
| CI10-BZ#209      |                     | ND            |           | ug/kg | 0.737     |          | 1               |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 47         |           | 30-150                 |
| Pyrene-d10               | 54         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 56         |           | 30-150                 |
| DBOB                     | 58         |           | 30-150                 |
| BZ 198                   | 61         |           | 30-150                 |
|                          |            |           |                        |



|                    |                      |                | Serial_N         | p:10271613:37  |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-02          |                | Date Collected:  | 09/20/16 12:02 |
| Client ID:         | C-7 (0-48)           |                | Date Received:   | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 17:57       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 72%                  |                | ·                |                |
|                    |                      |                |                  |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 6.51  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 6.51  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg | 6.51  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 6.51  |     | 1               |
| Phenanthrene                | 6.97                 |           | ug/kg | 6.51  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 6.51  |     | 1               |
| Fluoranthene                | 18.9                 |           | ug/kg | 6.51  |     | 1               |
| Pyrene                      | 17.9                 |           | ug/kg | 6.51  |     | 1               |
| Benz(a)anthracene           | 17.2                 |           | ug/kg | 6.51  |     | 1               |
| Chrysene                    | 15.5                 |           | ug/kg | 6.51  |     | 1               |
| Benzo(b)fluoranthene        | 10.8                 |           | ug/kg | 6.51  |     | 1               |
| Benzo(k)fluoranthene        | 12.6                 |           | ug/kg | 6.51  |     | 1               |
| Benzo(a)pyrene              | 15.3                 |           | ug/kg | 6.51  |     | 1               |
| ndeno(1,2,3-cd)Pyrene       | 7.44                 |           | ug/kg | 6.51  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 6.51  |     | 1               |
| Benzo(ghi)perylene          | 6.67                 |           | ug/kg | 6.51  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg | 0.651 |     | 1               |
| Cl3-BZ#18                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| Cl3-BZ#28                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| Cl4-BZ#44                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| Cl4-BZ#49                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI6-BZ#128                  | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI6-BZ#138                  | ND                   |           | ug/kg | 0.651 |     | 1               |
| CI6-BZ#153                  | ND                   |           | ug/kg | 0.651 |     | 1               |
|                             |                      |           |       |       |     |                 |



|                  |                       |               |           |       | ;         | Serial_N | 0:10271613:37   |
|------------------|-----------------------|---------------|-----------|-------|-----------|----------|-----------------|
| Project Name:    | SRP                   |               |           |       | Lab Nu    | mber:    | L1629727        |
| Project Number:  | 23840.003             |               |           |       | Report    | Date:    | 10/27/16        |
|                  |                       | SAMP          |           | 5     |           |          |                 |
| Lab ID:          | L1629727-02           |               |           |       | Date Col  | llected: | 09/20/16 12:02  |
| Client ID:       | C-7 (0-48)            |               |           |       | Date Ree  | ceived:  | 09/20/16        |
| Sample Location: | LITTLE BAY            |               |           |       | Field Pre | ep:      | Not Specified   |
| Parameter        |                       | Result        | Qualifier | Units | RL        | MDL      | Dilution Factor |
| RIM PAHs/PCB Co  | ongeners by GC/MS - I | Mansfield Lab |           |       |           |          |                 |
| CI7-BZ#170       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI7-BZ#180       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI7-BZ#183       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI7-BZ#184       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI7-BZ#187       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| Cl8-BZ#195       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI9-BZ#206       |                       | ND            |           | ug/kg | 0.651     |          | 1               |
| CI10-BZ#209      |                       | ND            |           | ug/kg | 0.651     |          | 1               |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 48         |           | 30-150                 |
| Pyrene-d10               | 60         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 63         |           | 30-150                 |
| DBOB                     | 60         |           | 30-150                 |
| BZ 198                   | 63         |           | 30-150                 |
|                          |            |           |                        |



|                    |                      |                | Serial_No         | p:10271613:37  |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-03          |                | Date Collected:   | 09/20/16 12:58 |
| Client ID:         | C-1                  |                | Date Received:    | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 18:27       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 59%                  |                |                   |                |

| Parameter                   | Result               | Qualifier | Units  | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|--------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |        |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg  | 8.37  |     | 1               |
| Acenaphthylene              | ND                   |           |        | 8.37  |     | 1               |
|                             |                      |           | ug/kg  |       |     |                 |
| Acenaphthene                | ND                   |           | ug/kg  | 8.37  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg  | 8.37  |     | 1               |
| Phenanthrene                | 8.40                 |           | ug/kg  | 8.37  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg  | 8.37  |     | 1               |
| Fluoranthene                | 17.4                 |           | ug/kg  | 8.37  |     | 1               |
| Pyrene                      | 16.4                 |           | ug/kg  | 8.37  |     | 1               |
| Benz(a)anthracene           | 9.65                 |           | ug/kg  | 8.37  |     | 1               |
| Chrysene                    | 9.46                 |           | ug/kg  | 8.37  |     | 1               |
| Benzo(b)fluoranthene        | 11.6                 |           | ug/kg  | 8.37  |     | 1               |
| Benzo(k)fluoranthene        | 10.2                 |           | ug/kg  | 8.37  |     | 1               |
| Benzo(a)pyrene              | 11.6                 |           | ug/kg  | 8.37  |     | 1               |
| ndeno(1,2,3-cd)Pyrene       | 9.30                 |           | ug/kg  | 8.37  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg  | 8.37  |     | 1               |
| Benzo(ghi)perylene          | 9.20                 |           | ug/kg  | 8.37  |     | 1               |
| CI2-BZ#8                    | ND                   |           | ug/kg  | 0.837 |     | 1               |
| Cl3-BZ#18                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| Cl3-BZ#28                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI4-BZ#52                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
| CI6-BZ#128                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg  | 0.837 |     | 1               |
|                             |                      |           | ug/ing | 0.001 |     | •               |



|                                           |                                  |                 |           |                         | S                                 | Serial_N | o:10271613:37                               |  |
|-------------------------------------------|----------------------------------|-----------------|-----------|-------------------------|-----------------------------------|----------|---------------------------------------------|--|
| Project Name:                             | SRP                              |                 |           |                         | Lab Nu                            | mber:    | L1629727                                    |  |
| Project Number:                           | 23840.003                        |                 |           |                         | Report                            | Date:    | 10/27/16                                    |  |
|                                           |                                  | SAMPI           | E RESULTS | S                       |                                   |          |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-03<br>C-1<br>LITTLE BAY |                 |           |                         | Date Col<br>Date Rec<br>Field Pre | ceived:  | 09/20/16 12:58<br>09/20/16<br>Not Specified |  |
| Parameter                                 |                                  | Result          | Qualifier | Units                   | RL                                | MDL      | Dilution Factor                             |  |
| RIM PAHs/PCB Co                           | ongeners by GC/MS                | - Mansfield Lab |           |                         |                                   |          |                                             |  |
| CI7-BZ#170                                |                                  | ND              |           | ug/kg                   | 0.837                             |          | 1                                           |  |
| CI7-BZ#180                                |                                  | ND              |           |                         |                                   |          |                                             |  |
|                                           |                                  | ND              |           | ug/kg                   | 0.837                             |          | 1                                           |  |
| CI7-BZ#183                                |                                  | ND              |           | ug/kg<br>ug/kg          | 0.837                             |          | 1                                           |  |
| CI7-BZ#183<br>CI7-BZ#184                  |                                  |                 |           |                         |                                   |          |                                             |  |
|                                           |                                  | ND              |           | ug/kg                   | 0.837                             |          | 1                                           |  |
| CI7-BZ#184                                |                                  | ND<br>ND        |           | ug/kg<br>ug/kg          | 0.837<br>0.837                    |          | 1<br>1                                      |  |
| CI7-BZ#184<br>CI7-BZ#187                  |                                  | ND<br>ND<br>ND  |           | ug/kg<br>ug/kg<br>ug/kg | 0.837<br>0.837<br>0.837           |          | 1<br>1<br>1                                 |  |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 35         |           | 30-150                 |
| Pyrene-d10               | 46         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 48         |           | 30-150                 |
| DBOB                     | 46         |           | 30-150                 |
| BZ 198                   | 45         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-04          |                | Date Collected:   | 09/20/16 13:05 |
| Client ID:         | C-2                  |                | Date Received:    | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 18:57       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 61%                  |                |                   |                |

| Result      | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                       | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nsfield Lab |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ua/ka                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg                                                                                       | 0.788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | ND         ND | nsfield Lab  ND ND ND ND ND 10.4 10.4 11.7 10.4 11.7 ND | ND       ug/kg         10.4       ug/kg         ND       ug/kg | ND         ug/kg         7.88           ND         ug/kg         0.788           ND         ug/kg         0.788           ND         ug/kg         0.788           ND </td <td>nsfield Lab           ND         ug/kg         7.88            10.4         ug/kg         7.88            ND         ug/kg         0.788            ND         ug/kg         0.788        </td> | nsfield Lab           ND         ug/kg         7.88            10.4         ug/kg         7.88            ND         ug/kg         0.788            ND         ug/kg         0.788 |



|                                           |                                  |                 |           |                | 5                                 | Serial_N | o:10271613:37                               |
|-------------------------------------------|----------------------------------|-----------------|-----------|----------------|-----------------------------------|----------|---------------------------------------------|
| Project Name:                             | SRP                              |                 |           |                | Lab Nu                            | mber:    | L1629727                                    |
| Project Number:                           | 23840.003                        |                 |           |                | Report                            | Date:    | 10/27/16                                    |
|                                           |                                  | SAMPL           | E RESULTS | 5              |                                   |          |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-04<br>C-2<br>LITTLE BAY |                 |           |                | Date Col<br>Date Rec<br>Field Pre | eived:   | 09/20/16 13:05<br>09/20/16<br>Not Specified |
| Parameter                                 |                                  | Result          | Qualifier | Units          | RL                                | MDL      | Dilution Factor                             |
| RIM PAHs/PCB Co                           | ongeners by GC/MS                | - Mansfield Lab |           |                |                                   |          |                                             |
| CI7-BZ#170                                |                                  | ND              |           | ug/kg          | 0.788                             |          | 1                                           |
| CI7-BZ#180                                |                                  | ND              |           | ug/kg          | 0.788                             |          | 1                                           |
| CI7-BZ#183                                |                                  | ND              |           | ug/kg          | 0.788                             |          | 1                                           |
| CI7-BZ#184                                |                                  |                 |           |                |                                   |          |                                             |
|                                           |                                  | ND              |           | ug/kg          | 0.788                             |          | 1                                           |
| CI7-BZ#187                                |                                  | ND<br>ND        |           | ug/kg<br>ug/kg | 0.788<br>0.788                    |          | 1                                           |
| CI7-BZ#187<br>CI8-BZ#195                  |                                  |                 |           |                |                                   |          |                                             |
|                                           |                                  | ND              |           | ug/kg          | 0.788                             |          | 1                                           |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 45         |           | 30-150                 |
| Pyrene-d10               | 54         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 57         |           | 30-150                 |
| DBOB                     | 54         |           | 30-150                 |
| BZ 198                   | 56         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-05          |                | Date Collected:   | 09/20/16 13:36 |
| Client ID:         | C-3                  |                | Date Received:    | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 19:27       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 63%                  |                |                   |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 7.63  |     | 1               |
|                             | ND                   |           |       | 7.63  |     | 1               |
| Acenaphthylene              |                      |           | ug/kg |       |     |                 |
| Acenaphthene                | 18.4                 |           | ug/kg | 7.63  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 7.63  |     | 1               |
| Phenanthrene                | 13.5                 |           | ug/kg | 7.63  |     | 1               |
| Anthracene                  | 9.28                 |           | ug/kg | 7.63  |     | 1               |
| Fluoranthene                | 39.4                 |           | ug/kg | 7.63  |     | 1               |
| Pyrene                      | 36.6                 |           | ug/kg | 7.63  |     | 1               |
| Benz(a)anthracene           | 19.8                 |           | ug/kg | 7.63  |     | 1               |
| Chrysene                    | 21.4                 |           | ug/kg | 7.63  |     | 1               |
| Benzo(b)fluoranthene        | 22.6                 |           | ug/kg | 7.63  |     | 1               |
| Benzo(k)fluoranthene        | 20.2                 |           | ug/kg | 7.63  |     | 1               |
| Benzo(a)pyrene              | 23.4                 |           | ug/kg | 7.63  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | 16.5                 |           | ug/kg | 7.63  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 7.63  |     | 1               |
| Benzo(ghi)perylene          | 16.0                 |           | ug/kg | 7.63  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg | 0.763 |     | 1               |
| Cl3-BZ#18                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI4-BZ#52                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.763 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.763 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg | 0.763 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg | 0.763 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg | 0.763 |     | 1               |
|                             | 110                  |           | uging | 0.700 |     | •               |



|                                           |                                  |                 |           |                | 5                                 | Serial_N | p:10271613:37                               |
|-------------------------------------------|----------------------------------|-----------------|-----------|----------------|-----------------------------------|----------|---------------------------------------------|
| Project Name:                             | SRP                              |                 |           |                | Lab Nu                            | mber:    | L1629727                                    |
| Project Number:                           | 23840.003                        |                 |           |                | Report                            | Date:    | 10/27/16                                    |
|                                           |                                  | SAMPL           | E RESULTS | S              |                                   |          |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-05<br>C-3<br>LITTLE BAY |                 |           |                | Date Col<br>Date Rec<br>Field Pre | ceived:  | 09/20/16 13:36<br>09/20/16<br>Not Specified |
| Parameter                                 |                                  | Result          | Qualifier | Units          | RL                                | MDL      | Dilution Factor                             |
| RIM PAHs/PCB Co                           | ongeners by GC/MS                | - Mansfield Lab |           |                |                                   |          |                                             |
| CI7-BZ#170                                |                                  | ND              |           | ug/kg          | 0.763                             |          | 1                                           |
| CI7-BZ#180                                |                                  | ND              |           | ug/kg          | 0.763                             |          | 1                                           |
| CI7-BZ#183                                |                                  | ND              |           | ug/kg          | 0.763                             |          | 1                                           |
| CI7-BZ#184                                |                                  |                 |           |                |                                   |          |                                             |
|                                           |                                  | ND              |           | ug/kg          | 0.763                             |          | 1                                           |
| CI7-BZ#187                                |                                  | ND<br>ND        |           | ug/kg<br>ug/kg | 0.763<br>0.763                    |          | 1                                           |
|                                           |                                  |                 |           |                |                                   |          |                                             |
| CI7-BZ#187                                |                                  | ND              |           | ug/kg          | 0.763                             |          | 1                                           |

| vrene-d10     55     30-150       enzo(b)fluoranthene-d12     57     30-150       BOB     54     30-150 | Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------------------------------------------------------------------------------------------|--------------------------|------------|-----------|------------------------|
| Bonzo(b)fluoranthene-d12         57         30-150           BOB         54         30-150              | 2-Methylnaphthalene-d10  | 44         |           | 30-150                 |
| BOB 54 30-150                                                                                           | Pyrene-d10               | 55         |           | 30-150                 |
|                                                                                                         | Benzo(b)fluoranthene-d12 | 57         |           | 30-150                 |
| Z 198 58 30-150                                                                                         | DBOB                     | 54         |           | 30-150                 |
|                                                                                                         | BZ 198                   | 58         |           | 30-150                 |



| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-06          |                | Date Collected:  | 09/20/16 14:05 |
| Client ID:         | C-4                  |                | Date Received:   | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 19:57       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 65%                  |                |                  |                |

| Parameter                   | Result               | Qualifier | Units          | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|----------------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |                |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg<br>ug/kg | 7.13  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Fluoranthene                | 8.65                 |           |                | 7.13  |     | 1               |
| Pyrene                      | 8.86                 |           | ug/kg          | 7.13  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Chrysene                    | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg          | 7.13  |     | 1               |
|                             | ND                   |           | ug/kg          | 7.13  |     |                 |
| Benzo(a)pyrene              |                      |           | ug/kg          |       |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg          | 7.13  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg          | 0.713 |     | 1               |
| Cl3-BZ#18                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| Cl3-BZ#28                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| Cl4-BZ#49                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI4-BZ#52                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
| CI6-BZ#153                  | ND                   |           | ug/kg          | 0.713 |     | 1               |
|                             |                      |           |                |       |     |                 |

|                                           |                                  |               |           |                | Serial_No:10271613:37             |         |                                             |  |
|-------------------------------------------|----------------------------------|---------------|-----------|----------------|-----------------------------------|---------|---------------------------------------------|--|
| Project Name:                             | SRP                              |               |           |                | Lab Nu                            | mber:   | L1629727                                    |  |
| Project Number:                           | 23840.003                        |               |           |                | Report                            | Date:   | 10/27/16                                    |  |
|                                           |                                  | SAMPI         | E RESULT  | S              |                                   |         |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-06<br>C-4<br>LITTLE BAY |               |           |                | Date Col<br>Date Rec<br>Field Pre | ceived: | 09/20/16 14:05<br>09/20/16<br>Not Specified |  |
| Parameter                                 |                                  | Result        | Qualifier | Units          | RL                                | MDL     | Dilution Factor                             |  |
| RIM PAHs/PCB Co                           | ongeners by GC/MS -              | Mansfield Lab |           |                |                                   |         |                                             |  |
| CI7-BZ#170                                |                                  | ND            |           | ug/kg          | 0.713                             |         | 1                                           |  |
| CI7-BZ#180                                |                                  | ND            |           | ug/kg          | 0.713                             |         | 1                                           |  |
| CI7-BZ#183                                |                                  | ND            |           | ug/kg          | 0.713                             |         | 1                                           |  |
| CI7-BZ#184                                |                                  |               |           |                |                                   |         |                                             |  |
| CI7-BZ#104                                |                                  | ND            |           | ug/kg          | 0.713                             |         | 1                                           |  |
| CI7-BZ#184                                |                                  | ND<br>ND      |           | ug/kg<br>ug/kg | 0.713<br>0.713                    |         | 1                                           |  |
|                                           |                                  |               |           |                |                                   |         |                                             |  |
| CI7-BZ#187                                |                                  | ND            |           | ug/kg          | 0.713                             |         | 1                                           |  |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 65         |           | 30-150                 |
| Pyrene-d10               | 77         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 81         |           | 30-150                 |
| DBOB                     | 78         |           | 30-150                 |
| BZ 198                   | 76         |           | 30-150                 |
|                          |            |           |                        |



|                      |                                                                                                                   | Serial_No                                                                                                         | 5:10271613:37                                                                                                                                                                                                                       |
|----------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SRP                  |                                                                                                                   | Lab Number:                                                                                                       | L1629727                                                                                                                                                                                                                            |
| 23840.003            |                                                                                                                   | Report Date:                                                                                                      | 10/27/16                                                                                                                                                                                                                            |
|                      | SAMPLE RESULTS                                                                                                    |                                                                                                                   |                                                                                                                                                                                                                                     |
| L1629727-07          |                                                                                                                   | Date Collected:                                                                                                   | 09/20/16 10:10                                                                                                                                                                                                                      |
| C-6 (48-61)          |                                                                                                                   | Date Received:                                                                                                    | 09/20/16                                                                                                                                                                                                                            |
| LITTLE BAY           |                                                                                                                   | Field Prep:                                                                                                       | Not Specified                                                                                                                                                                                                                       |
| Sediment             |                                                                                                                   | Extraction Method                                                                                                 | :EPA 3570                                                                                                                                                                                                                           |
| 105,8270D-SIM/680(M) |                                                                                                                   | Extraction Date:                                                                                                  | 09/29/16 18:28                                                                                                                                                                                                                      |
| 10/24/16 20:27       |                                                                                                                   | Cleanup Method:                                                                                                   | EPA 3630                                                                                                                                                                                                                            |
| MS                   |                                                                                                                   | Cleanup Date:                                                                                                     | 10/09/16                                                                                                                                                                                                                            |
| 65%                  |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                     |
|                      |                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                     |
|                      | 23840.003<br>L1629727-07<br>C-6 (48-61)<br>LITTLE BAY<br>Sediment<br>105,8270D-SIM/680(M)<br>10/24/16 20:27<br>MS | 23840.003<br>L1629727-07<br>C-6 (48-61)<br>LITTLE BAY<br>Sediment<br>105,8270D-SIM/680(M)<br>10/24/16 20:27<br>MS | SRPLab Number:23840.003Report Date:SAMPLE RESULTSL1629727-07Date Collected:C-6 (48-61)Date Received:LITTLE BAYField Prep:SedimentExtraction Method:105,8270D-SIM/680(M)Extraction Date:10/24/16 20:27Cleanup Method:MSCleanup Date: |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 7.60  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 7.60  |     | 1               |
| Acenaphthene                | 27.5                 |           | ug/kg | 7.60  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 7.60  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg | 7.60  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 7.60  |     | 1               |
| Fluoranthene                | ND                   |           | ug/kg | 7.60  |     | 1               |
| Pyrene                      | ND                   |           | ug/kg | 7.60  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg | 7.60  |     | 1               |
| Chrysene                    | ND                   |           | ug/kg | 7.60  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg | 7.60  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg | 7.60  |     | 1               |
| Benzo(a)pyrene              | ND                   |           | ug/kg | 7.60  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg | 7.60  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 7.60  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg | 7.60  |     | 1               |
| CI2-BZ#8                    | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| Cl4-BZ#49                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.760 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.760 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg | 0.760 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg | 0.760 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg | 0.760 |     | 1               |
|                             |                      |           |       |       |     |                 |



|                                                      |                     |                      |           |                                  | S                                | Serial_N | o:10271613:37         |  |
|------------------------------------------------------|---------------------|----------------------|-----------|----------------------------------|----------------------------------|----------|-----------------------|--|
| Project Name:                                        | SRP                 |                      |           |                                  | Lab Nu                           | mber:    | L1629727              |  |
| Project Number:                                      | 23840.003           |                      |           |                                  | Report                           | Date:    | 10/27/16              |  |
|                                                      |                     | SAMP                 |           | S                                |                                  |          |                       |  |
| Lab ID:                                              | L1629727-07         |                      |           |                                  | Date Col                         | lected:  | 09/20/16 10:10        |  |
| Client ID:                                           | C-6 (48-61)         |                      |           |                                  | Date Red                         | ceived:  | 09/20/16              |  |
| Sample Location:                                     | LITTLE BAY          |                      |           |                                  | Field Pre                        | p:       | Not Specified         |  |
| Parameter                                            |                     | Result               | Qualifier | Units                            | RL                               | MDL      | Dilution Factor       |  |
| RIM PAHs/PCB Co                                      | ongeners by GC/MS - | Mansfield Lab        |           |                                  |                                  |          |                       |  |
|                                                      |                     |                      |           |                                  |                                  |          |                       |  |
| CI7-B7#170                                           |                     | ND                   |           | ua/ka                            | 0 760                            |          | 1                     |  |
| CI7-BZ#170                                           |                     | ND                   |           | ug/kg                            | 0.760                            |          | 1                     |  |
| CI7-BZ#180                                           |                     | ND                   |           | ug/kg                            | 0.760                            |          | 1                     |  |
|                                                      |                     |                      |           | ug/kg<br>ug/kg                   |                                  |          | 1                     |  |
| CI7-BZ#180<br>CI7-BZ#183                             |                     | ND<br>ND             |           | ug/kg                            | 0.760<br>0.760                   |          | 1<br>1                |  |
| CI7-BZ#180<br>CI7-BZ#183<br>CI7-BZ#184               |                     | ND<br>ND<br>ND       |           | ug/kg<br>ug/kg<br>ug/kg          | 0.760<br>0.760<br>0.760          |          | 1<br>1<br>1           |  |
| CI7-BZ#180<br>CI7-BZ#183<br>CI7-BZ#184<br>CI7-BZ#187 |                     | ND<br>ND<br>ND<br>ND |           | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 0.760<br>0.760<br>0.760<br>0.760 |          | 1<br>1<br>1<br>1<br>1 |  |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 59         |           | 30-150                 |
| Pyrene-d10               | 81         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 86         |           | 30-150                 |
| DBOB                     | 77         |           | 30-150                 |
| BZ 198                   | 79         |           | 30-150                 |
|                          |            |           |                        |



|                    |                      |                | Serial_No        | p:10271613:37  |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-08          |                | Date Collected:  | 09/20/16 12:02 |
| Client ID:         | C-7 (48-54)          |                | Date Received:   | 09/20/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:28 |
| Analytical Date:   | 10/24/16 20:58       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 71%                  |                |                  |                |
|                    |                      |                |                  |                |

| Parameter                           | Result       | Qualifier | Units          | RL    | MDL | Dilution Factor |
|-------------------------------------|--------------|-----------|----------------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by GC/MS - M | ansfield Lab |           |                |       |     |                 |
| Naphthalene                         | ND           |           | ug/kg          | 7.04  |     | 1               |
| Acenaphthylene                      | ND           |           | ug/kg          | 7.04  |     | 1               |
| Acenaphthene                        | ND           |           | ug/kg          | 7.04  |     | 1               |
| Fluorene                            | ND           |           |                | 7.04  |     | 1               |
| Phenanthrene                        | ND           |           | ug/kg<br>ug/kg | 7.04  |     | 1               |
| Anthracene                          | ND           |           | ug/kg          | 7.04  |     | 1               |
| Fluoranthene                        | ND           |           |                | 7.04  |     | 1               |
|                                     | ND           |           | ug/kg          |       |     |                 |
| Pyrene                              | ND           |           | ug/kg          | 7.04  |     | 1               |
| Benz(a)anthracene                   |              |           | ug/kg          |       |     |                 |
|                                     | ND           |           | ug/kg          | 7.04  |     | 1               |
| Benzo(b)fluoranthene                | ND           |           | ug/kg          | 7.04  |     | 1               |
| Benzo(k)fluoranthene                | ND           |           | ug/kg          | 7.04  |     | 1               |
| Benzo(a)pyrene                      | ND           |           | ug/kg          | 7.04  |     | 1               |
| Indeno(1,2,3-cd)Pyrene              | ND           |           | ug/kg          | 7.04  |     | 1               |
| Dibenz(a,h)anthracene               | ND           |           | ug/kg          | 7.04  |     | 1               |
| Benzo(ghi)perylene                  | ND           |           | ug/kg          | 7.04  |     | 1               |
| CI2-BZ#8                            | 1.10         |           | ug/kg          | 0.704 |     | 1               |
| CI3-BZ#18                           | 1.16         |           | ug/kg          | 0.704 |     | 1               |
| Cl3-BZ#28                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| Cl4-BZ#44                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| Cl4-BZ#49                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI4-BZ#52                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI4-BZ#66                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI5-BZ#87                           | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI5-BZ#101                          | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI5-BZ#105                          | ND           |           | ug/kg          | 0.704 |     | 1               |
| CI5-BZ#118                          | ND           |           | ug/kg          | 0.704 |     | 1               |
| Cl6-BZ#128                          | ND           |           | ug/kg          | 0.704 |     | 1               |
| Cl6-BZ#138                          | ND           |           | ug/kg          | 0.704 |     | 1               |
|                                     |              |           | ug/kg          | 0.704 |     |                 |



|                                                      |                     |                      |           |                                  | :                                | Serial_N | o:10271613:37         |  |
|------------------------------------------------------|---------------------|----------------------|-----------|----------------------------------|----------------------------------|----------|-----------------------|--|
| Project Name:                                        | SRP                 |                      |           |                                  | Lab Nu                           | mber:    | L1629727              |  |
| Project Number:                                      | 23840.003           |                      |           |                                  | Report                           | Date:    | 10/27/16              |  |
|                                                      |                     | SAMP                 |           | S                                |                                  |          |                       |  |
| Lab ID:                                              | L1629727-08         |                      |           |                                  | Date Col                         | lected:  | 09/20/16 12:02        |  |
| Client ID:                                           | C-7 (48-54)         |                      |           |                                  | Date Ree                         | ceived:  | 09/20/16              |  |
| Sample Location:                                     | LITTLE BAY          |                      |           |                                  | Field Pre                        | ep:      | Not Specified         |  |
| Parameter                                            |                     | Result               | Qualifier | Units                            | RL                               | MDL      | Dilution Factor       |  |
| RIM PAHs/PCB Co                                      | ongeners by GC/MS - | Mansfield Lab        |           |                                  |                                  |          |                       |  |
|                                                      |                     |                      |           |                                  |                                  |          |                       |  |
| CI7-BZ#170                                           |                     | ND                   |           | ua/ka                            | 0.704                            |          | 1                     |  |
| CI7-BZ#170                                           |                     | ND<br>ND             |           | ug/kg                            | 0.704                            |          | 1                     |  |
| CI7-BZ#170<br>CI7-BZ#180<br>CI7-BZ#183               |                     | ND<br>ND<br>ND       |           | ug/kg                            | 0.704<br>0.704<br>0.704          |          | 1<br>1<br>1           |  |
| CI7-BZ#180                                           |                     | ND                   |           | ug/kg<br>ug/kg                   | 0.704                            |          | 1                     |  |
| CI7-BZ#180<br>CI7-BZ#183                             |                     | ND<br>ND             |           | ug/kg                            | 0.704<br>0.704                   |          | 1                     |  |
| CI7-BZ#180<br>CI7-BZ#183<br>CI7-BZ#184               |                     | ND<br>ND<br>ND       |           | ug/kg<br>ug/kg<br>ug/kg          | 0.704<br>0.704<br>0.704          |          | 1<br>1<br>1           |  |
| CI7-BZ#180<br>CI7-BZ#183<br>CI7-BZ#184<br>CI7-BZ#187 |                     | ND<br>ND<br>ND<br>ND |           | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 0.704<br>0.704<br>0.704<br>0.704 |          | 1<br>1<br>1<br>1<br>1 |  |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 59         |           | 30-150                 |
| Pyrene-d10               | 74         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 77         |           | 30-150                 |
| DBOB                     | 73         |           | 30-150                 |
| BZ 198                   | 75         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-09          |                | Date Collected:  | 09/21/16 08:35 |
| Client ID:         | C-5                  |                | Date Received:   | 09/21/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:30 |
| Analytical Date:   | 10/24/16 21:28       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 68%                  |                |                  |                |

| Parameter                   | Result               | Qualifier | Units          | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|----------------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |                |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg<br>ug/kg | 7.22  |     | 1               |
| Fluorene                    | ND                   |           |                | 7.22  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg          | 7.22  |     | 1               |
|                             |                      |           | ug/kg          |       |     |                 |
| Anthracene                  | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Fluoranthene                | 12.8                 |           | ug/kg          | 7.22  |     | 1               |
| Pyrene                      | 11.8                 |           | ug/kg          | 7.22  |     | 1               |
| Benz(a)anthracene           | 9.22                 |           | ug/kg          | 7.22  |     | 1               |
| Chrysene                    | 7.71                 |           | ug/kg          | 7.22  |     | 1               |
| Benzo(b)fluoranthene        | 7.35                 |           | ug/kg          | 7.22  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Benzo(a)pyrene              | 8.55                 |           | ug/kg          | 7.22  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg          | 7.22  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg          | 7.22  |     | 1               |
| CI2-BZ#8                    | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg          | 0.722 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg          | 0.722 |     | 1               |
| Cl5-BZ#118                  | ND                   |           | ug/kg          | 0.722 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg          | 0.722 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg          | 0.722 |     | 1               |
| Cl6-BZ#153                  | ND                   |           |                | 0.722 |     | 1               |
|                             | UND.                 |           | ug/kg          | 0.722 |     |                 |

|                                           |                                  |               |           |       | 5                                 | Serial_N | o:10271613:37                               |
|-------------------------------------------|----------------------------------|---------------|-----------|-------|-----------------------------------|----------|---------------------------------------------|
| Project Name:                             | SRP                              |               |           |       | Lab Nu                            | mber:    | L1629727                                    |
| Project Number:                           | 23840.003                        |               |           |       | Report                            | Date:    | 10/27/16                                    |
|                                           |                                  | SAMP          |           | 6     |                                   |          |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-09<br>C-5<br>LITTLE BAY |               |           |       | Date Col<br>Date Rec<br>Field Pre | ceived:  | 09/21/16 08:35<br>09/21/16<br>Not Specified |
| Parameter                                 |                                  | Result        | Qualifier | Units | RL                                | MDL      | Dilution Factor                             |
| RIM PAHs/PCB Co                           | ongeners by GC/MS - I            | Mansfield Lab |           |       |                                   |          |                                             |
| CI7-BZ#170                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI7-BZ#180                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI7-BZ#183                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI7-BZ#184                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI7-BZ#187                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI8-BZ#195                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI9-BZ#206                                |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |
| CI10-BZ#209                               |                                  | ND            |           | ug/kg | 0.722                             |          | 1                                           |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 53         |           | 30-150                 |
| Pyrene-d10               | 65         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 69         |           | 30-150                 |
| DBOB                     | 62         |           | 30-150                 |
| BZ 198                   | 66         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:      | L1629727       |
|--------------------|----------------------|----------------|------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:     | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-10          |                | Date Collected:  | 09/21/16 13:00 |
| Client ID:         | C-8                  |                | Date Received:   | 09/21/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Metho | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date: | 09/29/16 18:30 |
| Analytical Date:   | 10/24/16 21:58       |                | Cleanup Method:  | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:    | 10/09/16       |
| Percent Solids:    | 70%                  |                |                  |                |
|                    |                      |                |                  |                |

| Parameter                   | Result               | Qualifier | Units          | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|----------------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |                |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Acenaphthylene              | 11.0                 |           | ug/kg          | 6.76  |     | 1               |
| Acenaphthene                | 11.0                 |           | ug/kg          | 6.76  |     | 1               |
| Fluorene                    | 13.0                 |           | ug/kg<br>ug/kg | 6.76  |     | 1               |
| Phenanthrene                | 9.37                 |           | ug/kg<br>ug/kg | 6.76  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Fluoranthene                | 10.1                 |           | ug/kg          | 6.76  |     | 1               |
| Pyrene                      | 10.2                 |           |                | 6.76  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg<br>ug/kg | 6.76  |     | 1               |
| Chrysene                    | ND                   |           |                | 6.76  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Benzo(a)pyrene              | ND                   |           | ug/kg          | 6.76  |     | 1               |
|                             |                      |           | ug/kg          |       |     |                 |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg          | 6.76  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI6-BZ#128                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI6-BZ#138                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
| CI6-BZ#153                  | ND                   |           | ug/kg          | 0.676 |     | 1               |
|                             |                      |           |                |       |     |                 |



|                                           |                                  |               |           |                | Ś                                 | Serial_N | o:10271613:37                               |
|-------------------------------------------|----------------------------------|---------------|-----------|----------------|-----------------------------------|----------|---------------------------------------------|
| Project Name:                             | SRP                              |               |           |                | Lab Nu                            | mber:    | L1629727                                    |
| Project Number:                           | 23840.003                        |               |           |                | Report                            | Date:    | 10/27/16                                    |
|                                           |                                  | SAMP          |           | 5              |                                   |          |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-10<br>C-8<br>LITTLE BAY |               |           |                | Date Col<br>Date Rec<br>Field Pre | ceived:  | 09/21/16 13:00<br>09/21/16<br>Not Specified |
| Parameter                                 |                                  | Result        | Qualifier | Units          | RL                                | MDL      | Dilution Factor                             |
| RIM PAHs/PCB Co                           | ongeners by GC/MS -              | Mansfield Lab |           |                |                                   |          |                                             |
| CI7-BZ#170                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
| CI7-BZ#180                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
| CI7-BZ#183                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
| CI7-BZ#184                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
| CI7-BZ#187                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
|                                           |                                  |               |           |                | 0.070                             |          |                                             |
| CI8-BZ#195                                |                                  | ND            |           | ug/kg          | 0.676                             |          | 1                                           |
| CI8-BZ#195<br>CI9-BZ#206                  |                                  | ND<br>ND      |           | ug/kg<br>ug/kg | 0.676                             |          | 1                                           |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 73         |           | 30-150                 |
| Pyrene-d10               | 84         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 88         |           | 30-150                 |
| DBOB                     | 92         |           | 30-150                 |
| BZ 198                   | 90         |           | 30-150                 |
|                          |            |           |                        |



|                    |                      |                | Serial_No         | 0:10271613:37  |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-11          |                | Date Collected:   | 09/21/16 11:45 |
| Client ID:         | C-9                  |                | Date Received:    | 09/21/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:30 |
| Analytical Date:   | 10/24/16 22:28       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 82%                  |                | -                 |                |
|                    |                      |                |                   |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 5.87  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 5.87  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg | 5.87  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 5.87  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg | 5.87  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 5.87  |     | 1               |
| Fluoranthene                | ND                   |           | ug/kg | 5.87  |     | 1               |
| Pyrene                      | ND                   |           | ug/kg | 5.87  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg | 5.87  |     | 1               |
| Chrysene                    | ND                   |           | ug/kg | 5.87  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg | 5.87  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg | 5.87  |     | 1               |
| Benzo(a)pyrene              | ND                   |           | ug/kg | 5.87  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | ND                   |           | ug/kg | 5.87  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 5.87  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg | 5.87  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| Cl4-BZ#44                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI6-BZ#128                  | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI6-BZ#138                  | ND                   |           | ug/kg | 0.587 |     | 1               |
| CI6-BZ#153                  | ND                   |           | ug/kg | 0.587 |     | 1               |
|                             |                      |           |       |       |     |                 |



|                  |                   |                 |           |       | S         | Serial_N | o:10271613:37   |
|------------------|-------------------|-----------------|-----------|-------|-----------|----------|-----------------|
| Project Name:    | SRP               |                 |           |       | Lab Nu    | mber:    | L1629727        |
| Project Number:  | 23840.003         |                 |           |       | Report    | Date:    | 10/27/16        |
|                  |                   | SAMPI           |           | 5     |           |          |                 |
| Lab ID:          | L1629727-11       |                 |           |       | Date Col  | lected:  | 09/21/16 11:45  |
| Client ID:       | C-9               |                 |           |       | Date Red  | ceived:  | 09/21/16        |
| Sample Location: | LITTLE BAY        |                 |           |       | Field Pre | p:       | Not Specified   |
| Parameter        |                   | Result          | Qualifier | Units | RL        | MDL      | Dilution Factor |
| RIM PAHs/PCB Co  | ongeners by GC/MS | - Mansfield Lab |           |       |           |          |                 |
| CI7-BZ#170       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
| CI7-BZ#180       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
| CI7-BZ#183       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
| CI7-BZ#184       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
| CI7-BZ#187       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
| CI8-BZ#195       |                   | ND              |           | ug/kg | 0.587     |          | 1               |
|                  |                   |                 |           |       |           |          |                 |
| CI9-BZ#206       |                   | ND              |           | ug/kg | 0.587     |          | 1               |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 61         |           | 30-150                 |
| Pyrene-d10               | 80         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 85         |           | 30-150                 |
| DBOB                     | 81         |           | 30-150                 |
| BZ 198                   | 86         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-12          |                | Date Collected:   | 09/21/16 12:20 |
| Client ID:         | C-10                 |                | Date Received:    | 09/21/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:30 |
| Analytical Date:   | 10/24/16 22:59       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 79%                  |                |                   |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 6.25  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 6.25  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg | 6.25  |     | 1               |
| Fluorene                    | ND                   |           | ug/kg | 6.25  |     | 1               |
| Phenanthrene                | ND                   |           | ug/kg | 6.25  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 6.25  |     | 1               |
| Fluoranthene                | ND                   |           | ug/kg | 6.25  |     | 1               |
| Pyrene                      | ND                   |           | ug/kg | 6.25  |     | 1               |
| Benz(a)anthracene           | ND                   |           | ug/kg | 6.25  |     | 1               |
| Chrysene                    | ND                   |           | ug/kg | 6.25  |     | 1               |
| Benzo(b)fluoranthene        | ND                   |           | ug/kg | 6.25  |     | 1               |
| Benzo(k)fluoranthene        | ND                   |           | ug/kg | 6.25  |     | 1               |
| Benzo(a)pyrene              | ND                   |           | ug/kg | 6.25  |     | 1               |
| ndeno(1,2,3-cd)Pyrene       | ND                   |           | ug/kg | 6.25  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 6.25  |     | 1               |
| Benzo(ghi)perylene          | ND                   |           | ug/kg | 6.25  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl3-BZ#18                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| CI3-BZ#28                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl4-BZ#44                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl4-BZ#49                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl4-BZ#52                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl4-BZ#66                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.625 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.625 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.625 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl6-BZ#138                  | ND                   |           | ug/kg | 0.625 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg | 0.625 |     | 1               |
|                             |                      |           |       |       |     |                 |



|                  |                     |               |           |       | ;         | Serial_N | 0:10271613:37   |
|------------------|---------------------|---------------|-----------|-------|-----------|----------|-----------------|
| Project Name:    | SRP                 |               |           |       | Lab Nu    | mber:    | L1629727        |
| Project Number:  | 23840.003           |               |           |       | Report    | Date:    | 10/27/16        |
|                  |                     | SAMP          |           | S     |           |          |                 |
| Lab ID:          | L1629727-12         |               |           |       | Date Col  | lected:  | 09/21/16 12:20  |
| Client ID:       | C-10                |               |           |       | Date Ree  | ceived:  | 09/21/16        |
| Sample Location: | LITTLE BAY          |               |           |       | Field Pre | p:       | Not Specified   |
| Parameter        |                     | Result        | Qualifier | Units | RL        | MDL      | Dilution Factor |
| RIM PAHs/PCB Co  | ongeners by GC/MS - | Mansfield Lab |           |       |           |          |                 |
| CI7-BZ#170       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| CI7-BZ#180       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| CI7-BZ#183       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| CI7-BZ#184       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| CI7-BZ#187       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| CI8-BZ#195       |                     | ND            |           | ug/kg | 0.625     |          | 1               |
| 010 02#100       |                     | ND            |           | uy/ky | 0.020     |          | •               |
| CI9-BZ#206       |                     | ND            |           | ug/kg | 0.625     |          | 1               |

| % Recovery | Qualifier            | Acceptance<br>Criteria |
|------------|----------------------|------------------------|
| 56         |                      | 30-150                 |
| 77         |                      | 30-150                 |
| 83         |                      | 30-150                 |
| 77         |                      | 30-150                 |
| 81         |                      | 30-150                 |
|            | 56<br>77<br>83<br>77 | 56<br>77<br>83<br>77   |



|                      |                                                                                                                 | Serial_No                                                                                                            | :10271613:37                                                                                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP                   |                                                                                                                 | Lab Number:                                                                                                          | L1629727                                                                                                                                                                                                                                     |
| 3840.003             |                                                                                                                 | Report Date:                                                                                                         | 10/27/16                                                                                                                                                                                                                                     |
|                      | SAMPLE RESULTS                                                                                                  |                                                                                                                      |                                                                                                                                                                                                                                              |
| L1629727-13          |                                                                                                                 | Date Collected:                                                                                                      | 09/21/16 09:03                                                                                                                                                                                                                               |
| C-11 (0-48)          |                                                                                                                 | Date Received:                                                                                                       | 09/21/16                                                                                                                                                                                                                                     |
| LITTLE BAY           |                                                                                                                 | Field Prep:                                                                                                          | Not Specified                                                                                                                                                                                                                                |
| Sediment             |                                                                                                                 | Extraction Method                                                                                                    | EPA 3570                                                                                                                                                                                                                                     |
| 105,8270D-SIM/680(M) |                                                                                                                 | Extraction Date:                                                                                                     | 09/29/16 18:30                                                                                                                                                                                                                               |
| 10/24/16 23:30       |                                                                                                                 | Cleanup Method:                                                                                                      | EPA 3630                                                                                                                                                                                                                                     |
| MS                   |                                                                                                                 | Cleanup Date:                                                                                                        | 10/09/16                                                                                                                                                                                                                                     |
| 69%                  |                                                                                                                 | -                                                                                                                    |                                                                                                                                                                                                                                              |
|                      |                                                                                                                 |                                                                                                                      |                                                                                                                                                                                                                                              |
|                      | 2840.003<br>21629727-13<br>2-11 (0-48)<br>LITTLE BAY<br>Sediment<br>105,8270D-SIM/680(M)<br>0/24/16 23:30<br>MS | SAMPLE RESULTS<br>1629727-13<br>C-11 (0-48)<br>.ITTLE BAY<br>Sediment<br>105,8270D-SIM/680(M)<br>0/24/16 23:30<br>MS | RPLab Number:8840.003Report Date:SAMPLE RESULTSDate Collected:1629727-13Date Collected:C-11 (0-48)Date Received:ITTLE BAYField Prep:SedimentExtraction Method105,8270D-SIM/680(M)Extraction Date:0/24/16 23:30Cleanup Method:MSCleanup Date: |

| Result       | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dilution Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| insfield Lab |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ua/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | ND         ND         ND         ND         ND         10.7         ND         20.4         28.6         16.4         19.6         19.0         22.6         18.8         ND         19.3         ND         ND <td< td=""><td>ND         ND         ND         ND         10.7         ND         20.4         28.6         16.4         14.8         19.6         19.0         22.6         18.8         ND         19.3         ND         ND      <tr td=""></tr></td><td>ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           10.7         ug/kg           ND         ug/kg           20.4         ug/kg           28.6         ug/kg           16.4         ug/kg           19.6         ug/kg           19.6         ug/kg           18.8         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           19.6         ug/kg           ND         ug/</td><td>ND         ug/kg         7.21           ND         ug/kg         7.21           10.7         ug/kg         7.21           ND         ug/kg         7.21           20.4         ug/kg         7.21           28.6         ug/kg         7.21           16.4         ug/kg         7.21           19.6         ug/kg         7.21           19.6         ug/kg         7.21           19.6         ug/kg         7.21           19.0         ug/kg         7.21           ND         ug/kg         7.21           ND         ug/kg         0.721           ND         ug/kg         0.721           ND         ug/kg         0.721</td><td>ND         ug/kg         7.21            ND         ug/kg         7.21            10.7         ug/kg         7.21            20.4         ug/kg         7.21            28.6         ug/kg         7.21            16.4         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.3         ug/kg         7.21            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg</td></td<> | ND         ND         ND         ND         10.7         ND         20.4         28.6         16.4         14.8         19.6         19.0         22.6         18.8         ND         19.3         ND         ND <tr td=""></tr> | ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           10.7         ug/kg           ND         ug/kg           20.4         ug/kg           28.6         ug/kg           16.4         ug/kg           19.6         ug/kg           19.6         ug/kg           18.8         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           ND         ug/kg           19.6         ug/kg           ND         ug/ | ND         ug/kg         7.21           10.7         ug/kg         7.21           ND         ug/kg         7.21           20.4         ug/kg         7.21           28.6         ug/kg         7.21           16.4         ug/kg         7.21           19.6         ug/kg         7.21           19.6         ug/kg         7.21           19.6         ug/kg         7.21           19.0         ug/kg         7.21           ND         ug/kg         7.21           ND         ug/kg         0.721           ND         ug/kg         0.721           ND         ug/kg         0.721 | ND         ug/kg         7.21            10.7         ug/kg         7.21            20.4         ug/kg         7.21            28.6         ug/kg         7.21            16.4         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.6         ug/kg         7.21            19.3         ug/kg         7.21            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg         0.721            ND         ug/kg |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|                                           |                                          |               |           |       | \$                                | Serial_N | o:10271613:37                               |
|-------------------------------------------|------------------------------------------|---------------|-----------|-------|-----------------------------------|----------|---------------------------------------------|
| Project Name:                             | SRP                                      |               |           |       | Lab Nu                            | mber:    | L1629727                                    |
| Project Number:                           | 23840.003                                |               |           |       | Report                            | Date:    | 10/27/16                                    |
|                                           |                                          | SAMP          |           | 6     |                                   |          |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L1629727-13<br>C-11 (0-48)<br>LITTLE BAY |               |           |       | Date Col<br>Date Rec<br>Field Pre | ceived:  | 09/21/16 09:03<br>09/21/16<br>Not Specified |
| Parameter                                 |                                          | Result        | Qualifier | Units | RL                                | MDL      | Dilution Factor                             |
| RIM PAHs/PCB Co                           | ongeners by GC/MS -                      | Mansfield Lab |           |       |                                   |          |                                             |
| CI7-BZ#170                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI7-BZ#180                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI7-BZ#183                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI7-BZ#184                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI7-BZ#187                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI8-BZ#195                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI9-BZ#206                                |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |
| CI10-BZ#209                               |                                          | ND            |           | ug/kg | 0.721                             |          | 1                                           |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 55         |           | 30-150                 |
| Pyrene-d10               | 71         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 75         |           | 30-150                 |
| DBOB                     | 72         |           | 30-150                 |
| BZ 198                   | 76         |           | 30-150                 |
|                          |            |           |                        |



| Project Name:      | SRP                  |                | Lab Number:       | L1629727       |
|--------------------|----------------------|----------------|-------------------|----------------|
| Project Number:    | 23840.003            |                | Report Date:      | 10/27/16       |
|                    |                      | SAMPLE RESULTS |                   |                |
| Lab ID:            | L1629727-14          |                | Date Collected:   | 09/21/16 08:44 |
| Client ID:         | C-12                 |                | Date Received:    | 09/21/16       |
| Sample Location:   | LITTLE BAY           |                | Field Prep:       | Not Specified  |
| Matrix:            | Sediment             |                | Extraction Method | d:EPA 3570     |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:  | 09/29/16 18:30 |
| Analytical Date:   | 10/25/16 00:00       |                | Cleanup Method:   | EPA 3630       |
| Analyst:           | MS                   |                | Cleanup Date:     | 10/09/16       |
| Percent Solids:    | 75%                  |                |                   |                |

| Parameter                   | Result               | Qualifier | Units | RL    | MDL | Dilution Factor |
|-----------------------------|----------------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by G | C/MS - Mansfield Lab |           |       |       |     |                 |
| Naphthalene                 | ND                   |           | ug/kg | 6.48  |     | 1               |
| Acenaphthylene              | ND                   |           | ug/kg | 6.48  |     | 1               |
| Acenaphthene                | ND                   |           | ug/kg | 6.48  |     | 1               |
| Fluorene                    | 6.75                 |           |       | 6.48  |     | 1               |
| Phenanthrene                | 11.9                 |           | ug/kg | 6.48  |     | 1               |
| Anthracene                  | ND                   |           | ug/kg | 6.48  |     | 1               |
| Fluoranthene                | 19.7                 |           | ug/kg | 6.48  |     | 1               |
|                             |                      |           | ug/kg |       |     |                 |
| Pyrene                      | 20.7                 |           | ug/kg | 6.48  |     | 1               |
| Benz(a)anthracene           |                      |           | ug/kg | 6.48  |     |                 |
|                             | 14.8                 |           | ug/kg | 6.48  |     | 1               |
| Benzo(b)fluoranthene        |                      |           | ug/kg | 6.48  |     | 1               |
| Benzo(k)fluoranthene        | 13.8                 |           | ug/kg | 6.48  |     | 1               |
| Benzo(a)pyrene              | 16.8                 |           | ug/kg | 6.48  |     | 1               |
| Indeno(1,2,3-cd)Pyrene      | 11.4                 |           | ug/kg | 6.48  |     | 1               |
| Dibenz(a,h)anthracene       | ND                   |           | ug/kg | 6.48  |     | 1               |
| Benzo(ghi)perylene          | 11.0                 |           | ug/kg | 6.48  |     | 1               |
| Cl2-BZ#8                    | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI3-BZ#18                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| Cl3-BZ#28                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI4-BZ#44                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI4-BZ#49                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI4-BZ#52                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI4-BZ#66                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI5-BZ#87                   | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI5-BZ#101                  | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI5-BZ#105                  | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI5-BZ#118                  | ND                   |           | ug/kg | 0.648 |     | 1               |
| Cl6-BZ#128                  | ND                   |           | ug/kg | 0.648 |     | 1               |
| CI6-BZ#138                  | ND                   |           | ug/kg | 0.648 |     | 1               |
| Cl6-BZ#153                  | ND                   |           | ug/kg | 0.648 |     | 1               |
|                             |                      |           |       |       |     |                 |



|                                        |                     |                |           |                         | Ş                       | Serial_N | o:10271613:37   |
|----------------------------------------|---------------------|----------------|-----------|-------------------------|-------------------------|----------|-----------------|
| Project Name:                          | SRP                 |                |           |                         | Lab Nu                  | mber:    | L1629727        |
| Project Number:                        | 23840.003           |                |           |                         | Report                  | Date:    | 10/27/16        |
|                                        |                     | SAMP           |           | S                       |                         |          |                 |
| Lab ID:                                | L1629727-14         |                |           |                         | Date Col                | lected:  | 09/21/16 08:44  |
| Client ID:                             | C-12                |                |           |                         | Date Red                | ceived:  | 09/21/16        |
| Sample Location:                       | LITTLE BAY          |                |           |                         | Field Pre               | ep:      | Not Specified   |
| Parameter                              |                     | Result         | Qualifier | Units                   | RL                      | MDL      | Dilution Factor |
| RIM PAHs/PCB Co                        | ongeners by GC/MS - | Mansfield Lab  |           |                         |                         |          |                 |
| CI7-BZ#170                             |                     | ND             |           | ug/kg                   | 0.648                   |          | 1               |
|                                        |                     |                |           |                         |                         |          |                 |
| CI7-BZ#180                             |                     | ND             |           | ug/kg                   | 0.648                   |          | 1               |
| CI7-BZ#180<br>CI7-BZ#183               |                     | ND<br>ND       |           | ug/kg<br>ug/kg          | 0.648<br>0.648          |          | 1               |
|                                        |                     |                |           |                         |                         |          |                 |
| CI7-BZ#183                             |                     | ND             |           | ug/kg                   | 0.648                   |          | 1               |
| CI7-BZ#183<br>CI7-BZ#184               |                     | ND<br>ND       |           | ug/kg<br>ug/kg          | 0.648<br>0.648          |          | 1<br>1          |
| CI7-BZ#183<br>CI7-BZ#184<br>CI7-BZ#187 |                     | ND<br>ND<br>ND |           | ug/kg<br>ug/kg<br>ug/kg | 0.648<br>0.648<br>0.648 |          | 1<br>1<br>1     |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 49         |           | 30-150                 |
| Pyrene-d10               | 69         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 75         |           | 30-150                 |
| DBOB                     | 71         |           | 30-150                 |
| BZ 198                   | 76         |           | 30-150                 |
|                          |            |           |                        |



|                    |                      |                | Serial_No:10271613:37 |                |  |  |
|--------------------|----------------------|----------------|-----------------------|----------------|--|--|
| Project Name:      | SRP                  |                | Lab Number:           | L1629727       |  |  |
| Project Number:    | 23840.003            |                | Report Date:          | 10/27/16       |  |  |
|                    |                      | SAMPLE RESULTS |                       |                |  |  |
| Lab ID:            | L1629727-15          |                | Date Collected:       | 09/21/16 09:03 |  |  |
| Client ID:         | C-11 (48-89)         |                | Date Received:        | 09/21/16       |  |  |
| Sample Location:   | LITTLE BAY           |                | Field Prep:           | Not Specified  |  |  |
| Matrix:            | Sediment             |                | Extraction Metho      | d:EPA 3570     |  |  |
| Analytical Method: | 105,8270D-SIM/680(M) |                | Extraction Date:      | 09/29/16 18:30 |  |  |
| Analytical Date:   | 10/25/16 00:30       |                | Cleanup Method:       | EPA 3630       |  |  |
| Analyst:           | MS                   |                | Cleanup Date:         | 10/09/16       |  |  |
| Percent Solids:    | 67%                  |                |                       |                |  |  |
|                    |                      |                |                       |                |  |  |

| Parameter                           | Result        | Qualifier | Units | RL    | MDL | Dilution Factor |
|-------------------------------------|---------------|-----------|-------|-------|-----|-----------------|
| RIM PAHs/PCB Congeners by GC/MS - M | Mansfield Lab |           |       |       |     |                 |
| Naphthalene                         | ND            |           | ug/kg | 6.85  |     | 1               |
| Acenaphthylene                      | ND            |           |       | 6.85  |     | 1               |
|                                     |               |           | ug/kg |       |     |                 |
| Acenaphthene                        | ND            |           | ug/kg | 6.85  |     | 1               |
| Fluorene                            | ND            |           | ug/kg | 6.85  |     | 1               |
| Phenanthrene                        | ND            |           | ug/kg | 6.85  |     | 1               |
| Anthracene                          | ND            |           | ug/kg | 6.85  |     | 1               |
| Fluoranthene                        | ND            |           | ug/kg | 6.85  |     | 1               |
| Pyrene                              | ND            |           | ug/kg | 6.85  |     | 1               |
| Benz(a)anthracene                   | ND            |           | ug/kg | 6.85  |     | 1               |
| Chrysene                            | ND            |           | ug/kg | 6.85  |     | 1               |
| Benzo(b)fluoranthene                | ND            |           | ug/kg | 6.85  |     | 1               |
| Benzo(k)fluoranthene                | ND            |           | ug/kg | 6.85  |     | 1               |
| Benzo(a)pyrene                      | ND            |           | ug/kg | 6.85  |     | 1               |
| Indeno(1,2,3-cd)Pyrene              | ND            |           | ug/kg | 6.85  |     | 1               |
| Dibenz(a,h)anthracene               | ND            |           | ug/kg | 6.85  |     | 1               |
| Benzo(ghi)perylene                  | ND            |           | ug/kg | 6.85  |     | 1               |
| CI2-BZ#8                            | ND            |           | ug/kg | 0.685 |     | 1               |
| CI3-BZ#18                           | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl3-BZ#28                           | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl4-BZ#44                           | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl4-BZ#49                           | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl4-BZ#52                           | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl4-BZ#66                           | ND            |           | ug/kg | 0.685 |     | 1               |
| CI5-BZ#87                           | ND            |           | ug/kg | 0.685 |     | 1               |
| CI5-BZ#101                          | ND            |           | ug/kg | 0.685 |     | 1               |
| CI5-BZ#105                          | ND            |           | ug/kg | 0.685 |     | 1               |
| CI5-BZ#118                          | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl6-BZ#128                          | ND            |           | ug/kg | 0.685 |     | 1               |
| Cl6-BZ#138                          | ND            |           | ug/kg | 0.685 |     | 1               |
|                                     |               |           | 0.0   |       |     |                 |



|                  |                       |               |           |       | Ş         | Serial_N | o:10271613:37   |
|------------------|-----------------------|---------------|-----------|-------|-----------|----------|-----------------|
| Project Name:    | SRP                   |               |           |       | Lab Nu    | mber:    | L1629727        |
| Project Number:  | 23840.003             |               |           |       | Report    | Date:    | 10/27/16        |
|                  |                       | SAMP          |           | 5     |           |          |                 |
| Lab ID:          | L1629727-15           |               |           |       | Date Col  | lected:  | 09/21/16 09:03  |
| Client ID:       | C-11 (48-89)          |               |           |       | Date Red  | ceived:  | 09/21/16        |
| Sample Location: | LITTLE BAY            |               |           |       | Field Pre | ep:      | Not Specified   |
| Parameter        |                       | Result        | Qualifier | Units | RL        | MDL      | Dilution Factor |
| RIM PAHs/PCB Co  | ongeners by GC/MS - I | Mansfield Lab |           |       |           |          |                 |
| CI7-BZ#170       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| CI7-BZ#180       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| CI7-BZ#183       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| CI7-BZ#184       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| CI7-BZ#187       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| Cl8-BZ#195       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| Cl9-BZ#206       |                       | ND            |           | ug/kg | 0.685     |          | 1               |
| CI10-BZ#209      |                       | ND            |           | ug/kg | 0.685     |          | 1               |

| Surrogate                | % Recovery | Qualifier | Acceptance<br>Criteria |
|--------------------------|------------|-----------|------------------------|
| 2-Methylnaphthalene-d10  | 51         |           | 30-150                 |
| Pyrene-d10               | 64         |           | 30-150                 |
| Benzo(b)fluoranthene-d12 | 70         |           | 30-150                 |
| DBOB                     | 64         |           | 30-150                 |
| BZ 198                   | 66         |           | 30-150                 |
|                          |            |           |                        |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

Project Name: SRP

**Project Number:** 23840.003

#### Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:10/24/16 13:01Analyst:MS

Extraction Method:EPA 3570Extraction Date:09/29/16 18:28Cleanup Method:EPA 3630Cleanup Date:10/09/16

| Parameter                      | Result   | Qualifier     | Units        | RL    | MDL               |
|--------------------------------|----------|---------------|--------------|-------|-------------------|
| RIM PAHs/PCB Congeners by GC/M | S - Mans | field Lab for | r sample(s): | 01-15 | Batch: WG937275-1 |
| Naphthalene                    | ND       |               | ug/kg        | 5.00  |                   |
| Acenaphthylene                 | ND       |               | ug/kg        | 5.00  |                   |
| Acenaphthene                   | ND       |               | ug/kg        | 5.00  |                   |
| Fluorene                       | ND       |               | ug/kg        | 5.00  |                   |
| Phenanthrene                   | ND       |               | ug/kg        | 5.00  |                   |
| Anthracene                     | ND       |               | ug/kg        | 5.00  |                   |
| Fluoranthene                   | ND       |               | ug/kg        | 5.00  |                   |
| Pyrene                         | ND       |               | ug/kg        | 5.00  |                   |
| Benz(a)anthracene              | ND       |               | ug/kg        | 5.00  |                   |
| Chrysene                       | ND       |               | ug/kg        | 5.00  |                   |
| Benzo(b)fluoranthene           | ND       |               | ug/kg        | 5.00  |                   |
| Benzo(k)fluoranthene           | ND       |               | ug/kg        | 5.00  |                   |
| Benzo(a)pyrene                 | ND       |               | ug/kg        | 5.00  |                   |
| Indeno(1,2,3-cd)Pyrene         | ND       |               | ug/kg        | 5.00  |                   |
| Dibenz(a,h)anthracene          | ND       |               | ug/kg        | 5.00  |                   |
| Benzo(ghi)perylene             | ND       |               | ug/kg        | 5.00  |                   |
| CI2-BZ#8                       | ND       |               | ug/kg        | 0.500 |                   |
| CI3-BZ#18                      | ND       |               | ug/kg        | 0.500 |                   |
| CI3-BZ#28                      | ND       |               | ug/kg        | 0.500 |                   |
| CI4-BZ#44                      | ND       |               | ug/kg        | 0.500 |                   |
| CI4-BZ#49                      | ND       |               | ug/kg        | 0.500 |                   |
| Cl4-BZ#52                      | ND       |               | ug/kg        | 0.500 |                   |
| CI4-BZ#66                      | ND       |               | ug/kg        | 0.500 |                   |
| CI5-BZ#87                      | ND       |               | ug/kg        | 0.500 |                   |
| CI5-BZ#101                     | ND       |               | ug/kg        | 0.500 |                   |
| CI5-BZ#105                     | ND       |               | ug/kg        | 0.500 |                   |
| CI5-BZ#118                     | ND       |               | ug/kg        | 0.500 |                   |
| CI6-BZ#128                     | ND       |               | ug/kg        | 0.500 |                   |
| Cl6-BZ#138                     | ND       |               | ug/kg        | 0.500 |                   |
|                                |          |               |              |       |                   |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

Project Name: SRP

**Project Number:** 23840.003

#### Method Blank Analysis Batch Quality Control

Analytical Method:105,8270D-SIM/680(M)Analytical Date:10/24/16 13:01Analyst:MS

Extraction Method:EPA 3570Extraction Date:09/29/16 18:28Cleanup Method:EPA 3630Cleanup Date:10/09/16

| Parameter                      | Result       | Qualifier   | Units      | RL    | N      | IDL        |
|--------------------------------|--------------|-------------|------------|-------|--------|------------|
| RIM PAHs/PCB Congeners by GC/N | /IS - Mansfi | eld Lab for | sample(s): | 01-15 | Batch: | WG937275-1 |
| Cl6-BZ#153                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI7-BZ#170                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI7-BZ#180                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI7-BZ#183                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI7-BZ#184                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI7-BZ#187                     | ND           |             | ug/kg      | 0.500 |        |            |
| Cl8-BZ#195                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI9-BZ#206                     | ND           |             | ug/kg      | 0.500 |        |            |
| CI10-BZ#209                    | ND           |             | ug/kg      | 0.500 |        |            |

|                          |           | 1         | Acceptance |  |
|--------------------------|-----------|-----------|------------|--|
| Surrogate                | %Recovery | Qualifier | Criteria   |  |
| 2-Methylnaphthalene-d10  | 58        |           | 30-150     |  |
| Pyrene-d10               | 77        |           | 30-150     |  |
| Benzo(b)fluoranthene-d12 | 85        |           | 30-150     |  |
| DBOB                     | 66        |           | 30-150     |  |
| BZ 198                   | 71        |           | 30-150     |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** SRP Project Number: 23840.003 Lab Number: L1629727 Report Date: 10/27/16

| Parameter                            | LCS<br>%Recovery | Qual            | LCSD<br>%Recovery | %Recov<br>Qual Limits |           | RPD<br>Qual Limits |  |
|--------------------------------------|------------------|-----------------|-------------------|-----------------------|-----------|--------------------|--|
| RIM PAHs/PCB Congeners by GC/MS - Ma | nsfield Lab Asso | ciated sample(s | s): 01-15 Bat     | ch: WG937275-2 W      | G937275-3 |                    |  |
| Naphthalene                          | 54               |                 | 59                | 50-120                | 9         | 30                 |  |
| Acenaphthylene                       | 58               |                 | 64                | 50-120                | 10        | 30                 |  |
| Acenaphthene                         | 63               |                 | 68                | 50-120                | 8         | 30                 |  |
| Fluorene                             | 68               |                 | 73                | 50-120                | 7         | 30                 |  |
| Phenanthrene                         | 72               |                 | 76                | 50-120                | 5         | 30                 |  |
| Anthracene                           | 67               |                 | 71                | 50-120                | 6         | 30                 |  |
| Fluoranthene                         | 75               |                 | 80                | 50-120                | 6         | 30                 |  |
| Pyrene                               | 72               |                 | 76                | 50-120                | 5         | 30                 |  |
| Benz(a)anthracene                    | 77               |                 | 81                | 50-120                | 5         | 30                 |  |
| Chrysene                             | 79               |                 | 83                | 50-120                | 5         | 30                 |  |
| Benzo(b)fluoranthene                 | 86               |                 | 91                | 50-120                | 6         | 30                 |  |
| Benzo(k)fluoranthene                 | 83               |                 | 88                | 50-120                | 6         | 30                 |  |
| Benzo(a)pyrene                       | 81               |                 | 85                | 50-120                | 5         | 30                 |  |
| Indeno(1,2,3-cd)Pyrene               | 84               |                 | 85                | 50-120                | 1         | 30                 |  |
| Dibenz(a,h)anthracene                | 79               |                 | 84                | 50-120                | 6         | 30                 |  |
| Benzo(ghi)perylene                   | 81               |                 | 85                | 50-120                | 5         | 30                 |  |
| CI2-BZ#8                             | 73               |                 | 77                | 50-120                | 5         | 30                 |  |
| CI3-BZ#18                            | 74               |                 | 76                | 50-120                | 3         | 30                 |  |
| CI3-BZ#28                            | 77               |                 | 80                | 50-120                | 4         | 30                 |  |
| Cl4-BZ#44                            | 83               |                 | 86                | 50-120                | 4         | 30                 |  |
| Cl4-BZ#49                            | 80               |                 | 82                | 50-120                | 2         | 30                 |  |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** SRP **Project Number:** 23840.003

Report Date: 10/27/16

| arameter                         | LCS<br>%Recovery      | LCSD<br>Qual %Recovery   | %Recovery<br>Qual Limits | RPD  | RPD<br>Qual Limits |
|----------------------------------|-----------------------|--------------------------|--------------------------|------|--------------------|
| IM PAHs/PCB Congeners by GC/MS - | Mansfield Lab Associa | ated sample(s): 01-15 Ba | atch: WG937275-2 WG93727 | 75-3 |                    |
| CI4-BZ#52                        | 81                    | 83                       | 50-120                   | 2    | 30                 |
| CI4-BZ#66                        | 83                    | 85                       | 50-120                   | 2    | 30                 |
| CI5-BZ#87                        | 82                    | 85                       | 50-120                   | 4    | 30                 |
| CI5-BZ#101                       | 82                    | 84                       | 50-120                   | 2    | 30                 |
| CI5-BZ#105                       | 82                    | 85                       | 50-120                   | 4    | 30                 |
| CI5-BZ#118                       | 82                    | 84                       | 50-120                   | 2    | 30                 |
| Cl6-BZ#128                       | 82                    | 84                       | 50-120                   | 2    | 30                 |
| Cl6-BZ#138                       | 82                    | 84                       | 50-120                   | 2    | 30                 |
| CI6-BZ#153                       | 82                    | 85                       | 50-120                   | 4    | 30                 |
| CI7-BZ#170                       | 84                    | 86                       | 50-120                   | 2    | 30                 |
| CI7-BZ#180                       | 81                    | 84                       | 50-120                   | 4    | 30                 |
| CI7-BZ#183                       | 78                    | 80                       | 50-120                   | 3    | 30                 |
| CI7-BZ#184                       | 79                    | 82                       | 50-120                   | 4    | 30                 |
| CI7-BZ#187                       | 80                    | 82                       | 50-120                   | 2    | 30                 |
| CI8-BZ#195                       | 81                    | 83                       | 50-120                   | 2    | 30                 |
| CI9-BZ#206                       | 81                    | 86                       | 50-120                   | 6    | 30                 |
| CI10-BZ#209                      | 84                    | 90                       | 50-120                   | 7    | 30                 |



### Lab Control Sample Analysis Batch Quality Control

Project Name:SRPProject Number:23840.003

Lab Number:

**Report Date:** 10/27/16

| Parameter                            | LCS<br>%Recovery  | Qual         | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------|-------------------|--------------|-------------------|----------|---------------------|-----|------|---------------|--|
| RIM PAHs/PCB Congeners by GC/MS - Ma | nsfield Lab Assoc | ciated sampl | e(s): 01-15 Batc  | :h: WG93 | 7275-2 WG93727      | 5-3 |      |               |  |

| LCS<br>%Recovery | Qual                              | LCSD<br>%Recovery                                                      | Qual                                                                                                                                     | Acceptance<br>Criteria                                                                                                                                         |                                                                                                                                                                                                                                    |
|------------------|-----------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60               |                                   | 64                                                                     |                                                                                                                                          | 30-150                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 80               |                                   | 83                                                                     |                                                                                                                                          | 30-150                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 88               |                                   | 92                                                                     |                                                                                                                                          | 30-150                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 73               |                                   | 78                                                                     |                                                                                                                                          | 30-150                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 79               |                                   | 84                                                                     |                                                                                                                                          | 30-150                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                  | %Recovery<br>60<br>80<br>88<br>73 | %Recovery         Qual           60         80           88         73 | %Recovery         Qual         %Recovery           60         64           80         83           88         92           73         78 | %Recovery         Qual         %Recovery         Qual           60         64         64           80         83         92           73         78         78 | %Recovery         Qual         %Recovery         Qual         Criteria           60         64         30-150           80         83         30-150           88         92         30-150           73         78         30-150 |



## Matrix Spike Analysis

| Project Name:   | SRP       | Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-----------------------|--------------|----------|
| Project Number: | 23840.003 |                       | Report Date: | 10/27/16 |

| Parameter                          | Native<br>Sample | MS<br>Added  | MS<br>Found  | MS<br>%Recovery | Qual  | MSD<br>Found | MSD<br>%Recovery | Qual   | Recovery<br>Limits | RPD     | RPD<br>Qual Limits   |
|------------------------------------|------------------|--------------|--------------|-----------------|-------|--------------|------------------|--------|--------------------|---------|----------------------|
| RIM PAHs/PCB Congene<br>C-6 (0-48) | rs by GC/MS - Ma | ansfield Lab | Associated s | ample(s): 01-15 | QC Ba | atch ID: WC  | G937275-6 W0     | G93727 | 5-7 QC Sa          | mple: L | 1629727-01 Client IE |
| Naphthalene                        | ND               | 369          | 143          | 39              | Q     | 145          | 40               | Q      | 50-120             | 1       | 30                   |
| Acenaphthylene                     | ND               | 369          | 156          | 42              | Q     | 157          | 43               | Q      | 50-120             | 1       | 30                   |
| Acenaphthene                       | ND               | 369          | 165          | 45              | Q     | 165          | 45               | Q      | 50-120             | 0       | 30                   |
| Fluorene                           | ND               | 369          | 172          | 47              | Q     | 172          | 47               | Q      | 50-120             | 0       | 30                   |
| Phenanthrene                       | ND               | 369          | 179          | 49              | Q     | 179          | 49               | Q      | 50-120             | 0       | 30                   |
| Anthracene                         | ND               | 369          | 167          | 45              | Q     | 168          | 46               | Q      | 50-120             | 1       | 30                   |
| Fluoranthene                       | ND               | 369          | 184          | 50              | Q     | 185          | 51               |        | 50-120             | 1       | 30                   |
| Pyrene                             | ND               | 369          | 178          | 48              | Q     | 176          | 48               | Q      | 50-120             | 1       | 30                   |
| Benz(a)anthracene                  | ND               | 369          | 196          | 53              |       | 192          | 52               |        | 50-120             | 2       | 30                   |
| Chrysene                           | ND               | 369          | 187          | 51              |       | 187          | 51               |        | 50-120             | 0       | 30                   |
| Benzo(b)fluoranthene               | ND               | 369          | 191          | 52              |       | 191          | 52               |        | 50-120             | 0       | 30                   |
| Benzo(k)fluoranthene               | ND               | 369          | 210          | 57              |       | 210          | 57               |        | 50-120             | 0       | 30                   |
| Benzo(a)pyrene                     | ND               | 369          | 198          | 54              |       | 198          | 54               |        | 50-120             | 0       | 30                   |
| Indeno(1,2,3-cd)Pyrene             | ND               | 369          | 207          | 56              |       | 210          | 57               |        | 50-120             | 1       | 30                   |
| Dibenz(a,h)anthracene              | ND               | 369          | 197          | 53              |       | 195          | 53               |        | 50-120             | 1       | 30                   |
| Benzo(ghi)perylene                 | ND               | 369          | 198          | 54              |       | 198          | 54               |        | 50-120             | 0       | 30                   |
| CI2-BZ#8                           | ND               | 73.8         | 37.4         | 51              |       | 36.9         | 50               |        | 50-120             | 1       | 30                   |
| CI3-BZ#18                          | ND               | 73.8         | 36.3         | 49              | Q     | 35.7         | 49               | Q      | 50-120             | 2       | 30                   |
| CI3-BZ#28                          | ND               | 73.8         | 38.1         | 52              |       | 38.0         | 52               |        | 50-120             | 0       | 30                   |
| Cl4-BZ#44                          | ND               | 73.8         | 40.9         | 55              |       | 39.8         | 54               |        | 50-120             | 3       | 30                   |
| CI4-BZ#49                          | ND               | 73.8         | 38.6         | 52              |       | 37.7         | 52               |        | 50-120             | 2       | 30                   |



## Matrix Spike Analysis

| Project Name:   | SRP       | Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-----------------------|--------------|----------|
| Project Number: | 23840.003 |                       | Report Date: | 10/27/16 |

| Parameter                       | Native<br>Sample    | MS<br>Added  | MS<br>Found  | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD     | RPD<br>Qual Limits    |
|---------------------------------|---------------------|--------------|--------------|-----------------|-------------------|------------------|-------------------------|---------|-----------------------|
| RIM PAHs/PCB Cong<br>C-6 (0-48) | eners by GC/MS - Ma | ansfield Lab | Associated s | ample(s): 01-15 | QC Batch ID: WO   | G937275-6 W      | G937275-7 QC Sa         | mple: L | 1629727-01 Client ID: |
| Cl4-BZ#52                       | ND                  | 73.8         | 40.3         | 55              | 39.3              | 54               | 50-120                  | 3       | 30                    |
| CI4-BZ#66                       | ND                  | 73.8         | 40.5         | 55              | 39.3              | 54               | 50-120                  | 3       | 30                    |
| CI5-BZ#87                       | ND                  | 73.8         | 40.1         | 54              | 38.8              | 53               | 50-120                  | 3       | 30                    |
| CI5-BZ#101                      | ND                  | 73.8         | 39.1         | 53              | 38.9              | 53               | 50-120                  | 1       | 30                    |
| CI5-BZ#105                      | ND                  | 73.8         | 40.0         | 54              | 39.1              | 53               | 50-120                  | 2       | 30                    |
| CI5-BZ#118                      | ND                  | 73.8         | 39.0         | 53              | 38.3              | 52               | 50-120                  | 2       | 30                    |
| Cl6-BZ#128                      | ND                  | 73.8         | 40.4         | 55              | 39.3              | 54               | 50-120                  | 3       | 30                    |
| CI6-BZ#138                      | ND                  | 73.8         | 40.7         | 55              | 39.3              | 54               | 50-120                  | 4       | 30                    |
| Cl6-BZ#153                      | ND                  | 73.8         | 39.4         | 53              | 38.4              | 52               | 50-120                  | 3       | 30                    |
| CI7-BZ#170                      | ND                  | 73.8         | 43.0         | 58              | 41.2              | 56               | 50-120                  | 4       | 30                    |
| CI7-BZ#180                      | ND                  | 73.8         | 38.6         | 52              | 38.6              | 53               | 50-120                  | 0       | 30                    |
| CI7-BZ#183                      | ND                  | 73.8         | 37.4         | 51              | 36.9              | 50               | 50-120                  | 1       | 30                    |
| CI7-BZ#184                      | ND                  | 73.8         | 38.8         | 53              | 37.6              | 51               | 50-120                  | 3       | 30                    |
| CI7-BZ#187                      | ND                  | 73.8         | 40.8         | 55              | 39.1              | 53               | 50-120                  | 4       | 30                    |
| CI8-BZ#195                      | ND                  | 73.8         | 41.9         | 57              | 40.4              | 55               | 50-120                  | 4       | 30                    |
| CI9-BZ#206                      | ND                  | 73.8         | 40.1         | 54              | 39.1              | 53               | 50-120                  | 3       | 30                    |
| CI10-BZ#209                     | ND                  | 73.8         | 42.3         | 57              | 40.3              | 55               | 50-120                  | 5       | 30                    |

|                         | MS                   | MSD                  | Acceptance |
|-------------------------|----------------------|----------------------|------------|
| Surrogate               | % Recovery Qualifier | % Recovery Qualifier | Criteria   |
| 2-Methylnaphthalene-d10 | 42                   | 43                   | 30-150     |



## Matrix Spike Analysis

| Project Name:   | SRP       | Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-----------------------|--------------|----------|
| Project Number: | 23840.003 |                       | Report Date: | 10/27/16 |

|                                      | Native        | MS          | MS           | MS               |       | MSD        | MSD         |         | Recovery  |          |         | RPD            |
|--------------------------------------|---------------|-------------|--------------|------------------|-------|------------|-------------|---------|-----------|----------|---------|----------------|
| Parameter                            | Sample        | Added       | Found        | %Recovery        | Qual  | Found      | %Recovery   | Qual    | Limits    | RPD      | Qual    | Limits         |
| RIM PAHs/PCB Congeners<br>C-6 (0-48) | by GC/MS - Ma | nsfield Lab | Associated s | sample(s): 01-15 | QC Ba | tch ID: WC | G937275-6 W | G937275 | 5-7 QC Sa | mple: L1 | 1629727 | 7-01 Client ID |

|                          | MS                | MSD                      | Acceptance |
|--------------------------|-------------------|--------------------------|------------|
| Surrogate                | % Recovery Qualif | ier % Recovery Qualifier | Criteria   |
| BZ 198                   | 56                | 51                       | 30-150     |
| Benzo(b)fluoranthene-d12 | 55                | 56                       | 30-150     |
| DBOB                     | 54                | 53                       | 30-150     |
| Pyrene-d10               | 53                | 53                       | 30-150     |



# Lab Duplicate Analysis Batch Quality Control

Project Name: SRP Project Number: 23840.003

Lab Number: L1629727 10/27/16 Report Date:

| arameter                                            | Native Sample             | Duplicate Sample  | Units        | RPD       | RPD<br>Qual Limits            |
|-----------------------------------------------------|---------------------------|-------------------|--------------|-----------|-------------------------------|
| M PAHs/PCB Congeners by GC/MS - Mansfield I<br>-48) | Lab Associated sample(s): | 01-15 QC Batch ID | : WG937275-5 | QC Sample | e: L1629727-01 Client ID: C-0 |
| Naphthalene                                         | ND                        | ND                | ug/kg        | NC        | 30                            |
| Acenaphthylene                                      | ND                        | ND                | ug/kg        | NC        | 30                            |
| Acenaphthene                                        | ND                        | ND                | ug/kg        | NC        | 30                            |
| Fluorene                                            | ND                        | ND                | ug/kg        | NC        | 30                            |
| Phenanthrene                                        | ND                        | ND                | ug/kg        | NC        | 30                            |
| Anthracene                                          | ND                        | ND                | ug/kg        | NC        | 30                            |
| Fluoranthene                                        | ND                        | ND                | ug/kg        | NC        | 30                            |
| Pyrene                                              | ND                        | ND                | ug/kg        | NC        | 30                            |
| Benz(a)anthracene                                   | ND                        | ND                | ug/kg        | NC        | 30                            |
| Chrysene                                            | ND                        | ND                | ug/kg        | NC        | 30                            |
| Benzo(b)fluoranthene                                | ND                        | ND                | ug/kg        | NC        | 30                            |
| Benzo(k)fluoranthene                                | ND                        | ND                | ug/kg        | NC        | 30                            |
| Benzo(a)pyrene                                      | ND                        | ND                | ug/kg        | NC        | 30                            |
| Indeno(1,2,3-cd)Pyrene                              | ND                        | ND                | ug/kg        | NC        | 30                            |
| Dibenz(a,h)anthracene                               | ND                        | ND                | ug/kg        | NC        | 30                            |
| Benzo(ghi)perylene                                  | ND                        | ND                | ug/kg        | NC        | 30                            |
| Cl2-BZ#8                                            | ND                        | ND                | ug/kg        | NC        | 30                            |
| CI3-BZ#18                                           | ND                        | ND                | ug/kg        | NC        | 30                            |
| Cl3-BZ#28                                           | ND                        | ND                | ug/kg        | NC        | 30                            |



### Lab Duplicate Analysis Batch Quality Control

Project Name:SRPProject Number:23840.003

rol

 Lab Number:
 L1629727

 Report Date:
 10/27/16

| Parameter                                               | Native Sample           | Duplicate Sample  | Units         | RPD        | RPD<br>Limits              |
|---------------------------------------------------------|-------------------------|-------------------|---------------|------------|----------------------------|
| RIM PAHs/PCB Congeners by GC/MS - Mansfield La<br>0-48) | b Associated sample(s): | 01-15 QC Batch ID | ): WG937275-5 | QC Sample: | L1629727-01 Client ID: C-6 |
| Cl4-BZ#44                                               | ND                      | ND                | ug/kg         | NC         | 30                         |
| Cl4-BZ#49                                               | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI4-BZ#52                                               | ND                      | ND                | ug/kg         | NC         | 30                         |
| Cl4-BZ#66                                               | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI5-BZ#87                                               | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI5-BZ#101                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI5-BZ#105                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI5-BZ#118                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI6-BZ#128                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI6-BZ#138                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI6-BZ#153                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI7-BZ#170                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI7-BZ#180                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI7-BZ#183                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI7-BZ#184                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI7-BZ#187                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| Cl8-BZ#195                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI9-BZ#206                                              | ND                      | ND                | ug/kg         | NC         | 30                         |
| CI10-BZ#209                                             | ND                      | ND                | ug/kg         | NC         | 30                         |
|                                                         |                         |                   |               |            |                            |



| Project Name:   | SRP       | Lab Duplicate Analysis<br>Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-------------------------------------------------|--------------|----------|
| Project Number: | 23840.003 |                                                 | Report Date: | 10/27/16 |
|                 |           |                                                 | RPD          |          |

| Parameter                                             | Native Sample           | Duplicate Sample   | Units      | RPD        | Limits                     |  |
|-------------------------------------------------------|-------------------------|--------------------|------------|------------|----------------------------|--|
| RIM PAHs/PCB Congeners by GC/MS - Mansfield La (0-48) | b Associated sample(s): | 01-15 QC Batch ID: | WG937275-5 | QC Sample: | L1629727-01 Client ID: C-6 |  |

| Surrogate                | %Recovery | Qualifier | %Recovery | Qualifier | Acceptance<br>Criteria |  |
|--------------------------|-----------|-----------|-----------|-----------|------------------------|--|
| 2-Methylnaphthalene-d10  | 47        |           | 48        |           | 30-150                 |  |
| Pyrene-d10               | 54        |           | 56        |           | 30-150                 |  |
| Benzo(b)fluoranthene-d12 | 56        |           | 58        |           | 30-150                 |  |
| DBOB                     | 58        |           | 57        |           | 30-150                 |  |
| BZ 198                   | 61        |           | 56        |           | 30-150                 |  |



Project Name:SRPProject Number:23840.003

 Lab Number:
 L1629727

 Report Date:
 10/27/16

#### S.R.M. Standard Quality Control

#### Standard Reference Material (SRM): WG937275-4

| irameter                             | % Recovery | Qual | QC Criteria |
|--------------------------------------|------------|------|-------------|
| Phenanthrene                         | 65         |      | 40-140      |
| Fluoranthene                         | 68         |      | 40-140      |
| Pyrene                               | 57         |      | 40-140      |
| Benz(a)anthracene                    | 66         |      | 40-140      |
| Chrysene                             | 84         |      | 40-140      |
| Benzo(b)fluoranthene                 | 71         |      | 40-140      |
| Benzo(k)fluoranthene                 | 117        |      | 40-140      |
| Benzo(a)pyrene                       | 59         |      | 40-140      |
| Indeno(1,2,3-cd)Pyrene               | 69         |      | 40-140      |
| Dibenz(a,h)anthracene                | 113        |      | 40-140      |
| Benzo(ghi)perylene                   | 69         |      | 40-140      |
| CI2-BZ#8                             | 68         |      | 40-140      |
| CI3-BZ#18                            | 89         |      | 40-140      |
| CI3-BZ#28                            | 43         |      | 40-140      |
| CI4-BZ#44                            | 86         |      | 40-140      |
| CI4-BZ#49                            | 78         |      | 40-140      |
| CI4-BZ#52                            | 69         |      | 40-140      |
| CI4-BZ#66                            | 59         |      | 40-140      |
| CI5-BZ#87                            | 87         |      | 40-140      |
| CI5-BZ#101                           | 81         |      | 40-140      |
| CI5-BZ#105                           | 76         |      | 40-140      |
| CI5-BZ#118                           | 77         |      | 40-140      |
| Cl6-BZ#128                           | 164        | Q    | 40-140      |
| Cl6-BZ#138                           | 85         |      | 40-140      |
| Cl6-BZ#153                           | 64         |      | 40-140      |
| CI7-BZ#170                           | 95         |      | 40-140      |
| CI7-BZ#180                           | 72         |      | 40-140      |
| CI7-BZ#183                           | 68         |      | 40-140      |
| CI7-BZ#187                           | 83         |      | 40-140      |
| CI9-BZ#206                           | 89         |      | 40-140      |
| CI10-BZ#209                          | 94         |      | 40-140      |
| 2-Methylnaphthalene-d10 (Surrogate)  | 62         |      | 30-150      |
| Pyrene-d10 (Surrogate)               | 83         |      | 30-150      |
| Benzo(b)fluoranthene-d12 (Surrogate) | 80         |      | 30-150      |
| DBOB (Surrogate)                     | 74         |      | 30-150      |
| BZ 198 (Surrogate)                   | 93         |      | 30-150      |



# PETROLEUM HYDROCARBONS



|                                                                                                |                                                                                     |                | Serial_No:10271613:37                                                                    |                                                                             |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Project Name:                                                                                  | SRP                                                                                 |                | Lab Number:                                                                              | L1629727                                                                    |  |
| Project Number:                                                                                | 23840.003                                                                           |                | Report Date:                                                                             | 10/27/16                                                                    |  |
|                                                                                                |                                                                                     | SAMPLE RESULTS |                                                                                          |                                                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1629727-01<br>C-6 (0-48)<br>LITTLE BAY<br>Sediment<br>1,8015C(M)<br>10/03/16 13:47 |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 09/20/16 10:10<br>09/20/16<br>Not Specified<br>d:EPA 3546<br>10/02/16 12:28 |  |
| Analyst:<br>Percent Solids:                                                                    | DG<br>68%                                                                           |                |                                                                                          |                                                                             |  |

| Parameter           |                           | Result     | Qualifier | Units   | RL                     | MDL | Dilution Factor |
|---------------------|---------------------------|------------|-----------|---------|------------------------|-----|-----------------|
| Petroleum Hydrocart | oon Quantitation - Westbo | orough Lab |           |         |                        |     |                 |
| ТРН                 |                           | ND         |           | ug/kg   | 48700                  |     | 1               |
| Surrogate           | •                         | % Recover  | y Qua     | alifier | Acceptance<br>Criteria |     |                 |
| o-Terphen           | yl                        | 102        |           |         | 40-140                 |     |                 |



|                                                                       |                                           |                | Serial_No:10271613:37 |                |  |
|-----------------------------------------------------------------------|-------------------------------------------|----------------|-----------------------|----------------|--|
| Project Name:                                                         | SRP                                       |                | Lab Number:           | L1629727       |  |
| Project Number:                                                       | 23840.003                                 |                | Report Date:          | 10/27/16       |  |
|                                                                       |                                           | SAMPLE RESULTS |                       |                |  |
| Lab ID:                                                               | L1629727-02                               |                | Date Collected:       | 09/20/16 12:02 |  |
| Client ID:                                                            | C-7 (0-48)                                |                | Date Received:        | 09/20/16       |  |
| Sample Location:                                                      | LITTLE BAY                                |                | Field Prep:           | Not Specified  |  |
| Matrix:                                                               | Sediment                                  |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8015C(M)<br>10/03/16 14:20<br>DG<br>72% |                | Extraction Date:      | 10/02/16 12:28 |  |

| Parameter                  | Result                     | Qualifier Units | RL                     | MDL | Dilution Factor |
|----------------------------|----------------------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon Quan | titation - Westborough Lab |                 |                        |     |                 |
| TPH                        | ND                         | ug/kg           | 45900                  |     | 1               |
| Surrogate                  | % Recovery                 | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Terphenyl                | 82                         |                 | 40-140                 |     |                 |



|                    |                |                | Serial_No:10271613:37 |                |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|
| Project Name:      | SRP            |                | Lab Number:           | L1629727       |  |
| Project Number:    | 23840.003      |                | Report Date:          | 10/27/16       |  |
|                    |                | SAMPLE RESULTS |                       |                |  |
| Lab ID:            | L1629727-03    |                | Date Collected:       | 09/20/16 12:58 |  |
| Client ID:         | C-1            |                | Date Received:        | 09/20/16       |  |
| Sample Location:   | LITTLE BAY     |                | Field Prep:           | Not Specified  |  |
| Matrix:            | Sediment       |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date:      | 10/02/16 12:28 |  |
| Analytical Date:   | 10/03/16 14:52 |                |                       |                |  |
| Analyst:           | DG             |                |                       |                |  |
| Percent Solids:    | 59%            |                |                       |                |  |

| Parameter               | Result                        | Qualifier Un | ts R                 | L MDL | Dilution Factor |
|-------------------------|-------------------------------|--------------|----------------------|-------|-----------------|
| Petroleum Hydrocarbon Q | uantitation - Westborough Lab |              |                      |       |                 |
| TPH                     | ND                            | ug/          | kg 53                |       | 1               |
| Surrogate               | % Recover                     | y Qualifier  | Acceptan<br>Criteria |       |                 |
| o-Terphenyl             | 84                            |              | 40-14                | 40    |                 |



|                                                                                                            |                                                                                    |                | Serial_No:10271613:37                                                                    |                                                                             |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Project Name:                                                                                              | SRP                                                                                |                | Lab Number:                                                                              | L1629727                                                                    |  |
| Project Number:                                                                                            | 23840.003                                                                          |                | Report Date:                                                                             | 10/27/16                                                                    |  |
|                                                                                                            |                                                                                    | SAMPLE RESULTS |                                                                                          |                                                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | L1629727-04<br>C-2<br>LITTLE BAY<br>Sediment<br>1,8015C(M)<br>10/03/16 15:25<br>DG |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 09/20/16 13:05<br>09/20/16<br>Not Specified<br>d:EPA 3546<br>10/02/16 12:28 |  |
| Percent Solids:                                                                                            | 61%                                                                                |                |                                                                                          |                                                                             |  |

| Parameter             | Result                       | Qualifier | Units   | RL                     | MDL | Dilution Factor |
|-----------------------|------------------------------|-----------|---------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon | Quantitation - Westborough L | ab        |         |                        |     |                 |
| TPH                   | ND                           |           | ug/kg   | 54000                  |     | 1               |
| Surrogate             | % Recc                       | overy Qu  | alifier | Acceptance<br>Criteria |     |                 |
| o-Terphenyl           |                              | 82        |         | 40-140                 |     |                 |



|                    |                |                | Serial_No:10271613:37 |                |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|
| Project Name:      | SRP            |                | Lab Number:           | L1629727       |  |
| Project Number:    | 23840.003      |                | Report Date:          | 10/27/16       |  |
|                    |                | SAMPLE RESULTS |                       |                |  |
| Lab ID:            | L1629727-05    |                | Date Collected:       | 09/20/16 13:36 |  |
| Client ID:         | C-3            |                | Date Received:        | 09/20/16       |  |
| Sample Location:   | LITTLE BAY     |                | Field Prep:           | Not Specified  |  |
| Matrix:            | Sediment       |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date:      | 10/02/16 12:28 |  |
| Analytical Date:   | 10/03/16 15:57 |                |                       |                |  |
| Analyst:           | DG             |                |                       |                |  |
| Percent Solids:    | 63%            |                |                       |                |  |

| Parameter                 | Result                      | Qualifier Units | RL                     | MDL | Dilution Factor |
|---------------------------|-----------------------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon Qua | ntitation - Westborough Lab |                 |                        |     |                 |
| TPH                       | ND                          | ug/kg           | 51800                  |     | 1               |
| Surrogate                 | % Recovery                  | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Terphenyl               | 87                          |                 | 40-140                 |     |                 |



|                                                                                                |                                                                              |                | Serial_No:10271613:37                                                                    |                                                                             |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Project Name:                                                                                  | SRP                                                                          |                | Lab Number:                                                                              | L1629727                                                                    |  |
| Project Number:                                                                                | 23840.003                                                                    |                | Report Date:                                                                             | 10/27/16                                                                    |  |
|                                                                                                |                                                                              | SAMPLE RESULTS |                                                                                          |                                                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1629727-06<br>C-4<br>LITTLE BAY<br>Sediment<br>1,8015C(M)<br>10/03/16 15:25 |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 09/20/16 14:05<br>09/20/16<br>Not Specified<br>d:EPA 3546<br>10/02/16 12:28 |  |
| Analyst:<br>Percent Solids:                                                                    | DG<br>65%                                                                    |                |                                                                                          |                                                                             |  |

| Parameter       |                      | Result            | Qualifier Units | RL                     | MDL | Dilution Factor |
|-----------------|----------------------|-------------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydro | ocarbon Quantitation | - Westborough Lab |                 |                        |     |                 |
| ТРН             |                      | ND                | ug/kg           | 50500                  |     | 1               |
| Surr            | ogate                | % Recovery        | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Te            | rphenyl              | 81                |                 | 40-140                 |     |                 |

|                    |                |                | Serial_No:10271613:37 |                |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|
| Project Name:      | SRP            |                | Lab Number:           | L1629727       |  |
| Project Number:    | 23840.003      |                | Report Date:          | 10/27/16       |  |
|                    |                | SAMPLE RESULTS |                       |                |  |
| Lab ID:            | L1629727-07    |                | Date Collected:       | 09/20/16 10:10 |  |
| Client ID:         | C-6 (48-61)    |                | Date Received:        | 09/20/16       |  |
| Sample Location:   | LITTLE BAY     |                | Field Prep:           | Not Specified  |  |
| Matrix:            | Sediment       |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date:      | 10/03/16 16:32 |  |
| Analytical Date:   | 10/04/16 18:26 |                |                       |                |  |
| Analyst:           | SR             |                |                       |                |  |
| Percent Solids:    | 65%            |                |                       |                |  |

| Parameter                  | Result                      | Qualifier U | nits | RL                     | MDL | Dilution Factor |
|----------------------------|-----------------------------|-------------|------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon Quar | ntitation - Westborough Lab |             |      |                        |     |                 |
| TPH                        | ND                          | ug          | j/kg | 53200                  |     | 1               |
| Surrogate                  | % Recovery                  | Qualifier   |      | Acceptance<br>Criteria |     |                 |
| o-Terphenyl                | 90                          |             |      | 40-140                 |     |                 |



|                                                                                                |                                                                                      |                | Serial_No:10271613:37                                                                    |                                                                             |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Project Name:                                                                                  | SRP                                                                                  |                | Lab Number:                                                                              | L1629727                                                                    |  |
| Project Number:                                                                                | 23840.003                                                                            |                | Report Date:                                                                             | 10/27/16                                                                    |  |
|                                                                                                |                                                                                      | SAMPLE RESULTS |                                                                                          |                                                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:<br>Analytical Method:<br>Analytical Date: | L1629727-08<br>C-7 (48-54)<br>LITTLE BAY<br>Sediment<br>1,8015C(M)<br>10/04/16 18:58 |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho<br>Extraction Date: | 09/20/16 12:02<br>09/20/16<br>Not Specified<br>d:EPA 3546<br>10/03/16 16:32 |  |
| Analyst:<br>Percent Solids:                                                                    | SR<br>71%                                                                            |                |                                                                                          |                                                                             |  |

| Parameter    |                        | Result Q            | ualifier Units | RL                     | MDL | Dilution Factor |
|--------------|------------------------|---------------------|----------------|------------------------|-----|-----------------|
| Petroleum Hy | ydrocarbon Quantitatio | n - Westborough Lab |                |                        |     |                 |
| ТРН          |                        | ND                  | ug/kg          | 45900                  |     | 1               |
| :            | Surrogate              | % Recovery          | Qualifier      | Acceptance<br>Criteria |     |                 |
| (            | o-Terphenyl            | 83                  |                | 40-140                 |     |                 |



|                                                                       |                                                      |                | Serial_No:10271613:37 |                |  |
|-----------------------------------------------------------------------|------------------------------------------------------|----------------|-----------------------|----------------|--|
| Project Name:                                                         | SRP                                                  |                | Lab Number:           | L1629727       |  |
| Project Number:                                                       | 23840.003                                            |                | Report Date:          | 10/27/16       |  |
|                                                                       |                                                      | SAMPLE RESULTS |                       |                |  |
| Lab ID:                                                               | L1629727-09                                          |                | Date Collected:       | 09/21/16 08:35 |  |
| Client ID:                                                            | C-5                                                  |                | Date Received:        | 09/21/16       |  |
| Sample Location:                                                      | LITTLE BAY                                           |                | Field Prep:           | Not Specified  |  |
| Matrix:                                                               | Sediment                                             |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8015C(M)<br>10/03/16 21:32<br>DG<br><sub>68%</sub> |                | Extraction Date:      | 10/03/16 09:04 |  |

| Parameter                 | Result                      | Qualifier Units | RL                     | MDL | Dilution Factor |
|---------------------------|-----------------------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon Qua | ntitation - Westborough Lab |                 |                        |     |                 |
| TPH                       | ND                          | ug/kg           | 48400                  |     | 1               |
| Surrogate                 | % Recovery                  | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Terphenyl               | 95                          |                 | 40-140                 |     |                 |



|                                                                       |                                              |                | Serial_No:10271613:37                                                |                                                           |  |
|-----------------------------------------------------------------------|----------------------------------------------|----------------|----------------------------------------------------------------------|-----------------------------------------------------------|--|
| Project Name:                                                         | SRP                                          |                | Lab Number:                                                          | L1629727                                                  |  |
| Project Number:                                                       | 23840.003                                    |                | Report Date:                                                         | 10/27/16                                                  |  |
|                                                                       |                                              | SAMPLE RESULTS |                                                                      |                                                           |  |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Matrix:                  | L1629727-10<br>C-8<br>LITTLE BAY<br>Sediment |                | Date Collected:<br>Date Received:<br>Field Prep:<br>Extraction Metho | 09/21/16 13:00<br>09/21/16<br>Not Specified<br>d:EPA 3546 |  |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8015C(M)<br>10/03/16 22:36<br>DG<br>70%    |                | Extraction Date:                                                     | 10/03/16 09:04                                            |  |

| Parameter         |                       | Result 0      | Qualifier Units | RL                     | MDL | Dilution Factor |
|-------------------|-----------------------|---------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydroca | bon Quantitation - We | stborough Lab |                 |                        |     |                 |
| ТРН               |                       | ND            | ug/kg           | 47000                  |     | 1               |
| Surroga           | te                    | % Recovery    | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Terphe          | nyl                   | 96            |                 | 40-140                 |     |                 |



|                    |                |                | Serial_No:10271613:37 |                |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|
| Project Name:      | SRP            |                | Lab Number:           | L1629727       |  |
| Project Number:    | 23840.003      |                | Report Date:          | 10/27/16       |  |
|                    |                | SAMPLE RESULTS |                       |                |  |
| Lab ID:            | L1629727-11    |                | Date Collected:       | 09/21/16 11:45 |  |
| Client ID:         | C-9            |                | Date Received:        | 09/21/16       |  |
| Sample Location:   | LITTLE BAY     |                | Field Prep:           | Not Specified  |  |
| Matrix:            | Sediment       |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date:      | 10/03/16 09:04 |  |
| Analytical Date:   | 10/03/16 23:09 |                |                       |                |  |
| Analyst:           | DG             |                |                       |                |  |
| Percent Solids:    | 82%            |                |                       |                |  |

| Parameter           |                       | Result        | Qualifier Unit | s RL                   | MDL | Dilution Factor |
|---------------------|-----------------------|---------------|----------------|------------------------|-----|-----------------|
| Petroleum Hydrocarl | oon Quantitation - We | stborough Lab |                |                        |     |                 |
| ТРН                 |                       | ND            | ug/k           | g 39000                |     | 1               |
| Surrogate           |                       | % Recovery    | Qualifier      | Acceptance<br>Criteria |     |                 |
| o-Terpher           | yl                    | 95            |                | 40-140                 |     |                 |



|                    |                |                | Serial_No:10271613:37 |                |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|
| Project Name:      | SRP            |                | Lab Number:           | L1629727       |  |
| Project Number:    | 23840.003      |                | Report Date:          | 10/27/16       |  |
|                    |                | SAMPLE RESULTS |                       |                |  |
| Lab ID:            | L1629727-12    |                | Date Collected:       | 09/21/16 12:20 |  |
| Client ID:         | C-10           |                | Date Received:        | 09/21/16       |  |
| Sample Location:   | LITTLE BAY     |                | Field Prep:           | Not Specified  |  |
| Matrix:            | Sediment       |                | Extraction Metho      | d:EPA 3546     |  |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date:      | 10/03/16 09:04 |  |
| Analytical Date:   | 10/03/16 23:41 |                |                       |                |  |
| Analyst:           | DG             |                |                       |                |  |
| Percent Solids:    | 79%            |                |                       |                |  |

| Parameter                 | Result                      | Qualifier Units | RL                     | MDL | Dilution Factor |
|---------------------------|-----------------------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon Qua | ntitation - Westborough Lab |                 |                        |     |                 |
| TPH                       | ND                          | ug/kg           | 41100                  |     | 1               |
| Surrogate                 | % Recovery                  | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-Terphenyl               | 98                          |                 | 40-140                 |     |                 |



|                    |                |                | Serial_N         | o:10271613:37  |
|--------------------|----------------|----------------|------------------|----------------|
| Project Name:      | SRP            |                | Lab Number:      | L1629727       |
| Project Number:    | 23840.003      |                | Report Date:     | 10/27/16       |
|                    |                | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-13    |                | Date Collected:  | 09/21/16 09:03 |
| Client ID:         | C-11 (0-48)    |                | Date Received:   | 09/21/16       |
| Sample Location:   | LITTLE BAY     |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment       |                | Extraction Metho | d:EPA 3546     |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date: | 10/03/16 09:04 |
| Analytical Date:   | 10/04/16 00:14 |                |                  |                |
| Analyst:           | DG             |                |                  |                |
| Percent Solids:    | 69%            |                |                  |                |

| Parameter               | Result                        | Qualifier U | nits | RL                     | MDL | Dilution Factor |
|-------------------------|-------------------------------|-------------|------|------------------------|-----|-----------------|
| Petroleum Hydrocarbon G | uantitation - Westborough Lab |             |      |                        |     |                 |
| TPH                     | ND                            | ug          | /kg  | 47800                  |     | 1               |
| Surrogate               | % Recovery                    | y Qualifier |      | Acceptance<br>Criteria |     |                 |
| o-Terphenyl             | 91                            |             |      | 40-140                 |     |                 |



|                                                                       |                                                      |                | Serial_N                          | o:10271613:37               |
|-----------------------------------------------------------------------|------------------------------------------------------|----------------|-----------------------------------|-----------------------------|
| Project Name:                                                         | SRP                                                  |                | Lab Number:                       | L1629727                    |
| Project Number:                                                       | 23840.003                                            |                | Report Date:                      | 10/27/16                    |
|                                                                       |                                                      | SAMPLE RESULTS |                                   |                             |
| Lab ID:<br>Client ID:                                                 | L1629727-14<br>C-12                                  |                | Date Collected:<br>Date Received: | 09/21/16 08:44<br>09/21/16  |
| Sample Location:<br>Matrix:                                           | LITTLE BAY<br>Sediment                               |                | Field Prep:<br>Extraction Metho   | Not Specified<br>d:EPA 3546 |
| Analytical Method:<br>Analytical Date:<br>Analyst:<br>Percent Solids: | 1,8015C(M)<br>10/04/16 00:46<br>DG<br><sup>75%</sup> |                | Extraction Date:                  | 10/03/16 09:04              |

| Parameter      |                         | Result          | Qualifier Units | RL                     | MDL | Dilution Factor |
|----------------|-------------------------|-----------------|-----------------|------------------------|-----|-----------------|
| Petroleum Hydr | rocarbon Quantitation - | Westborough Lab |                 |                        |     |                 |
| ТРН            |                         | ND              | ug/kg           | 43600                  |     | 1               |
| Sur            | rogate                  | % Recovery      | Qualifier       | Acceptance<br>Criteria |     |                 |
| o-T            | erphenyl                | 92              |                 | 40-140                 |     |                 |



|                    |                |                | Serial_N         | o:10271613:37  |
|--------------------|----------------|----------------|------------------|----------------|
| Project Name:      | SRP            |                | Lab Number:      | L1629727       |
| Project Number:    | 23840.003      |                | Report Date:     | 10/27/16       |
|                    |                | SAMPLE RESULTS |                  |                |
| Lab ID:            | L1629727-15    |                | Date Collected:  | 09/21/16 09:03 |
| Client ID:         | C-11 (48-89)   |                | Date Received:   | 09/21/16       |
| Sample Location:   | LITTLE BAY     |                | Field Prep:      | Not Specified  |
| Matrix:            | Sediment       |                | Extraction Metho | d:EPA 3546     |
| Analytical Method: | 1,8015C(M)     |                | Extraction Date: | 10/03/16 09:04 |
| Analytical Date:   | 10/04/16 01:19 |                |                  |                |
| Analyst:           | DG             |                |                  |                |
| Percent Solids:    | 67%            |                |                  |                |

| Parameter         |                     | Result          | Qualifier U | nits | RL                     | MDL | Dilution Factor |
|-------------------|---------------------|-----------------|-------------|------|------------------------|-----|-----------------|
| Petroleum Hydroca | rbon Quantitation - | Westborough Lab |             |      |                        |     |                 |
| ТРН               |                     | ND              | ug          | /kg  | 47800                  |     | 1               |
| Surroga           | te                  | % Recovery      | Qualifier   |      | Acceptance<br>Criteria |     |                 |
| o-Terph           | enyl                | 94              |             |      | 40-140                 |     |                 |



| Project Name:<br>Project Number:                   | SRP<br>23840.003                   |                                                | Lab Number:<br>Report Date:            | L1629727<br>10/27/16       |
|----------------------------------------------------|------------------------------------|------------------------------------------------|----------------------------------------|----------------------------|
|                                                    |                                    | Method Blank Analysis<br>Batch Quality Control |                                        |                            |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 1,8015C(M)<br>10/03/16 12:09<br>DG |                                                | Extraction Method:<br>Extraction Date: | EPA 3546<br>10/02/16 12:28 |

| Parameter                         | Result      | Qualifier   | Units         | RL    | MDL               |
|-----------------------------------|-------------|-------------|---------------|-------|-------------------|
| Petroleum Hydrocarbon Quantitatio | on - Westbo | rough Lab f | or sample(s): | 01-06 | Batch: WG938023-1 |
| ТРН                               | ND          |             | ug/kg         | 31600 |                   |
|                                   |             |             |               |       |                   |

|             |           |           | Acceptance |  |
|-------------|-----------|-----------|------------|--|
| Surrogate   | %Recovery | Qualifier | Criteria   |  |
|             |           |           |            |  |
| o-Terphenyl | 80        |           | 40-140     |  |



| Project Name:<br>Project Number:                   | SRP<br>23840.003                   |                                                | Lab Number:<br>Report Date:            | L1629727<br>10/27/16       |
|----------------------------------------------------|------------------------------------|------------------------------------------------|----------------------------------------|----------------------------|
| Froject Number.                                    | 23840.003                          | Method Blank Analysis<br>Batch Quality Control | Report Date.                           | 10/27/16                   |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 1,8015C(M)<br>10/03/16 20:27<br>DG |                                                | Extraction Method:<br>Extraction Date: | EPA 3546<br>10/03/16 09:04 |

| Parameter                         | Result      | Qualifier    | Units         | RL    | MDL               |
|-----------------------------------|-------------|--------------|---------------|-------|-------------------|
| Petroleum Hydrocarbon Quantitatio | on - Westbo | rough Lab fo | or sample(s): | 09-15 | Batch: WG938163-1 |
| ТРН                               | ND          |              | ug/kg         | 32300 |                   |

|             |           | Acceptance |          |  |  |
|-------------|-----------|------------|----------|--|--|
| Surrogate   | %Recovery | Qualifier  | Criteria |  |  |
|             |           |            |          |  |  |
| o-Terphenyl | 99        |            | 40-140   |  |  |



| Project Name:<br>Project Number:                   | SRP<br>23840.003                   |                                                | Lab Number:<br>Report Date:            | L1629727<br>10/27/16       |
|----------------------------------------------------|------------------------------------|------------------------------------------------|----------------------------------------|----------------------------|
|                                                    |                                    | Method Blank Analysis<br>Batch Quality Control |                                        |                            |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 1,8015C(M)<br>10/04/16 10:59<br>DG |                                                | Extraction Method:<br>Extraction Date: | EPA 3546<br>10/03/16 16:32 |

| Parameter                         | Result      | Qualifier  | Units        | RL    | MDL               |
|-----------------------------------|-------------|------------|--------------|-------|-------------------|
| Petroleum Hydrocarbon Quantitatio | n - Westbor | ough Lab f | or sample(s) | 07-08 | Batch: WG938314-1 |
| ТРН                               | ND          |            | ug/kg        | 32600 |                   |

|             |           | Acceptance |          |  |  |
|-------------|-----------|------------|----------|--|--|
| Surrogate   | %Recovery | Qualifier  | Criteria |  |  |
|             |           |            |          |  |  |
| o-Terphenyl | 75        |            | 40-140   |  |  |



10/27/16

## Lab Control Sample Analysis

| Batch Quality Control | Lab Number:  |
|-----------------------|--------------|
|                       | Report Date: |

| Parameter                               | LCS<br>%Recovery    | Qual        | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-----------------------------------------|---------------------|-------------|-------------------|-----------|---------------------|-----|------|---------------|--|
| Petroleum Hydrocarbon Quantitation - We | estborough Lab Asso | ciated samp | le(s): 01-06 E    | Batch: WG | 938023-2            |     |      |               |  |
| ТРН                                     | 88                  |             | -                 |           | 40-140              | -   |      | 40            |  |

| Surrogate   | LCS<br>%Recovery |  |  | Qual | Acceptance<br>Criteria |
|-------------|------------------|--|--|------|------------------------|
| o-Terphenyl | 75               |  |  |      | 40-140                 |



Project Name:

SRP

**Project Number:** 23840.003

10/27/16

## Lab Control Sample Analysis

| Ва | tch Quality Control | Lab Number:  |
|----|---------------------|--------------|
|    |                     | Report Date: |

| Parameter                          | LCS<br>%Recovery G        | LCSD<br>Qual %Recovery | %Recovery<br>Qual Limits | RPD | RPD<br>Qual Limits |  |
|------------------------------------|---------------------------|------------------------|--------------------------|-----|--------------------|--|
| Petroleum Hydrocarbon Quantitation | - Westborough Lab Associa | ated sample(s): 09-15  | Batch: WG938163-2        |     |                    |  |
| ТРН                                | 99                        | -                      | 40-140                   | -   | 40                 |  |

| ļ | Surrogate   | LCS<br>%Recovery Qual |  | LCSD<br>%Recovery Qual |  | Acceptance<br>Criteria |  |
|---|-------------|-----------------------|--|------------------------|--|------------------------|--|
|   | o-Terphenyl | 86                    |  |                        |  | 40-140                 |  |



Project Name:

Project Number:

SRP

23840.003

10/27/16

## Lab Control Sample Analysis

| Batch Quality Control | Lab Number:  |
|-----------------------|--------------|
|                       | Report Date: |

| Parameter                            | LCS<br>%Recovery     | Qual %          | LCSD<br>&Recovery | Qual       | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------|----------------------|-----------------|-------------------|------------|---------------------|-----|------|---------------|--|
| Petroleum Hydrocarbon Quantitation - | Westborough Lab Asso | ciated sample(s | s): 07-08         | Batch: WG9 | 38314-2             |     |      |               |  |
| TPH                                  | 86                   |                 | -                 |            | 40-140              | -   |      | 40            |  |

|             | LCS       |      | LCSD      |      | Acceptance |  |
|-------------|-----------|------|-----------|------|------------|--|
| Surrogate   | %Recovery | Qual | %Recovery | Qual | Criteria   |  |
|             | 22        |      |           |      | 10.1.10    |  |
| o-Terphenyl | 82        |      |           |      | 40-140     |  |



Project Name:

SRP

**Project Number:** 23840.003

### Matrix Spike Analysis

| Project Name:   | SRP       | Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-----------------------|--------------|----------|
| Project Number: | 23840.003 |                       | Report Date: | 10/27/16 |

|                                           | Native             | MS          | MS         | MS              | MS         | D     | MSD          | Re       | ecovery |           | ŀ        | RPD     |       |
|-------------------------------------------|--------------------|-------------|------------|-----------------|------------|-------|--------------|----------|---------|-----------|----------|---------|-------|
| Parameter                                 | Sample             | Added       | Found      | %Recovery       | Qual Fou   | nd    | %Recovery    | Qual L   | imits   | RPD       | Qual L   | imits   |       |
| Petroleum Hydrocarbon Q<br>ID: C-6 (0-48) | uantitation - West | borough Lab | Associated | sample(s): 01-0 | 6 QC Batch | ID: V | NG938023-3 V | VG938023 | -4 QC S | Sample: I | L1629727 | -01 Cli | lient |
| ТРН                                       | ND                 | 194000      | 195000     | 101             | 1760       | 000   | 93           |          | 40-140  | 10        |          | 40      |       |

|             | MS                   | MSD                  | Acceptance |
|-------------|----------------------|----------------------|------------|
| Surrogate   | % Recovery Qualifier | % Recovery Qualifier | Criteria   |
| o-Terphenyl | 99                   | 92                   | 40-140     |



## METALS



| Drainet Nerrei      | 000       |           |       |       |       |          |                |                | 140007    | 07         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Name:       | SRP       |           |       |       |       |          | Lab Nur        | nder:          | L16297    | 27         |         |
| Project Number:     | 23840     | .003      |       |       |       |          | Report I       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-01    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 10:10    |         |
| Client ID:          | C-6 (0    | -48)      |       |       |       |          | Date Re        | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | cified     |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 68%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 9.14      |           | mg/kg | 0.047 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.130     |           | mg/kg | 0.019 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 22.4      |           | mg/kg | 0.186 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 9.15      |           | mg/kg | 0.186 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 6.03      |           | mg/kg | 0.279 |       | 10       | 10/11/16 15:00 | 10/13/16 15:02 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.018 |       | 5        | 10/11/16 14:49 | 10/13/16 14:14 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 15.6      |           | mg/kg | 0.093 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 47.2      |           | mg/kg | 0.930 |       | 2        | 10/11/16 15:00 | 10/13/16 14:10 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Num        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | 0.003     |       |       |       |          | Report D       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-02    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 12:02    |         |
| Client ID:          | C-7 (0    | -48)      |       |       |       |          | Date Red       | eived:         | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | p:             | Not Spe   | ecified    |         |
| Matrix:             | Sedim     | ient      |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 72%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 7.17      |           | mg/kg | 0.035 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.064     |           | mg/kg | 0.014 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 16.7      |           | mg/kg | 0.140 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 6.02      |           | mg/kg | 0.140 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 4.07      |           | mg/kg | 0.042 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.017 |       | 5        | 10/11/16 14:49 | 10/13/16 14:24 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 11.5      |           | mg/kg | 0.070 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 34.5      |           | mg/kg | 0.701 |       | 2        | 10/11/16 15:00 | 10/13/16 14:26 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |       |       |          | Report D       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-03    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 12:58    |         |
| Client ID:          | C-1       |           |       |       |       |          | Date Red       | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | p:             | Not Spe   | cified     |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 59%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 10.7      |           | mg/kg | 0.046 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.187     |           | mg/kg | 0.018 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 36.9      |           | mg/kg | 0.183 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 10.5      |           | mg/kg | 0.183 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 11.7      |           | mg/kg | 0.275 |       | 10       | 10/11/16 15:00 | 10/13/16 15:12 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | 0.033     |           | mg/kg | 0.022 |       | 5        | 10/11/16 14:49 | 10/13/16 14:34 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 17.9      |           | mg/kg | 0.092 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 58.2      |           | mg/kg | 0.916 |       | 2        | 10/11/16 15:00 | 10/13/16 14:28 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |



|                     |           |           |       |       |       |          |                | _              |           |            |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L162972   | 27         |         |
| Project Number:     | 23840     | 0.003     |       |       |       |          | Report D       | Date:          | 10/27/10  | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-04    |       |       |       |          | Date Col       | lected:        | 09/20/10  | 6 13:05    |         |
| Client ID:          | C-2       |           |       |       |       |          | Date Red       | ceived:        | 09/20/10  | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | cified     |         |
| Matrix:             | Sedim     | ient      |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 61%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 10.4      |           | mg/kg | 0.049 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.188     |           | mg/kg | 0.020 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 29.9      |           | mg/kg | 0.195 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 9.54      |           | mg/kg | 0.195 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 7.49      |           | mg/kg | 0.058 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | 0.025     |           | mg/kg | 0.018 |       | 5        | 10/11/16 14:49 | 10/13/16 14:37 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 17.2      |           | mg/kg | 0.097 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 54.6      |           | mg/kg | 0.974 |       | 2        | 10/11/16 15:00 | 10/13/16 14:30 | EPA 3050B | 1,6020A    | DB      |
| ,                   |           |           | 5.5   |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |       |       |          | Report D       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-05    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 13:36    |         |
| Client ID:          | C-3       |           |       |       |       |          | Date Red       | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | ecified    |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 63%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 9.94      |           | mg/kg | 0.048 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.185     |           | mg/kg | 0.019 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 32.5      |           | mg/kg | 0.193 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 9.79      |           | mg/kg | 0.193 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 8.36      |           | mg/kg | 0.058 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | 0.041     |           | mg/kg | 0.019 |       | 5        | 10/11/16 14:49 | 10/13/16 14:48 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 15.8      |           | mg/kg | 0.097 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 52.0      |           | mg/kg | 0.966 |       | 2        | 10/11/16 15:00 | 10/13/16 14:33 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |       |       |          | Report I       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-06    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 14:05    |         |
| Client ID:          | C-4       |           |       |       |       |          | Date Red       | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | cified     |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 65%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 8.54      |           | mg/kg | 0.045 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.154     |           | mg/kg | 0.018 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 22.2      |           | mg/kg | 0.181 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 7.49      |           | mg/kg | 0.181 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 5.13      |           | mg/kg | 0.054 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.017 |       | 5        | 10/11/16 14:49 | 10/13/16 14:51 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 14.1      |           | mg/kg | 0.091 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 43.3      |           | mg/kg | 0.906 |       | 2        | 10/11/16 15:00 | 10/13/16 14:35 | EPA 3050B | 1,6020A    | DB      |
| · ·                 |           |           | 0.0   |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |       |       |          | Report I       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-07    |       |       |       |          | Date Col       | lected:        | 09/20/1   | 6 10:10    |         |
| Client ID:          | C-6 (4    | 8-61)     |       |       |       |          | Date Red       | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | cified     |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 65%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 11.7      |           | mg/kg | 0.048 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.112     |           | mg/kg | 0.019 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 25.4      |           | mg/kg | 0.192 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 10.2      |           | mg/kg | 0.192 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 5.46      |           | mg/kg | 0.058 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.021 |       | 5        | 10/11/16 14:49 | 10/13/16 14:53 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 18.2      |           | mg/kg | 0.096 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 54.2      |           | mg/kg | 0.960 |       | 2        | 10/11/16 15:00 | 10/13/16 14:37 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |



| Project Name:       | SRP       |           |       |       |       |          | Lab Num                     | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|-----------------------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |       |       |          | Report D                    | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                             |                |           |            |         |
| Lab ID:             | L1629     | 727-08    |       |       |       |          | Date Coll                   | lected:        | 09/20/1   | 6 12:02    |         |
| Client ID:          | C-7 (4    | 8-54)     |       |       |       |          | Date Rec                    | ceived:        | 09/20/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre                   | p:             | Not Spe   | ecified    |         |
| Matrix:             | Sedim     | ent       |       |       |       |          |                             |                |           |            |         |
| Percent Solids:     | 71%       |           |       |       |       | Dilution | Date                        | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared                    | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                             |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                             |                |           |            |         |
| Arsenic, Total      | 6.88      |           | mg/kg | 0.044 |       | 2        | 10/11/16 15:00              | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.057     |           | mg/kg | 0.018 |       | 2        | 10/11/16 15:00              | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 18.0      |           | mg/kg | 0.177 |       | 2        | 10/11/16 15:00 <sup>-</sup> | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 7.35      |           | mg/kg | 0.177 |       | 2        | 10/11/16 15:00 <sup>-</sup> | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 3.91      |           | mg/kg | 0.053 |       | 2        | 10/11/16 15:00 <sup>-</sup> | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.015 |       | 5        | 10/11/16 14:49              | 10/13/16 14:56 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 13.2      |           | mg/kg | 0.089 |       | 2        | 10/11/16 15:00 <sup>-</sup> | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 38.6      |           | mg/kg | 0.887 |       | 2        | 10/11/16 15:00 <sup>-</sup> | 10/13/16 14:39 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           | 0.0   |       |       |          |                             |                |           |            |         |

| Project Name:       | SRP       |           |       |       |       |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | 0.003     |       |       |       |          | Report D       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL | E RES | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-09    |       |       |       |          | Date Col       | lected:        | 09/21/1   | 6 08:35    |         |
| Client ID:          | C-5       |           |       |       |       |          | Date Red       | ceived:        | 09/21/1   | 6          |         |
| Sample Location:    | LITTL     | E BAY     |       |       |       |          | Field Pre      | ep:            | Not Spe   | cified     |         |
| Matrix:             | Sedim     | nent      |       |       |       |          |                |                |           |            |         |
| Percent Solids:     | 68%       |           |       |       |       | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
|                     |           |           |       |       |       |          |                |                |           |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |          |                |                |           |            |         |
| Arsenic, Total      | 7.05      |           | mg/kg | 0.038 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.157     |           | mg/kg | 0.015 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 20.6      |           | mg/kg | 0.152 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 6.61      |           | mg/kg | 0.152 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 4.80      |           | mg/kg | 0.046 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | 0.016     |           | mg/kg | 0.016 |       | 5        | 10/11/16 14:49 | 10/13/16 14:58 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 12.7      |           | mg/kg | 0.076 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 52.8      |           | mg/kg | 0.759 |       | 2        | 10/11/16 15:00 | 10/13/16 14:41 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |       |       |          |                |                |           |            |         |

| Project Name:       | SRP       |           |       |             |          |          | Lab Nun        | nber:          | L16297    | 27         |         |
|---------------------|-----------|-----------|-------|-------------|----------|----------|----------------|----------------|-----------|------------|---------|
| Project Number:     | 23840     | .003      |       |             |          |          | Report D       | Date:          | 10/27/1   | 6          |         |
|                     |           |           |       | SAMPL       | E RES    | ULTS     |                |                |           |            |         |
| Lab ID:             | L1629     | 727-10    |       |             |          |          | Date Col       | lected:        | 09/21/1   | 6 13:00    |         |
| Client ID:          | C-8       |           |       |             | Date Red | ceived:  | 09/21/16       |                |           |            |         |
| Sample Location:    | LITTL     | E BAY     |       | Field Prep: |          | ep:      | Not Spe        | ecified        |           |            |         |
| Matrix:             | Sedim     | ent       |       |             |          |          |                |                |           |            |         |
| Percent Solids:     | 70%       |           |       |             |          | Dilution | Date           | Date           | Prep      | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL          | MDL      | Factor   | Prepared       | Analyzed       | Method    | Method     | Analyst |
| Total Metals - Mans | field Lab |           |       |             |          |          |                |                |           |            |         |
| Arsenic, Total      | 6.56      |           | mg/kg | 0.039       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Cadmium, Total      | 0.114     |           | mg/kg | 0.016       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Chromium, Total     | 13.7      |           | mg/kg | 0.156       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Copper, Total       | 6.04      |           | mg/kg | 0.156       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Lead, Total         | 4.40      |           | mg/kg | 0.047       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.014       |          | 5        | 10/11/16 14:49 | 10/13/16 15:01 | EPA 7474  | 1,7474     | LC      |
| Nickel, Total       | 9.43      |           | mg/kg | 0.078       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
| Zinc, Total         | 36.2      |           | mg/kg | 0.782       |          | 2        | 10/11/16 15:00 | 10/13/16 14:43 | EPA 3050B | 1,6020A    | DB      |
|                     |           |           |       |             |          |          |                |                |           |            |         |



|                     |             |           |       |       |        |             |                | _              |                |            |         |
|---------------------|-------------|-----------|-------|-------|--------|-------------|----------------|----------------|----------------|------------|---------|
| Project Name:       | SRP         |           |       |       |        |             | Lab Nun        | nber:          | L16297         | 27         |         |
| Project Number:     | 23840       | .003      |       |       |        |             | Report I       | Date:          | 10/27/1        | 6          |         |
|                     |             |           |       | SAMPL | .E RES | ULTS        |                |                |                |            |         |
| Lab ID:             | L1629       | 727-11    |       |       |        |             | Date Col       | lected:        | 09/21/16 11:45 |            |         |
| Client ID:          | C-9         |           |       |       |        |             | Date Red       | ceived:        | 09/21/16       |            |         |
| Sample Location:    | LITTL       | E BAY     |       |       |        | Field Prep: |                | Not Spe        | cified         |            |         |
| Matrix:             | Sedim       | ent       |       |       |        |             |                |                |                |            |         |
| Percent Solids:     | 82%         |           |       |       |        | Dilution    | Date           | Date           | Prep           | Analytical |         |
| Parameter           | Result      | Qualifier | Units | RL    | MDL    | Factor      | Prepared       | Analyzed       | Method         | Method     | Analyst |
| T. ( .   N. ( .     | C . I . I I |           |       |       |        |             |                |                |                |            |         |
| Total Metals - Mans | field Lab   |           |       |       |        |             |                |                |                |            |         |
| Arsenic, Total      | 6.40        |           | mg/kg | 0.040 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Cadmium, Total      | 0.022       |           | mg/kg | 0.016 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Chromium, Total     | 17.4        |           | mg/kg | 0.161 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Copper, Total       | 7.64        |           | mg/kg | 0.161 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Lead, Total         | 5.39        |           | mg/kg | 0.048 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Mercury, Total      | ND          |           | mg/kg | 0.013 |        | 5           | 10/11/16 14:49 | 10/13/16 15:03 | EPA 7474       | 1,7474     | LC      |
| Nickel, Total       | 13.2        |           | mg/kg | 0.081 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
| Zinc, Total         | 44.7        |           | mg/kg | 0.805 |        | 2           | 10/11/16 15:00 | 10/13/16 14:45 | EPA 3050B      | 1,6020A    | DB      |
|                     |             |           | 0     |       |        |             |                |                |                |            |         |



| Project Name:        | SRP       |           |       |       |          |                    | Lab Nun          | nber:            | L16297         | 27         |         |
|----------------------|-----------|-----------|-------|-------|----------|--------------------|------------------|------------------|----------------|------------|---------|
| Project Number:      | 23840     | .003      |       |       |          |                    | Report I         | Date:            | 10/27/1        | 6          |         |
|                      |           |           |       | SAMPL | E RES    | ULTS               |                  |                  |                |            |         |
| Lab ID:              | L1629     | 727-12    |       |       |          |                    | Date Col         | lected:          | 09/21/1        | 6 12:20    |         |
| Client ID:           | C-10      |           |       |       | Date Red | ceived:            | 09/21/16         |                  |                |            |         |
| Sample Location:     | LITTLI    | E BAY     |       |       |          |                    | Field Pre        | ep:              | Not Spe        | ecified    |         |
| Matrix:              | Sedim     | ent       |       |       |          |                    |                  |                  |                |            |         |
| Percent Solids:      | 79%       |           |       |       |          | Dilution           | Data             | Dete             | Duen           | Analytical |         |
| Parameter            | Result    | Qualifier | Units | RL    | MDL      | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Prep<br>Method | Method     | Analyst |
| Total Metals - Mansi | field Lab |           |       |       |          |                    |                  |                  |                |            |         |
| Arsenic, Total       | 6.56      |           | mg/kg | 0.032 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Cadmium, Total       | 0.035     |           | mg/kg | 0.013 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Chromium, Total      | 10.9      |           | mg/kg | 0.129 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Copper, Total        | 2.46      |           | mg/kg | 0.129 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Lead, Total          | 2.88      |           | mg/kg | 0.039 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Mercury, Total       | ND        |           | mg/kg | 0.015 |          | 5                  | 10/11/16 14:49   | 10/13/16 15:06   | EPA 7474       | 1,7474     | LC      |
| Nickel, Total        | 6.17      |           | mg/kg | 0.064 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |
| Zinc, Total          | 30.9      |           | mg/kg | 0.643 |          | 2                  | 10/11/16 15:00   | 10/13/16 14:53   | EPA 3050B      | 1,6020A    | DB      |

| Project Name:       | SRP       |           |       |       |       |             | Lab Num        | nber:          | L16297    | 27         |        |
|---------------------|-----------|-----------|-------|-------|-------|-------------|----------------|----------------|-----------|------------|--------|
| Project Number:     | 23840     | .003      |       |       |       |             | Report D       | Date:          | 10/27/1   | 6          |        |
|                     |           |           |       | SAMPL | E RES | ULTS        |                |                |           |            |        |
| Lab ID:             | L1629     | 727-13    |       |       |       |             | Date Col       | lected:        | 09/21/1   | 6 09:03    |        |
| Client ID:          | C-11 (    | 0-48)     |       |       |       |             | Date Rec       | eived:         | 09/21/1   |            |        |
| Sample Location:    | LITTL     | E BAY     |       |       |       | Field Prep: |                | Not Spe        | ecified   |            |        |
| Matrix:             | Sedim     | ent       |       |       |       |             |                |                |           |            |        |
| Percent Solids:     | 69%       |           |       |       |       | Dilution    | Date           | Date           | Prep      | Analytical |        |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor      | Prepared       | Analyzed       | Method    | Method     | Analys |
|                     |           |           |       |       |       |             |                |                |           |            |        |
| Total Metals - Mans | field Lab |           |       |       |       |             |                |                |           |            |        |
| Arsenic, Total      | 7.39      |           | mg/kg | 0.048 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Cadmium, Total      | 0.082     |           | mg/kg | 0.019 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Chromium, Total     | 22.8      |           | mg/kg | 0.190 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Copper, Total       | 8.19      |           | mg/kg | 0.190 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Lead, Total         | 9.39      |           | mg/kg | 0.057 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Mercury, Total      | ND        |           | mg/kg | 0.018 |       | 5           | 10/11/16 14:49 | 10/13/16 15:08 | EPA 7474  | 1,7474     | LC     |
| Nickel, Total       | 14.1      |           | mg/kg | 0.095 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |
| Zinc, Total         | 45.6      |           | mg/kg | 0.953 |       | 2           | 10/11/16 15:00 | 10/13/16 14:55 | EPA 3050B | 1,6020A    | DB     |



| Project Name:        | SRP      |           |       |       |       |             | Lab Nun        | nber:          | L162972        | 27         |         |
|----------------------|----------|-----------|-------|-------|-------|-------------|----------------|----------------|----------------|------------|---------|
| Project Number:      | 23840    | .003      |       |       |       |             | Report [       | Date:          | 10/27/10       |            |         |
| •                    |          |           |       | SAMPL | E RES | ULTS        | •              |                |                |            |         |
| Lab ID:              | L1629    | 727-14    |       |       |       |             | Date Col       | lected:        | 09/21/16 08:44 |            |         |
| Client ID:           | C-12     |           |       |       |       |             | Date Red       | ceived:        | 09/21/16       |            |         |
| Sample Location:     | LITTLE   | E BAY     |       |       |       | Field Prep: |                | Not Spe        | cified         |            |         |
| Matrix:              | Sedim    | ent       |       |       |       |             |                |                |                |            |         |
| Percent Solids:      | 75%      |           |       |       |       | Dilution    | Date           | Date           | Prep           | Analytical |         |
| Parameter            | Result   | Qualifier | Units | RL    | MDL   | Factor      | Prepared       | Analyzed       | Method         | Method     | Analyst |
| Total Metals - Mansf | ield Lab |           |       |       |       |             |                |                |                |            |         |
| Arsenic, Total       | 6.06     |           | mg/kg | 0.038 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Cadmium, Total       | 0.089    |           | mg/kg | 0.015 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Chromium, Total      | 16.8     |           | mg/kg | 0.151 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Copper, Total        | 5.51     |           | mg/kg | 0.151 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Lead, Total          | 4.60     |           | mg/kg | 0.045 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Mercury, Total       | 0.019    |           | mg/kg | 0.013 |       | 5           | 10/11/16 14:49 | 10/13/16 15:35 | EPA 7474       | 1,7474     | LC      |
| Nickel, Total        | 10.7     |           | mg/kg | 0.075 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EPA 3050B      | 1,6020A    | DB      |
| Zinc, Total          | 26.8     |           | mg/kg | 0.754 |       | 2           | 10/11/16 15:00 | 10/13/16 14:57 | EDA 2050B      | 1,6020A    | DB      |



| Project Name:       | SRP       |           |       |       |       |             | Lab Nun        | nber:          | L16297         | 27         |         |
|---------------------|-----------|-----------|-------|-------|-------|-------------|----------------|----------------|----------------|------------|---------|
| -                   |           |           |       |       |       |             |                |                |                |            |         |
| Project Number:     | 23840     | 0.003     |       |       |       |             | Report I       | Jate:          | 10/27/1        | 3          |         |
|                     |           |           |       | SAMPL | E RES | ULTS        |                |                |                |            |         |
| Lab ID:             | L1629     | 727-15    |       |       |       |             | Date Col       | lected:        | 09/21/1        | 6 09:03    |         |
| Client ID:          | C-11 (    | (48-89)   |       |       |       |             | Date Red       | ceived:        | 09/21/16       |            |         |
| Sample Location:    | LITTL     | EBAY      |       |       |       | Field Prep: |                | Not Specified  |                |            |         |
| Matrix:             | Sedim     | ient      |       |       |       |             |                |                |                |            |         |
| Percent Solids:     | 67%       |           |       |       |       | Dilution    | Date           | Date           | Dron           | Analytical |         |
| Parameter           | Result    | Qualifier | Units | RL    | MDL   | Factor      | Prepared       | Analyzed       | Prep<br>Method | Method     | Analyst |
|                     |           |           |       |       |       |             |                |                |                |            |         |
| Total Metals - Mans | field Lab |           |       |       |       |             |                |                |                |            |         |
| Arsenic, Total      | 10.8      |           | mg/kg | 0.038 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Cadmium, Total      | 0.083     |           | mg/kg | 0.015 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Chromium, Total     | 22.7      |           | mg/kg | 0.150 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Copper, Total       | 9.21      |           | mg/kg | 0.150 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Lead, Total         | 4.80      |           | mg/kg | 0.045 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Mercury, Total      | ND        |           | mg/kg | 0.017 |       | 5           | 10/11/16 14:49 | 10/13/16 15:44 | EPA 7474       | 1,7474     | LC      |
| Nickel, Total       | 16.5      |           | mg/kg | 0.075 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
| Zinc, Total         | 49.3      |           | mg/kg | 0.752 |       | 2           | 10/11/16 15:00 | 10/13/16 14:59 | EPA 3050B      | 1,6020A    | DB      |
|                     |           |           |       |       |       |             |                |                |                |            |         |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

Project Name:SRPProject Number:23840.003

### Method Blank Analysis Batch Quality Control

| Parameter              | Result Qualifier       | Units    | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|------------------------|----------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | eld Lab for sample(s): | 01-15 Ba | atch: W | G94094 | 4-1                |                  |                  |                      |         |
| Arsenic, Total         | ND                     | mg/kg    | 0.050   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Cadmium, Total         | ND                     | mg/kg    | 0.020   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Chromium, Total        | ND                     | mg/kg    | 0.200   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Copper, Total          | ND                     | mg/kg    | 0.200   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Lead, Total            | ND                     | mg/kg    | 0.060   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Nickel, Total          | ND                     | mg/kg    | 0.100   |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |
| Zinc, Total            | ND                     | mg/kg    | 1.00    |        | 2                  | 10/11/16 15:00   | 10/13/16 14:03   | 1,6020A              | DB      |

#### **Prep Information**

Digestion Method: EPA 3050B

| Parameter              | Result Qualifier       | Units    | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |    |
|------------------------|------------------------|----------|---------|--------|--------------------|------------------|------------------|----------------------|----|
| Total Metals - Mansfie | eld Lab for sample(s): | 01-15 Ba | atch: W | G94094 | 5-1                |                  |                  |                      |    |
| Mercury, Total         | ND                     | mg/kg    | 0.013   |        | 5                  | 10/11/16 14:49   | 10/13/16 14:09   | 1,7474               | LC |

**Prep Information** 

Digestion Method: EPA 7474



# Lab Control Sample Analysis Batch Quality Control

Lab Number: L1629727 Report Date: 10/27/16

| arameter                                    | LCS<br>%Recovery   |                | CSD<br>covery Qual | %Recovery<br>Limits | RPD | Qual RPD Limits |
|---------------------------------------------|--------------------|----------------|--------------------|---------------------|-----|-----------------|
| otal Metals - Mansfield Lab Associated samp | ele(s): 01-15 Bate | ch: WG940944-2 | SRM Lot Number:    | D091-540            |     |                 |
| Arsenic, Total                              | 98                 |                | -                  | 80-121              | -   | 20              |
| Cadmium, Total                              | 94                 |                | -                  | 83-117              | -   | 20              |
| Chromium, Total                             | 88                 |                | -                  | 80-119              | -   | 20              |
| Copper, Total                               | 102                |                | -                  | 82-117              | -   | 20              |
| Lead, Total                                 | 89                 |                | -                  | 82-118              | -   | 20              |
| Nickel, Total                               | 102                |                | -                  | 83-117              | -   | 20              |
| Zinc, Total                                 | 97                 |                | -                  | 82-118              | -   | 20              |
| tal Metals - Mansfield Lab Associated samp  | ele(s): 01-15 Bate | ch: WG940945-2 | SRM Lot Number:    | D091-540            |     |                 |
| Mercury, Total                              | 108                |                | -                  | 72-128              | -   | 20              |



**Project Name:** 

Project Number:

SRP

23840.003

#### Matrix Spike Analysis Batch Quality Control

Project Name:SRPProject Number:23840.003

 Lab Number:
 L1629727

 Report Date:
 10/27/16

| arameter                     | Native<br>Sample | MS<br>Added    | MS<br>Found | MS<br>%Recovery | Qual  | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits |           |           | RPD<br>Limits |
|------------------------------|------------------|----------------|-------------|-----------------|-------|--------------|------------------|-------------------------|-----------|-----------|---------------|
| Fotal Metals - Mansfield Lab | Associated san   | nple(s): 01-15 | QC Bate     | ch ID: WG940    | 944-4 | WG940944-5   | QC Sample        | e: L1629727-01          | Client ID | D: C-6 (C | )-48)         |
| Arsenic, Total               | 9.14             | 187            | 192         | 98              |       | 190          | 98               | 75-125                  | 1         |           | 20            |
| Cadmium, Total               | 0.130            | 93.6           | 94.1        | 100             |       | 93.0         | 101              | 75-125                  | 1         |           | 20            |
| Chromium, Total              | 22.4             | 187            | 205         | 98              |       | 205          | 99               | 75-125                  | 0         |           | 20            |
| Copper, Total                | 9.15             | 187            | 199         | 101             |       | 197          | 102              | 75-125                  | 1         |           | 20            |
| Lead, Total                  | 6.03             | 187            | 200         | 104             |       | 175          | 92               | 75-125                  | 13        |           | 20            |
| Nickel, Total                | 15.6             | 187            | 209         | 103             |       | 206          | 104              | 75-125                  | 1         |           | 20            |
| Zinc, Total                  | 47.2             | 187            | 217         | 91              |       | 223          | 96               | 75-125                  | 3         |           | 20            |
| otal Metals - Mansfield Lab  | Associated san   | nple(s): 01-15 | QC Bate     | ch ID: WG940    | 945-4 | WG940945-5   | QC Sample        | e: L1629727-01          | Client ID | D: C-6 (C | )-48)         |
| Mercury, Total               | ND               | 0.906          | 0.772       | 85              |       | 0.778        | 85               | 80-120                  | 1         |           | 20            |



#### Lab Duplicate Analysis Batch Quality Control

Project Name:SRPProject Number:23840.003

 Lab Number:
 L1629727

 Report Date:
 10/27/16

| Parameter                                              | Native Sample      | Duplicate Sample    | Units       | RPD        | Qual       | RPD Limits |
|--------------------------------------------------------|--------------------|---------------------|-------------|------------|------------|------------|
| otal Metals - Mansfield Lab Associated sample(s): 01-1 | I5 QC Batch ID: WG | 940944-3 QC Sample: | L1629727-01 | Client ID: | C-6 (0-48) |            |
| Arsenic, Total                                         | 9.14               | 9.41                | mg/kg       | 3          |            | 20         |
| Cadmium, Total                                         | 0.130              | 0.130               | mg/kg       | 0          |            | 20         |
| Chromium, Total                                        | 22.4               | 22.7                | mg/kg       | 1          |            | 20         |
| Copper, Total                                          | 9.15               | 9.52                | mg/kg       | 4          |            | 20         |
| Nickel, Total                                          | 15.6               | 16.6                | mg/kg       | 6          |            | 20         |
| Zinc, Total                                            | 47.2               | 47.7                | mg/kg       | 1          |            | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-7 | I5 QC Batch ID: WG | 940944-3 QC Sample: | L1629727-01 | Client ID: | C-6 (0-48) |            |
| Lead, Total                                            | 6.03               | 6.27                | mg/kg       | 4          |            | 20         |
| otal Metals - Mansfield Lab Associated sample(s): 01-1 | I5 QC Batch ID: WG | 940945-3 QC Sample: | L1629727-01 | Client ID: | C-6 (0-48) |            |
| Mercury, Total                                         | ND                 | ND                  | mg/kg       | NC         |            | 20         |



# INORGANICS & MISCELLANEOUS



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-01 | Date Collected: | 09/20/16 10:10 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-6 (0-48)  | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.16         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.17         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.200        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 1.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 4.00         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 13.1         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 81.4         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 67.6         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 32.4         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

 Project Name:
 SRP

 Project Number:
 23840.003

| Lab ID:    | L1629727-02         | Date Collected: | 09/20/16 12:02 |
|------------|---------------------|-----------------|----------------|
| Client ID: | C-7 (0-48)          | Date Received:  | 09/20/16       |
| Sample Lo  | ocation: LITTLE BAY | Field Prep:     | Not Specified  |
| Matrix:    | Sediment            |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.682        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | 0.754        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.100        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.700        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 4.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 44.9         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 50.0         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 72.0         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 28.0         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name:SRPProject Number:23840.003

| Lab ID:          | L1629727-03 | Date Collected: | 09/20/16 12:58 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-1         | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.63         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | 1.64         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.200        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 1.50         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 3.40         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 6.00         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 88.9         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 58.7         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 41.3         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-04 | Date Collected: | 09/20/16 13:05 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-2         | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.52         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.56         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.200        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 1.40         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 4.70         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 8.00         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 85.7         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | sfield Lab   |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 61.1         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 38.9         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-05 | Date Collected: | 09/20/16 13:36 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-3         | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.41         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.35         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.100        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.700        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 2.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 8.20         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 88.7         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 63.1         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 36.9         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-06 | Date Collected: | 09/20/16 14:05 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-4         | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.22         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.11         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | ND           |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 3.20         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 7.10         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 16.3         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 73.4         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 64.9         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 35.1         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-07 | Date Collected: | 09/20/16 10:10 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-6 (48-61) | Date Received:  | 09/20/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.29         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.27         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | ND           |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.600        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 2.90         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 5.90         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 90.6         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | sfield Lab   |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 64.7         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 35.3         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

 Project Name:
 SRP

 Project Number:
 23840.003

| Lab  | ID:            | L1629727-08 | Date Collected: | 09/20/16 12:02 |
|------|----------------|-------------|-----------------|----------------|
| Clie | ent ID:        | C-7 (48-54) | Date Received:  | 09/20/16       |
| Sar  | nple Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Mat  | rix:           | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.647        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | 0.674        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | ND           |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.100        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 7.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 36.7         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 55.9         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 70.9         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 29.1         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-09 | Date Collected: | 09/21/16 08:35 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-5         | Date Received:  | 09/21/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 1.17         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.05         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.600        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 2.00         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 4.00         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 24.3         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 69.1         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 68.3         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 31.7         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

Project Name:SRPProject Number:23840.003

| Lab ID:          | L1629727-10 | Date Collected: | 09/21/16 13:00 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-8         | Date Received:  | 09/21/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.974        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 1.14         |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.600        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.400        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 8.80         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 66.0         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 24.2         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 70.3         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 29.7         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

#### SAMPLE RESULTS

Lab ID:L1629727-11Client ID:C-9Sample Location:LITTLE BAYMatrix:Sediment

Date Collected:09/21/16 11:45Date Received:09/21/16Field Prep:Not Specified

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.105        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | 0.095        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 2.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 3.40         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 31.6         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 34.0         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 28.7         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 81.7         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 18.3         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



09/21/16 12:20 09/21/16 Not Specified

Lab Number: L1629727 Report Date: 10/27/16

Project Name:SRPProject Number:23840.003

| Lab ID:          | L1629727-12 | Date Collected: |
|------------------|-------------|-----------------|
| Client ID:       | C-10        | Date Received:  |
| Sample Location: | LITTLE BAY  | Field Prep:     |
| Matrix:          | Sediment    |                 |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.197        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 0.191        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 0.100        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 0.400        |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 1.70         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 91.6         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 6.20         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | sfield Lab   |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 78.9         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 21.1         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

| Lab ID:          | L1629727-13 | Date Collected: | 09/21/16 09:03 |
|------------------|-------------|-----------------|----------------|
| Client ID:       | C-11 (0-48) | Date Received:  | 09/21/16       |
| Sample Location: | LITTLE BAY  | Field Prep:     | Not Specified  |
| Matrix:          | Sediment    |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.768        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | CM      |
| Total Organic Carbon (Rep2) | 0.822        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 1.10         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 1.70         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 5.90         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 35.8         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 55.5         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 68.6         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 31.4         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

Project Name:SRPProject Number:23840.003

| Lab ID:         | L1629727-14   | Date Collected: | 09/21/16 08:44 |
|-----------------|---------------|-----------------|----------------|
| Client ID:      | C-12          | Date Received:  | 09/21/16       |
| Sample Locatior | ו: LITTLE BAY | Field Prep:     | Not Specified  |
| Matrix:         | Sediment      |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.569        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | 0.493        |           | %     | 0.010 |     | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | 2.20         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 2.10         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 7.10         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 39.2         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 49.4         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 75.4         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 24.6         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



Lab Number: L1629727 Report Date: 10/27/16

Project Name: SRP Project Number: 23840.003

#### SAMPLE RESULTS

| Lab ID:          | L1629727-15  | Date Collected: | 09/21/16 09:03 |
|------------------|--------------|-----------------|----------------|
| Client ID:       | C-11 (48-89) | Date Received:  | 09/21/16       |
| Sample Location: | LITTLE BAY   | Field Prep:     | Not Specified  |
| Matrix:          | Sediment     |                 |                |

| Parameter                   | Result       | Qualifier | Units | RL    | MDL | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|--------------|-----------|-------|-------|-----|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - Ma   | ansfield Lab |           |       |       |     |                    |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | 0.947        |           | %     | 0.010 |     | 1                  | -                | 10/11/16 13:10   | 1,9060A              | AR      |
| Total Organic Carbon (Rep2) | 0.924        |           | %     | 0.010 |     | 1                  | -                | 10/11/16 13:10   | 1,9060A              | AR      |
| RIM Grain Size Analysis -   | Mansfield L  | ab        |       |       |     |                    |                  |                  |                      |         |
| % Total Gravel              | ND           |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Coarse Sand               | 1.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Medium Sand               | 4.30         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Fine Sand                 | 12.6         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| % Total Fines               | 81.8         |           | %     | 0.100 | NA  | 1                  | -                | 10/12/16 10:08   | 12,D422              | AR      |
| General Chemistry - Mans    | field Lab    |           |       |       |     |                    |                  |                  |                      |         |
| Solids, Total               | 66.8         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |
| Moisture                    | 33.2         |           | %     | 0.100 |     | 1                  | -                | 10/05/16 14:25   | 121,2540G            | SP      |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

## Method Blank Analysis Batch Quality Control

| Parameter                   | Result Qua       | lifier Units   | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------------|------------------|----------------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Organic Carbon - M    | ansfield Lab for | sample(s): 01- | 14 Bate | ch: WG | 940886-1           |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | ND               | %              | 0.010   |        | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon (Rep2) | ND               | %              | 0.010   |        | 1                  | -                | 10/10/16 09:20   | 1,9060A              | СМ      |
| Total Organic Carbon - M    | ansfield Lab for | sample(s): 15  | Batch:  | WG94   | 1002-1             |                  |                  |                      |         |
| Total Organic Carbon (Rep1) | ND               | %              | 0.010   |        | 1                  | -                | 10/11/16 11:19   | 1,9060A              | AR      |
| Total Organic Carbon (Rep2) | ND               | %              | 0.010   |        | 1                  | -                | 10/11/16 11:19   | 1,9060A              | AR      |



# Matrix Spike Analysis

| Project Name:   | SRP       | Batch Quality Control | Lab Number:  | L1629727 |
|-----------------|-----------|-----------------------|--------------|----------|
| Project Number: | 23840.003 |                       | Report Date: | 10/27/16 |

| Parameter                                | Native<br>Sample | MS<br>Added  | MS<br>Found | MS<br>%Recovery | MSD<br>Qual Found | MSD<br>%Recovery | Recovery<br>Qual Limits I | RPD Qu    | RPD<br>al Limits |
|------------------------------------------|------------------|--------------|-------------|-----------------|-------------------|------------------|---------------------------|-----------|------------------|
| Total Organic Carbon - Mansfie<br>(0-48) | ld Lab Assoc     | iated sample | e(s): 01-14 | QC Batch ID     | : WG940886-4      | WG940886-5 (     | QC Sample: L1629727       | '-01 Clie | ent ID: C-6      |
| Total Organic Carbon (Rep1)              | 1.16             | 0.723        | 1.94        | 108             | 2.08              | 109              | 75-125                    | 7         | 25               |
| Total Organic Carbon (Rep2)              | 1.17             | 0.641        | 1.84        | 104             | 2.96              | 105              | 75-125                    | 47 0      | Q 25             |
| Total Organic Carbon - Mansfie<br>Sample | ld Lab Assoc     | iated sample | e(s): 15 Q  | C Batch ID: W   | G941002-4 WG      | 941002-5 QC      | Sample: L1629586-20       | ) Client  | ID: MS           |
| Total Organic Carbon (Rep1)              | 0.196            | 0.715        | 0.942       | 104             | 0.852             | 104              | 75-125                    | 10        | 25               |
| Total Organic Carbon (Rep2)              | 0.199            | 0.622        | 0.839       | 103             | 0.996             | 104              | 75-125                    | 17        | 25               |



# Lab Duplicate Analysis Batch Quality Control

**Project Name:** SRP Project Number: 23840.003

| Parameter                                       | Native Sar          | nple Duplicate San      | nple Units     | RPD            | Qual         | <b>RPD Limits</b> |
|-------------------------------------------------|---------------------|-------------------------|----------------|----------------|--------------|-------------------|
| General Chemistry - Mansfield Lab Associated sa | mple(s): 01-15 Q    | C Batch ID: WG939164-1  | QC Sample: L1  | 629727-01 Cli  | ient ID: C-6 | (0-48)            |
| Solids, Total                                   | 67.6                | 66.2                    | %              | 2              |              | 10                |
| Moisture                                        | 32.4                | 33.8                    | %              | 4              |              | 10                |
| Total Organic Carbon - Mansfield Lab Associated | sample(s): 01-14    | QC Batch ID: WG940886-3 | QC Sample:     | L1629727-01    | Client ID: C | 2-6 (0-48)        |
| Total Organic Carbon (Rep1)                     | 1.16                | 1.10                    | %              | 5              |              | 25                |
| Total Organic Carbon (Rep2)                     | 1.17                | 1.20                    | %              | 3              |              | 25                |
| Total Organic Carbon - Mansfield Lab Associated | sample(s): 15 Q     | C Batch ID: WG941002-3  | QC Sample: L16 | 629586-20 Clie | ent ID: DUF  | P Sample          |
| Total Organic Carbon (Rep1)                     | 0.196               | 0.203                   | %              | 4              |              | 25                |
| Total Organic Carbon (Rep2)                     | 0.199               | 0.215                   | %              | 8              |              | 25                |
| RIM Grain Size Analysis - Mansfield Lab Associa | ted sample(s): 01-1 | 5 QC Batch ID: WG94128  | 3-1 QC Sampl   | e: L1629727-0  | 01 Client ID | : C-6 (0-48)      |
| % Total Gravel                                  | 0.200               | ND                      | %              | NC             |              | 25                |
| % Coarse Sand                                   | 1.30                | 1.30                    | %              | 0              |              | 25                |
| % Medium Sand                                   | 4.00                | 3.10                    | %              | 25             |              | 25                |
| % Fine Sand                                     | 13.1                | 11.5                    | %              | 13             | _            | 25                |
| % Total Fines                                   | 81.4                | 84.1                    | %              | 3              |              | 25                |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

#### S.R.M. Standard Quality Control

#### Standard Reference Material (SRM): WG940886-2

| Parameter                   | % Recovery | Qual | QC Criteria |
|-----------------------------|------------|------|-------------|
| Total Organic Carbon (Rep1) | 86         |      | 75-125      |
| Total Organic Carbon (Rep2) | 90         |      | 75-125      |



 Lab Number:
 L1629727

 Report Date:
 10/27/16

#### S.R.M. Standard Quality Control

#### Standard Reference Material (SRM): WG941002-2

| Parameter                   | % Recovery | Qual | QC Criteria |
|-----------------------------|------------|------|-------------|
| Total Organic Carbon (Rep1) | 101        |      | 75-125      |
| Total Organic Carbon (Rep2) | 88         |      | 75-125      |



Lab Number: L1629727 Report Date: 10/27/16

Serial\_No:10271613:37

## Project Name: SRP Project Number: 23840.003

### Sample Receipt and Container Information

Were project specific reporting limits specified? YES

## Reagent H2O Preserved Vials Frozen on: 09/21/2016 02:24

#### Cooler Information Custody Seal Cooler A Absent

| 7. | 71000111 |
|----|----------|
| В  | Absent   |

| Container Information Temp |                                  |        |     |       |      |        |                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|----------------------------|----------------------------------|--------|-----|-------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Container ID               | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-01A               | Vial MeOH preserved              | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| L1629727-01B               | Vial water preserved             | А      | N/A | 4.1   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| L1629727-01C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| L1629727-01D               | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |  |  |  |  |
| L1629727-01E               | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                      |  |  |  |  |
| L1629727-01F               | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                             |  |  |  |  |
| L1629727-01G               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                      |  |  |  |  |
| L1629727-01H               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| L1629727-02A               | Vial MeOH preserved              | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| L1629727-02B               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |
| L1629727-02C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |  |  |  |  |



#### Serial\_No:10271613:37

| Container Information Temp |                                  |        |     |       |      |        |                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----------------------------|----------------------------------|--------|-----|-------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Container ID               | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| L1629727-02D               | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-CD-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |  |  |  |  |
| L1629727-02E               | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                        |  |  |  |  |
| L1629727-02F               | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                               |  |  |  |  |
| L1629727-02G               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                        |  |  |  |  |
| L1629727-02H               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| L1629727-03A               | Vial MeOH preserved              | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-03B               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-03C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-03D               | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-CC-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180)            |  |  |  |  |
| L1629727-03E               | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                        |  |  |  |  |
| L1629727-03F               | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                               |  |  |  |  |
| L1629727-03G               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                        |  |  |  |  |
| L1629727-03H               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| L1629727-04A               | Vial MeOH preserved              | А      | N/A | 4.1   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-04B               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-04C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |

#### Serial\_No:10271613:37

| Container Information Temp |                                  |        |     |       |      |        |                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----------------------------|----------------------------------|--------|-----|-------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Container ID               | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| L1629727-04D               | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-CD-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |  |  |  |  |
| L1629727-04E               | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                        |  |  |  |  |
| L1629727-04F               | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                               |  |  |  |  |
| L1629727-04G               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                        |  |  |  |  |
| L1629727-04H               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| L1629727-05A               | Vial MeOH preserved              | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-05B               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-05C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-05D               | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-CC-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180)            |  |  |  |  |
| L1629727-05E               | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                        |  |  |  |  |
| L1629727-05F               | Glass 60ml unpreserved split     | A      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                               |  |  |  |  |
| L1629727-05G               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                        |  |  |  |  |
| L1629727-05H               | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| L1629727-06A               | Vial MeOH preserved              | А      | N/A | 4.1   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-06B               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |
| L1629727-06C               | Vial water preserved             | А      | N/A | 4.1   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                                |  |  |  |  |

#### Serial\_No:10271613:37

Lab Number: L1629727 Report Date: 10/27/16

| Container Info | ormation                         |        |     | Temp  |      |        |                                                                                                                                                                                                                                                                                                   |
|----------------|----------------------------------|--------|-----|-------|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                                       |
| L1629727-06D   | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-XN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-CD-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-06E   | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                   |
| L1629727-06F   | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                    |
| L1629727-06G   | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                             |
| L1629727-06H   | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                          |
| L1629727-07D   | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-CD-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-07E   | Plastic 8oz unpreserved for Grai | A      | N/A | 4.1   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                             |
| L1629727-07F   | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                    |
| L1629727-07G   | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                             |
| L1629727-07H   | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                          |
| L1629727-08D   | Glass 120ml/4oz unpreserved      | A      | N/A | 4.1   | Υ    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-CR-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-                                                            |

6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)



#### Serial\_No:10271613:37

Lab Number: L1629727 Report Date: 10/27/16

Analysis(\*)

A2-RIMHYDRO-CSAND(),A2-RIMHYDRO-MSAND(),A2-

| Container Info      | ormation                         |        |     | Temp  |      |        |
|---------------------|----------------------------------|--------|-----|-------|------|--------|
| <b>Container ID</b> | Container Type                   | Cooler | рΗ  | deg Ċ | Pres | Seal   |
| L1629727-08E        | Plastic 8oz unpreserved for Grai | А      | N/A | 4.1   | Y    | Absent |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
| L1629727-08F        | Glass 60ml unpreserved split     | А      | N/A | 4.1   | Y    | Absent |
| L1629727-08G        | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent |
| L1629727-08H        | Amber 120ml unpreserved          | А      | N/A | 4.1   | Y    | Absent |
| L1629727-09A        | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09B        | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09C        | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09D        | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09E        | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
| <b>.</b>            |                                  | _      |     |       |      |        |
| L1629727-09F        | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09G        | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent |
| L1629727-09H        | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent |
|                     |                                  |        |     |       |      |        |
|                     |                                  |        |     |       |      |        |
| L1629727-10A        | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent |
| L1629727-10B        | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent |
| L1629727-10C        | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent |
| L1629727-10D        | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent |
| L1629727-10E        | Glass 120ml/4oz unpreserved      | в      | N/A | 4.7   | Y    | Absent |
|                     |                                  |        |     |       |      |        |

#### RIMHYDRO-TFINE(), A2-RIMHYDRO-TGRAVEL(),A2-RIMHYDRO-FSAND() HOLD-EPH(14), TPH-DRO-D(14) SUB-DIOXIN-1613B(365) A2-SUB() HOLD-8260(14) HOLD-8260(14) HOLD-8260(14) HOLD-EPH(14), TPH-DRO-D(14) A2-PB-6020T(180), A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7), A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP 3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180) A2-SUB() SUB-DIOXIN-1613B(365) A2-RIMHYDRO-CSAND(),A2-RIMHYDRO-MSAND(), A2-RIMHYDRO-TFINE(),A2-RIMHYDRO-TGRAVEL(),A2-RIMHYDRO-FSAND() HOLD-8260(14) HOLD-8260(14)

HOLD-8260(14)

HOLD-EPH(14),TPH-DRO-D(14)

A2-PB-6020T(180),A2-RIM-PAH/PCBCONG(14),A2-MOISTURE-2540(7),A2-NI-6020T(180),A2-ZN-6020T(180),A2-HG-7474T(28),A2-CR-6020T(180),A2-TS(7),A2-AS-6020T(180),A2-CD-6020T(180),A2-PREP-3050:2T(180),A2-TOC-9060-2REPS(28),A2-CU-6020T(180),A2-PREP-3050:1T(180)



#### Serial\_No:10271613:37

| Container Info | ormation                         |        |     | Temp  |      |        |                                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------|--------|-----|-------|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                   | Cooler | рН  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                                                |
| L1629727-10F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                   |
| L1629727-10G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                      |
| L1629727-10H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                      |
| L1629727-11A   | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-11B   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-11C   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-11D   | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                             |
| L1629727-11E   | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:1T(180)                       |
| L1629727-11F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                   |
| L1629727-11G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                                      |
| L1629727-11H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                                      |
| L1629727-12A   | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-12B   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-12C   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                                              |
| L1629727-12D   | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                                             |
| L1629727-12E   | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-TOC-9060-<br>2REPS(28),A2-CU-<br>6020T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-12F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                                                   |

#### Serial\_No:10271613:37

| Container Info | ormation                         |        |     | Temp  |      |        |                                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------|--------|-----|-------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                          |
| L1629727-12G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                |
| L1629727-12H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                |
| L1629727-13A   | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-13B   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-13C   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-13D   | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                       |
| L1629727-13E   | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-13F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                             |
| L1629727-13G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                |
| L1629727-13H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                |
| L1629727-14A   | Vial MeOH preserved              | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-14B   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-14C   | Vial water preserved             | В      | N/A | 4.7   | Y    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-14D   | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                       |
| L1629727-14E   | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-14F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                             |
| L1629727-14G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                |



#### Serial\_No:10271613:37

| Container Info | ormation                         |        |     | Temp  |      |        |                                                                                                                                                                                                                                                                                      |
|----------------|----------------------------------|--------|-----|-------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                   | Cooler | рΗ  | deg C | Pres | Seal   | Analysis(*)                                                                                                                                                                                                                                                                          |
| L1629727-14H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                |
| L1629727-15A   | Vial MeOH preserved              | В      | N/A | 4.7   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-15B   | Vial water preserved             | В      | N/A | 4.7   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-15C   | Vial water preserved             | В      | N/A | 4.7   | Υ    | Absent | HOLD-8260(14)                                                                                                                                                                                                                                                                        |
| L1629727-15D   | Glass 60ml unpreserved split     | В      | N/A | 4.7   | Y    | Absent | HOLD-EPH(14),TPH-DRO-<br>D(14)                                                                                                                                                                                                                                                       |
| L1629727-15E   | Glass 120ml/4oz unpreserved      | В      | N/A | 4.7   | Y    | Absent | A2-PB-6020T(180),A2-RIM-<br>PAH/PCBCONG(14),A2-<br>MOISTURE-2540(7),A2-NI-<br>6020T(180),A2-ZN-<br>6020T(180),A2-HG-<br>7474T(28),A2-CR-<br>6020T(180),A2-TS(7),A2-AS-<br>6020T(180),A2-CD-<br>6020T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:2T(180),A2-PREP-<br>3050:1T(180) |
| L1629727-15F   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | A2-SUB()                                                                                                                                                                                                                                                                             |
| L1629727-15G   | Amber 120ml unpreserved          | В      | N/A | 4.7   | Y    | Absent | SUB-DIOXIN-1613B(365)                                                                                                                                                                                                                                                                |
| L1629727-15H   | Plastic 8oz unpreserved for Grai | В      | N/A | 4.7   | Y    | Absent | A2-RIMHYDRO-CSAND(),A2-<br>RIMHYDRO-MSAND(),A2-<br>RIMHYDRO-TFINE(),A2-<br>RIMHYDRO-TGRAVEL(),A2-<br>RIMHYDRO-FSAND()                                                                                                                                                                |



## Project Name: SRP

#### **Project Number:** 23840.003

# Lab Number: L1629727

#### **Report Date:** 10/27/16

#### GLOSSARY

#### Acronyms

| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.                                                                                                                                                                                                                                                  |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

#### Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report



| Project Name:   | SRP       | Lab Number:  | L1629727 |
|-----------------|-----------|--------------|----------|
| Project Number: | 23840.003 | Report Date: | 10/27/16 |

#### Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

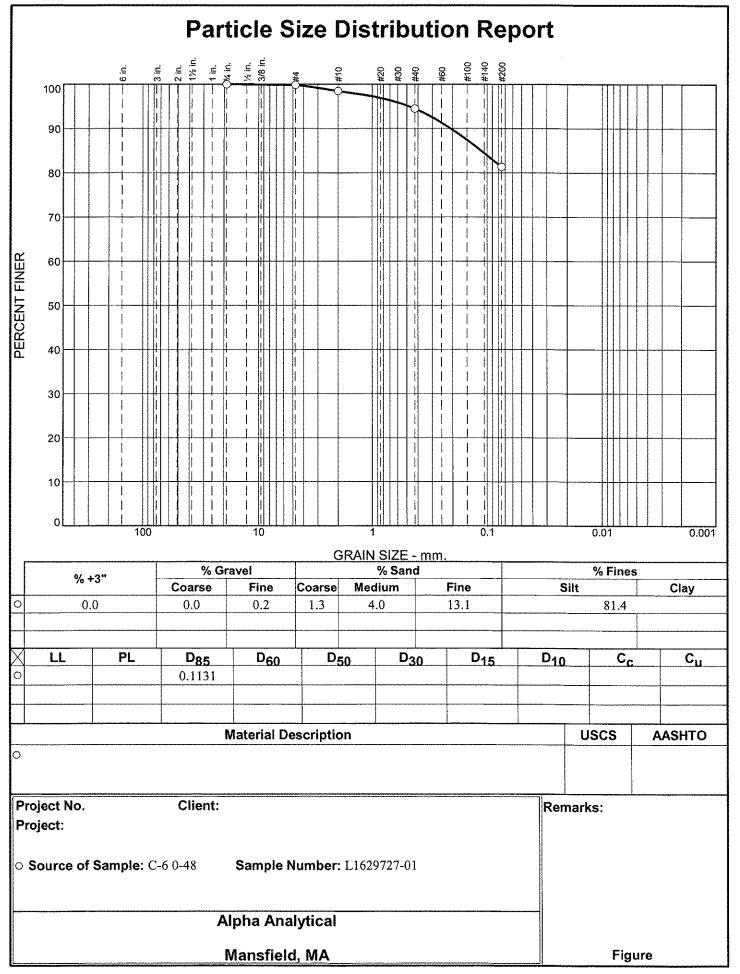


 Lab Number:
 L1629727

 Report Date:
 10/27/16

#### REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 12 Annual Book of ASTM Standards. (American Society for Testing and Materials) ASTM International.
- 105 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997 in conjunction with NOAA Technical Memorandum NMFS-NWFSC-59: Extraction, Cleanup and GC/MS Analysis of Sediments and Tissues for Organic Contaminants, March 2004 and the Determination of Pesticides and PCBs in Water and Oil/Sediment by GC/MS: Method 680, EPA 01A0005295, November 1985.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.


#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



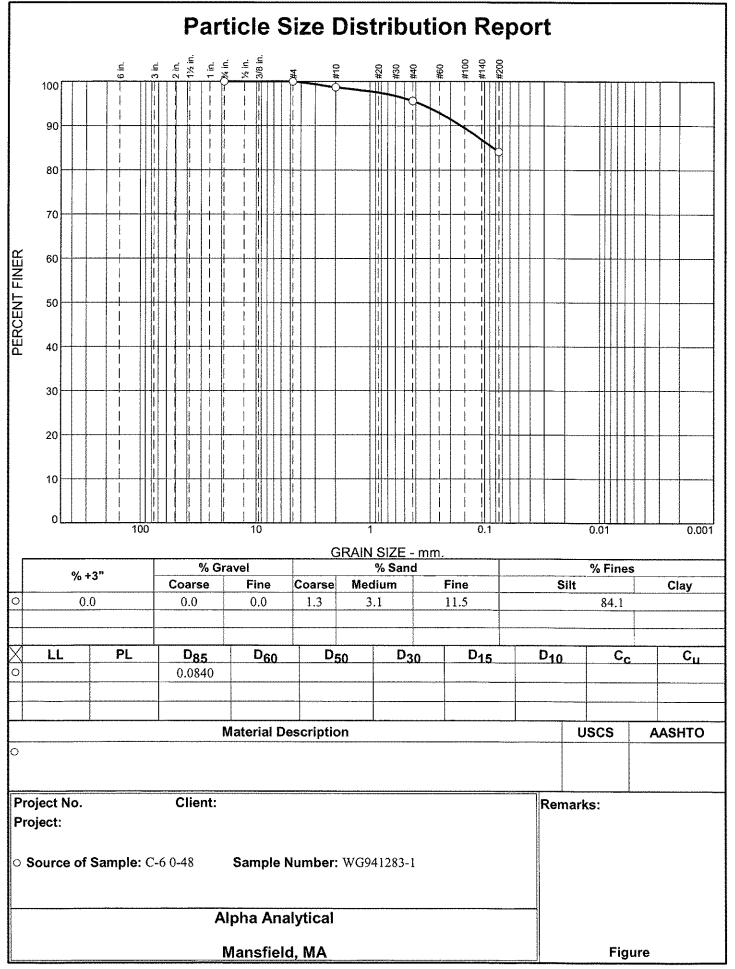
# ASTM D422-63 GRAIN SIZE ANALYSIS



#### 10/17/2016

Location: C-6 0-48

Sample Number: L1629727-01


|                                      |                 |                          |                               | Sieve Tesi                 | Data             |  |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|--|
| Post #200 Wa                         | sh Test Weights |                          | Sample and Ta<br>Wt. = 0.00   | re = 88.20                 |                  |  |
|                                      |                 |                          | is #200 from w                | ash = 0.0%                 |                  |  |
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |  |
| 88.20                                | 0.00            | 3/4"                     | 0.00                          | 0.00                       | 100.0            |  |
|                                      |                 | #4                       | 0.15                          | 0.00                       | 99.8             |  |
|                                      |                 | #10                      | 1.20                          | 0.00                       | 98.5             |  |
|                                      |                 | #40                      | 3.51                          | 0.00                       | 94.5             |  |
|                                      |                 | #200                     | 11.58                         | 0.00                       | 81.4             |  |
|                                      |                 |                          | Pra                           | ctional Com                | nponents         |  |

| Cobbles |        | Gravel |       |        | Sa     | nd   | Fines |      |      |       |
|---------|--------|--------|-------|--------|--------|------|-------|------|------|-------|
| Coubles | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt | Clay | Total |
| 0.0     | 0.0    | 0.2    | 0.2   | 1.3    | 4.0    | 13.1 | 18.4  |      |      | 81.4  |

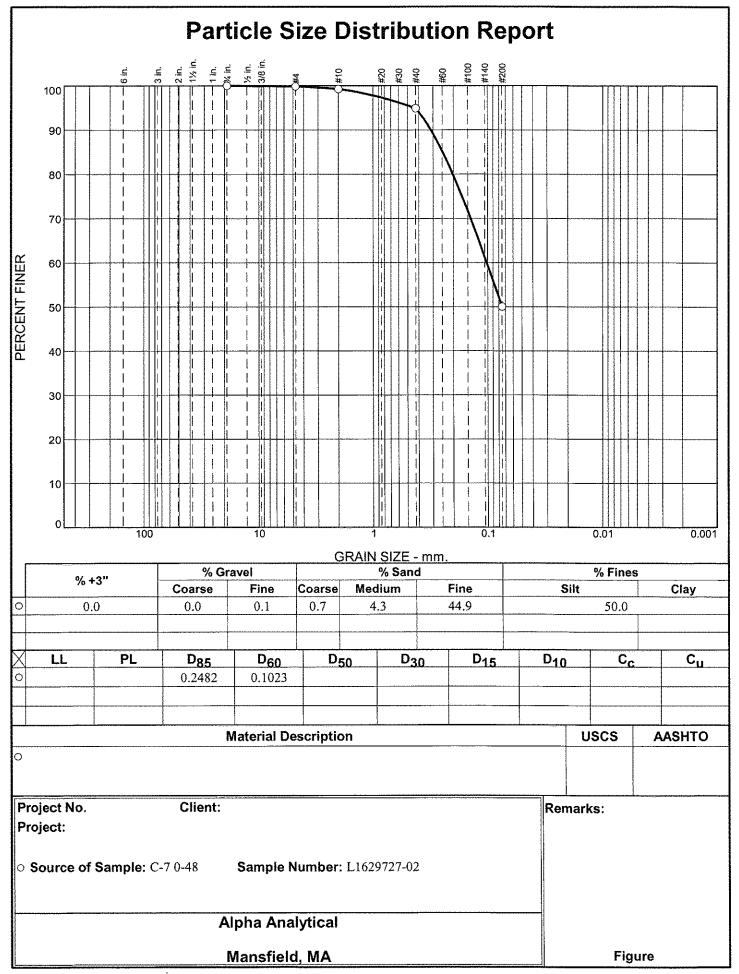
| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 |                 | 0.1131          | 0.2082          | 0.4750          |

Fineness Modulus

0.28



#### 10/17/2016


Location: C-6 0-48

Sample Number: WG941283-1

| . TAV 114                          | sh Test Weigl   | its (grams):        | Tare Wt. | = 0.00<br>00 from was       |                            |                  |                                          |                                                 |                 |                 |
|------------------------------------|-----------------|---------------------|----------|-----------------------------|----------------------------|------------------|------------------------------------------|-------------------------------------------------|-----------------|-----------------|
| Dry<br>Sample<br>nd Tare<br>grams) | Tare<br>(grams) | Siev<br>Open<br>Siz | ing Re   | /eight<br>etained<br>erams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |                                          |                                                 |                 |                 |
| 88.39                              | 0.00            | 1                   | \$/4"    | 0.00                        | 0.00                       | 100.0            |                                          |                                                 |                 |                 |
|                                    |                 |                     | #4       | 0.00                        | 0.00                       | 100.0            |                                          |                                                 |                 |                 |
|                                    |                 | i                   | #10      | 1.17                        | 0.00                       | 98.7             |                                          |                                                 |                 |                 |
|                                    |                 | i                   | #40      | 2.74                        | 0.00                       | 95.6             |                                          |                                                 |                 |                 |
|                                    |                 | #                   | 200      | 10.14                       | 0.00                       | 84.1             | 10.012.012.012.012.012.012.012.012.012.0 | Ala Ala Ala Manufacture and a fair and a second |                 |                 |
|                                    |                 |                     |          | Frac                        | tional Com                 | ponents          |                                          |                                                 |                 |                 |
|                                    |                 | Gravel              |          |                             | S                          | Sand             |                                          |                                                 | Fines           | ·····           |
| ^ a la la a                        | Coarse          | Fine                | Total    | Coarse                      | Medium                     | Fine             | Total                                    | Silt                                            | Clay            | Total           |
| Cobbles                            |                 |                     |          | 1                           |                            | 115              | 15.9                                     |                                                 |                 | 84.1            |
| Cobbles                            | 0.0             | 0.0                 | 0.0      | 1.3                         | 3.1                        | 11.5             | 13.7                                     |                                                 |                 |                 |
|                                    | 0.0             | 0.0                 | 0.0      | 1.3                         | 3.1                        | 11.3             | 10.0                                     |                                                 |                 |                 |
| 0.0<br>D <sub>10</sub>             | 0.0             | 0.0                 | 0.0      |                             | 3.1<br>250                 | D <sub>60</sub>  | D <sub>80</sub>                          | D <sub>85</sub>                                 | D <sub>90</sub> | D <sub>95</sub> |

Fineness Modulus 0.23

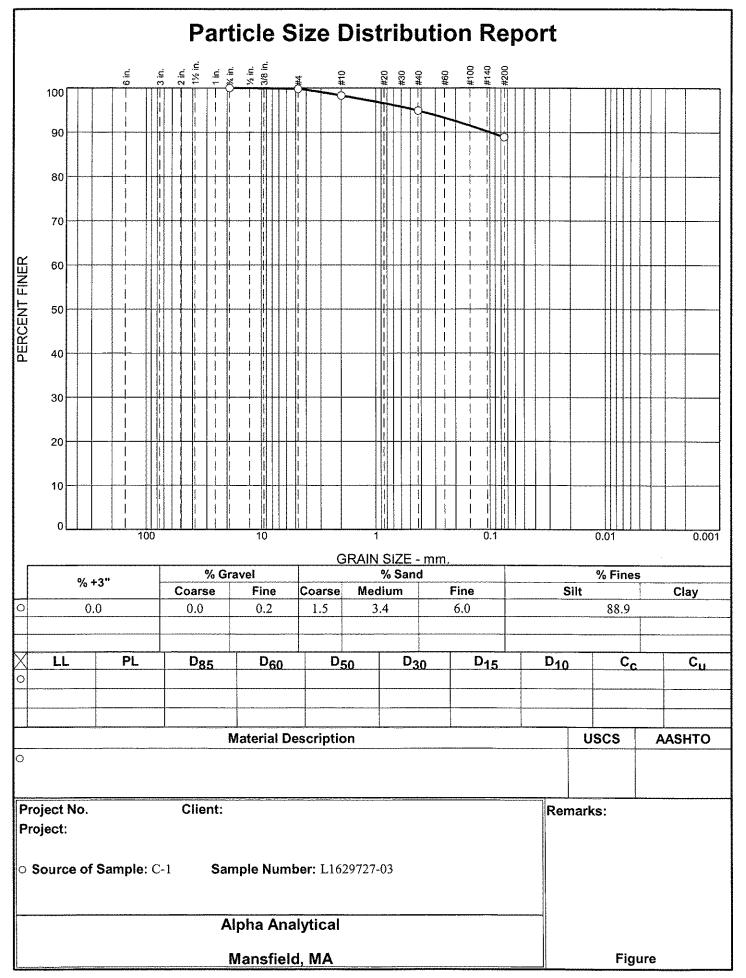
\_\_\_\_\_ Alpha Analytical \_\_\_\_\_



#### 10/17/2016

#### Location: C-7 0-48

Sample Number: L1629727-02


|                                      |                 |                          | Wt. = 0.00<br>is #200 from w  | ash = 0.0%                 |                  |       |      |       |       |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|-------|------|-------|-------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |      |       |       |
| 127.22                               | 0.00            | 3/4"                     | 0.00                          | 0.00                       | 100.0            |       |      |       |       |
|                                      |                 | #4                       | 0.19                          | 0.00                       | 99.9             |       |      |       |       |
|                                      |                 | #10                      | 0.77                          | 0.00                       | 99.2             |       |      |       |       |
|                                      |                 | #40                      | 5.55                          | 0.00                       | 94.9             |       |      |       |       |
|                                      |                 | #200                     | 57.05                         | 0.00                       | 50.0             |       |      |       |       |
|                                      |                 |                          | Fra                           | ellenal Cem                | poments          |       |      |       |       |
| <u> </u>                             |                 | Gravel                   |                               |                            | Sand             |       |      | Fines |       |
| Cobbles                              | Coarse          | Fine To                  | tal Coars                     | e Medium                   | Fine             | Total | Silt | Clay  | Total |
| 0.0                                  | 0.0             | 0.1 0.                   | 1 0.7                         | 4.3                        | 44.9             | 49.9  |      |       | 50.0  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 | 0.1023          | 0.2025          | 0.2482          | 0.3143          | 0.4372          |

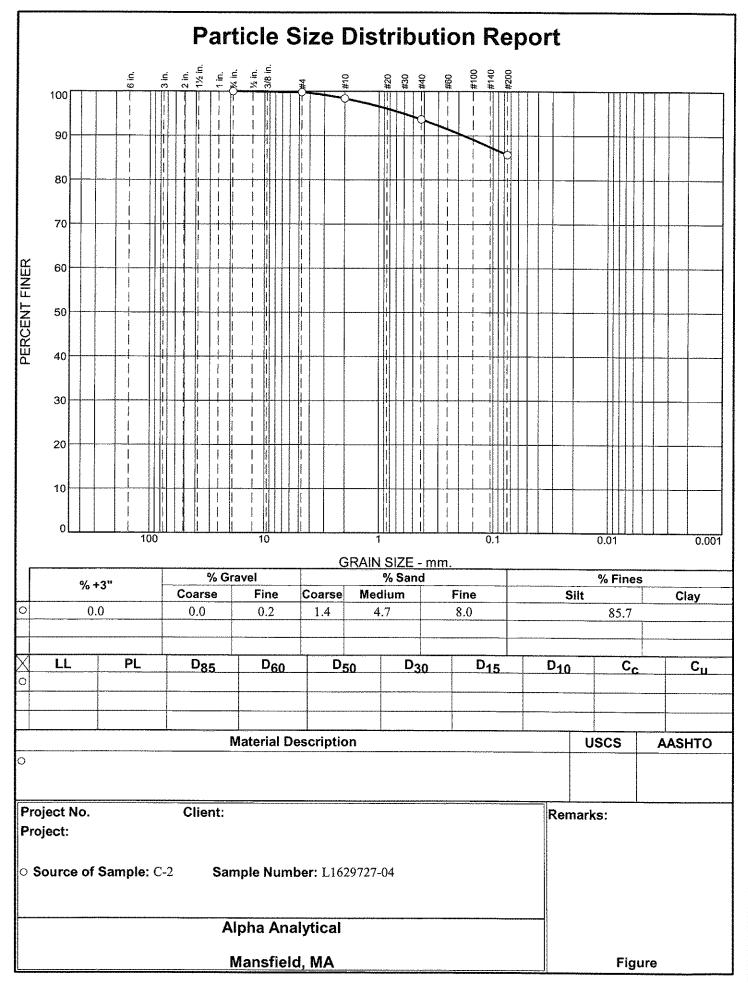
| Fineness |
|----------|
| Modulus  |
| 0.46     |

\_\_\_\_\_ Alpha Analytical \_\_\_\_\_

.



#### 10/17/2016


#### Location: C-1

Sample Number: L1629727-03

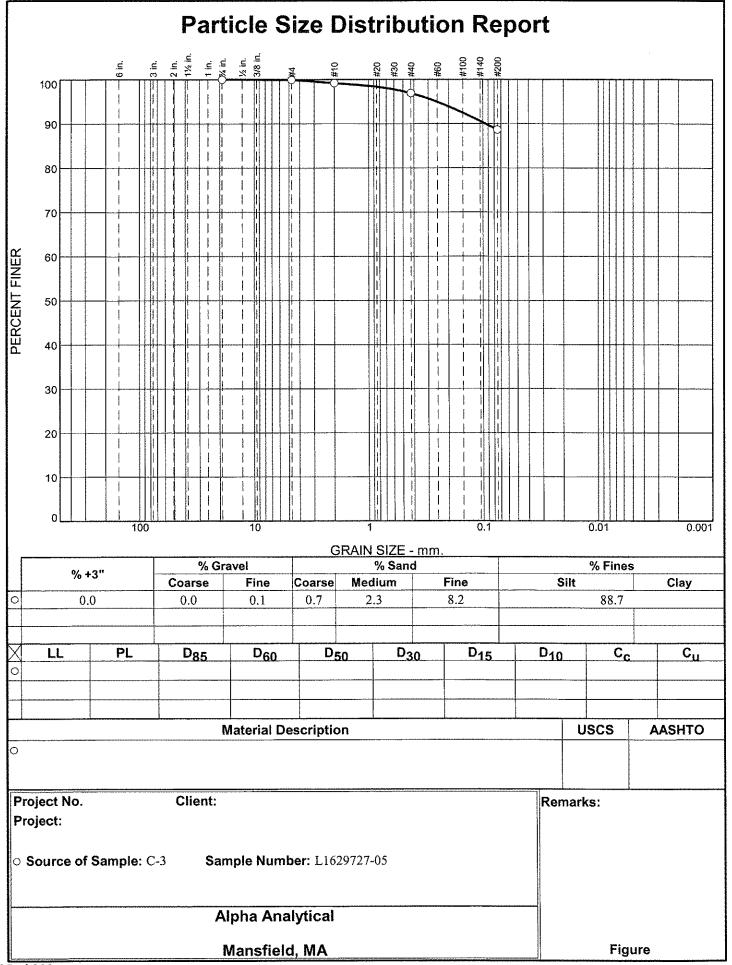
|                                      | sh Test Weight  | Tare                     | Sample and Tai<br>Wt. = 0.00<br>Is #200 from wa |                            |                  |       |      |       |       |
|--------------------------------------|-----------------|--------------------------|-------------------------------------------------|----------------------------|------------------|-------|------|-------|-------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams)                   | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |      |       |       |
| 97.83                                | 0.00            | 3/4"                     | 0.00                                            | 0.00                       | 100.0            |       |      |       |       |
|                                      |                 | #4                       | 0.18                                            | 0.00                       | 99.8             |       |      |       |       |
|                                      |                 | #10                      | 1.50                                            | 0.00                       | 98.3             |       |      |       |       |
|                                      |                 | #40                      | 3.32                                            | 0.00                       | 94.9             |       |      |       |       |
|                                      |                 | #200                     | 5.85                                            | 0.00                       | 88.9             |       |      |       |       |
|                                      |                 |                          | Fra                                             | etional Com                | nonents          |       |      |       |       |
| ~                                    |                 | Gravel Sand              |                                                 |                            |                  |       |      | Fines |       |
| Cobbles                              | Coarse          | Fine To                  | tal Coars                                       | e Medium                   | Fine             | Total | Silt | Clay  | Total |
| 0.0                                  | 0.0             | 0.2 0.                   | 2 1.5                                           | 3.4                        | 6.0              | 10.9  |      |       | 88.9  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 |                 |                 | 0.1000          | 0.4427          |

| Fineness<br>Modulus |  |
|---------------------|--|
| 0.23                |  |



#### 10/17/2016


#### Location: C-2

Sample Number: L1629727-04

| Sieve Test Data<br>Post #200 Wash Test Weights (grams): Dry Sample and Tare = 104.95<br>Tare Wt. = 0.00<br>Minus #200 from wash = 0.0% |                                            |     |                   |                               |                            |                  |       |      |      |       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----|-------------------|-------------------------------|----------------------------|------------------|-------|------|------|-------|--|--|
| Dry<br>Sample<br>and Tare<br>(grams)                                                                                                   | Sample<br>and Tare Tare<br>(grams) (grams) |     |                   | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |      |      |       |  |  |
| 104.95                                                                                                                                 | 0.00                                       |     | 3/4"<br>#4<br>#10 |                               | 0.00                       | 100.0            |       |      |      |       |  |  |
|                                                                                                                                        |                                            |     |                   |                               | 0.00                       | 99.8             |       |      |      |       |  |  |
|                                                                                                                                        |                                            |     |                   |                               | 0.00                       | 98.4             |       |      |      |       |  |  |
|                                                                                                                                        |                                            |     | #40               | 4.91                          | 0.00                       | 93.7             |       |      |      |       |  |  |
|                                                                                                                                        |                                            | ŧ   | ¢200              | 8.39                          | 0.00                       | 85.7             |       |      |      |       |  |  |
|                                                                                                                                        |                                            |     |                   | Frac                          | tional Cam                 | nonents          |       |      |      |       |  |  |
| Cobbles                                                                                                                                | bles Gravel<br>Coarse Fine Total           |     |                   | S                             | and                        |                  | Fines |      |      |       |  |  |
|                                                                                                                                        |                                            |     | Total             | Coarse                        | Medium                     | Fine             | Total | Silt | Clay | Total |  |  |
| 0.0                                                                                                                                    | 0.0                                        | 0.2 | 0.2               | 1.4                           | 4.7                        | 8.0              | 14.1  |      |      | 85.7  |  |  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 |                 |                 | 0.1811          | 0.6037          |

| Fineness |
|----------|
| Modulus  |
| 0.28     |

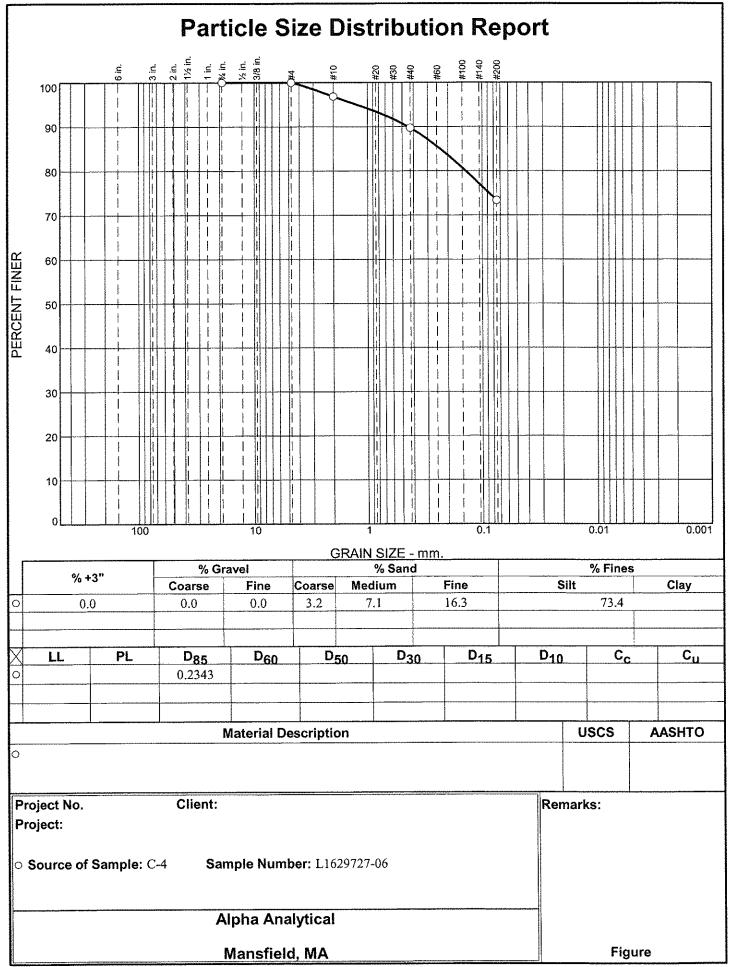


10/17/2016

Location: C-3

Sample Number: L1629727-05

| Post #200 Was                        | Sieve Test Data<br>Post #200 Wash Test Weights (grams): Dry Sample and Tare = 105.87<br>Tare Wt. = 0.00<br>Minus #200 from wash = 0.0% |                          |                               |                            |                  |       |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------|------------------|-------|--|--|--|--|--|--|--|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams)                                                                                                                        | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |  |  |  |  |  |  |  |
| 105.87                               | 0.00                                                                                                                                   | 3/4"                     | 0.00                          | 0.00                       | 100.0            |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #4                       | 0.11                          | 0.00                       | 99.9             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #10                      | 0.76                          | 0.00                       | 99.2             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #40                      | 2.41                          | 0.00                       | 96.9             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #200                     | 8.73                          | 0.00                       | 88.7             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        |                          | - Fre                         | etonal Con                 | iponents         |       |  |  |  |  |  |  |  |
|                                      | (                                                                                                                                      | Gravel                   | ]                             |                            | Sand             | Finae |  |  |  |  |  |  |  |


| Cobbles Coarse |     | Total | Coarse | Medium | <b>F</b> ' |       |      |      |       |
|----------------|-----|-------|--------|--------|------------|-------|------|------|-------|
|                |     |       |        | [      | Fine       | Total | Silt | Clay | Total |
| 0.0 0.0        | 0.1 | 0.1   | 0.7    | 2.3    | 8.2        | 11.2  |      |      | 88.7  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D80 | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 |     |                 | 0.0952          | 0.2536          |

Fineness

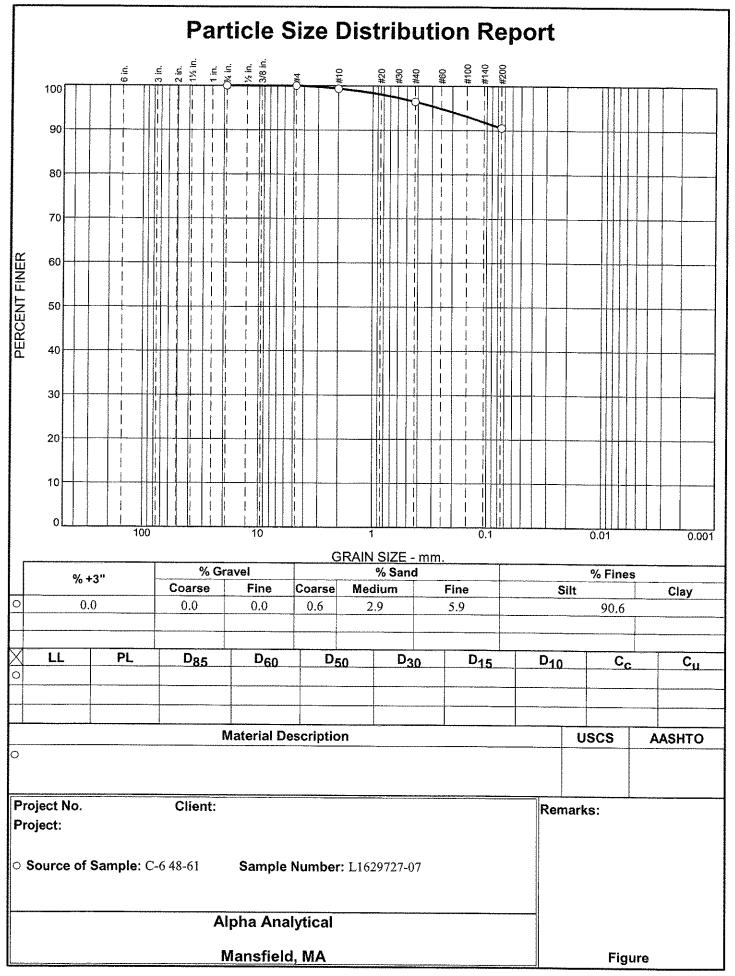
Modulus 0.16

0.10



#### 10/17/2016

#### Location: C-4


Sample Number: L1629727-06

| Sa  | mple Num                                                                                                            | <b>ber:</b> L1629 | 727-06 |        |                             |                            |                  |       | are induced with the Markov Markov and an and a second | 101100-10110-10110-1010-1010-1010-1010 |       |     |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|-------------------|--------|--------|-----------------------------|----------------------------|------------------|-------|--------------------------------------------------------|----------------------------------------|-------|-----|--|--|--|
|     |                                                                                                                     |                   |        |        |                             | Sieve Test D               | ata              |       |                                                        |                                        |       |     |  |  |  |
| Po  | Post #200 Wash Test Weights (grams): Dry Sample and Tare = 102.81<br>Tare Wt. = 0.00<br>Minus #200 from wash = 0.0% |                   |        |        |                             |                            |                  |       |                                                        |                                        |       |     |  |  |  |
| 1   | Dry<br>Samp <del>le</del><br>and Tare<br>(grams)                                                                    | Tare<br>(grams)   |        | ning R | Weight<br>etained<br>grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |                                                        |                                        |       |     |  |  |  |
|     | 102.81                                                                                                              | 0.00              |        | 3/4"   | 0.00                        | 0.00                       | 100.0            |       |                                                        |                                        |       |     |  |  |  |
|     |                                                                                                                     |                   |        | #4     | 0.00                        | 0.00                       | 100.0            |       |                                                        |                                        |       |     |  |  |  |
|     |                                                                                                                     |                   |        | #10    | 3.25                        | 0.00                       | 96.8             |       |                                                        |                                        |       |     |  |  |  |
|     |                                                                                                                     |                   |        | #40    | 7.31                        | 0.00                       | 89.7             |       |                                                        |                                        |       |     |  |  |  |
|     |                                                                                                                     |                   | #      | ¥200   | 16.80                       | 0.00                       | 73.4             |       |                                                        |                                        |       | 191 |  |  |  |
|     |                                                                                                                     |                   |        |        | Frac                        | nonal Com                  | ionents          |       |                                                        |                                        |       |     |  |  |  |
| Г   | <u></u>                                                                                                             |                   | Gravel |        |                             | Sand                       |                  |       |                                                        | Fines                                  |       |     |  |  |  |
| - 1 | Cobbles                                                                                                             | Coarse            | Fine   | Total  | Coarse                      | Medium                     | Fine             | Total | Silt                                                   | Clav                                   | Total |     |  |  |  |

| Copples | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt | Clay | Total |
|---------|--------|------|-------|--------|--------|------|-------|------|------|-------|
| 0.0     | 0.0    | 0.0  | 0.0   | 3.2    | 7.1    | 16.3 | 26.6  |      |      | 73.4  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 | 0.1399          | 0.2343          | 0.4428          | 1.2439          |

| Fineness    |
|-------------|
| <br>Modulus |
| 0.48        |



#### 10/17/2016

90.6

#### Location: C-6 48-61 Sample Number: L1629727-07

0.0

0.0

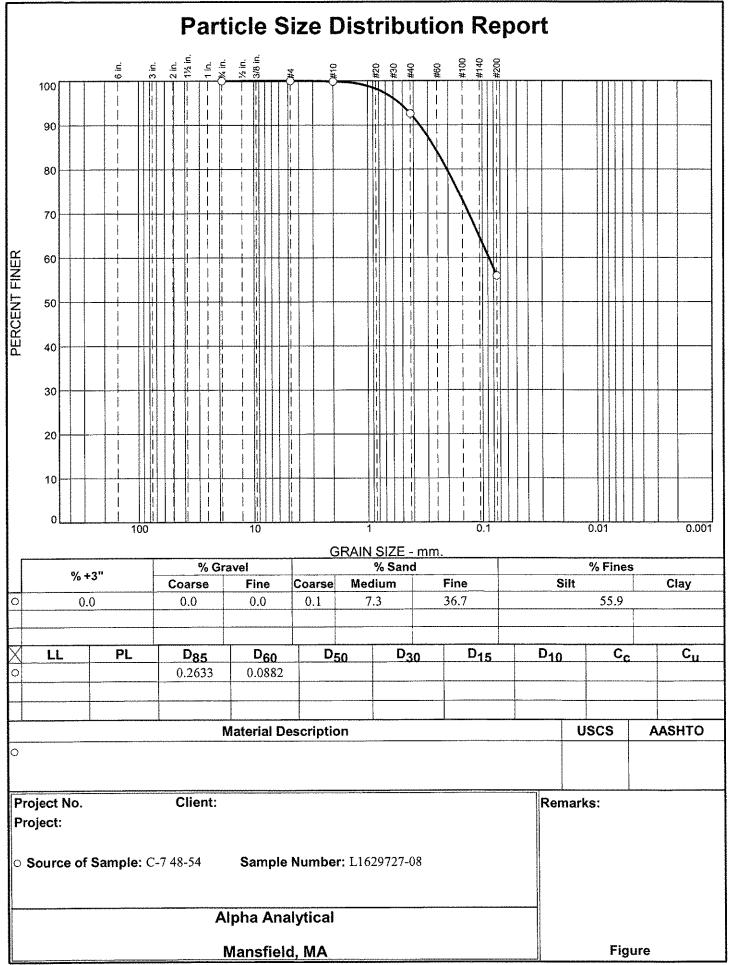
0.0

0.6

|                                      |                 | Minu                     | s #200 from w                 | ash = 0.0%                 |                  |  |  |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|--|--|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |  |  |
| 103.37                               | 0.00            | 3/4"                     | 0.00                          | 0.00                       | 100.0            |  |  |
|                                      |                 | #4                       | 0.00                          | 0.00                       | 100.0            |  |  |
|                                      |                 | #10                      | 0.67                          | 0.00                       | 99.4             |  |  |
|                                      |                 | #40                      | 2.99                          | 0.00                       | 96.5             |  |  |
|                                      |                 | #200                     | 6.09                          | 0.00                       | 90.6             |  |  |
|                                      |                 |                          | ç.                            | etional Can                | nonente          |  |  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D95    |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
|                 |                 |                 |                 |                 |                 |                 |                 |                 | 0.2601 |

2.9


5.9

9.4

| Fineness<br>Modulus |
|---------------------|
| 0.16                |

0.0

\_ Alpha Analytical \_



10/17/2016

#### **GRAIN SIZE DISTRIBUTION TEST DATA**

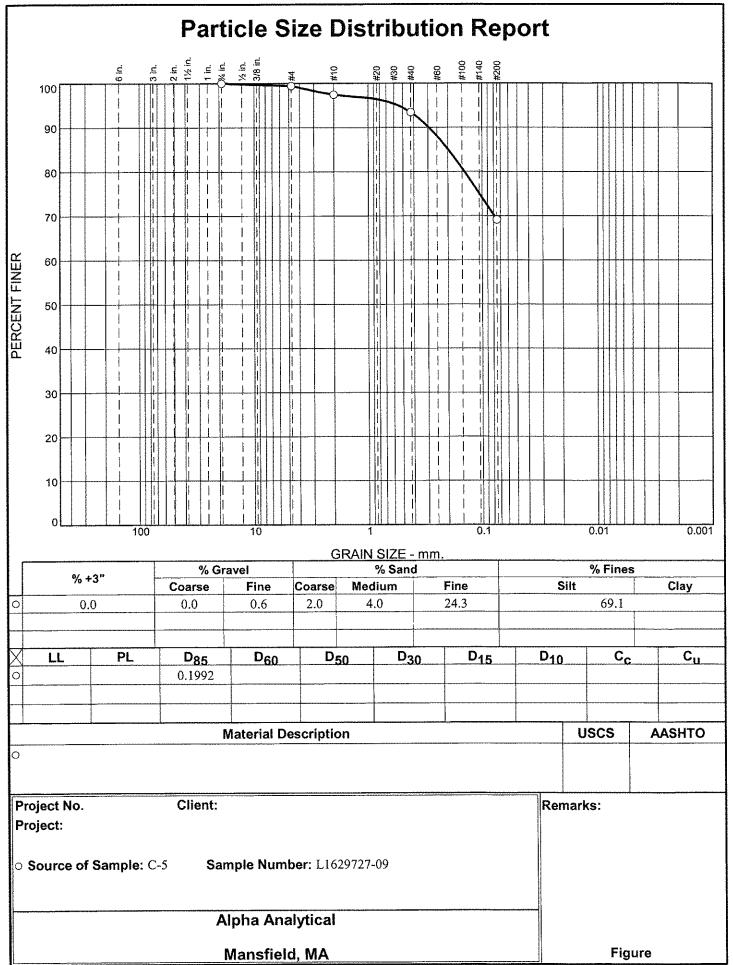
Location: C-7 48-54

Sample Number: L1629727-08

| Post #200 Wa                         | Sieve Test Data<br>Post #200 Wash Test Weights (grams): Dry Sample and Tare = 140.11<br>Tare Wt. = 0.00<br>Minus #200 from wash = 0.0% |                          |                               |                            |                  |       |  |  |  |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------|------------------|-------|--|--|--|--|--|--|--|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams)                                                                                                                        | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |  |  |  |  |  |  |  |
| 140.11                               | 0.00                                                                                                                                   | 3/4"                     | 0.00                          | 0.00                       | 100.0            |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #4                       | 0.00                          | 0.00                       | 100.0            |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #10                      | 0.20                          | 0.00                       | 99.9             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #40                      | 10.21                         | 0.00                       | 92.6             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        | #200                     | 51.42                         | 0.00                       | 55.9             |       |  |  |  |  |  |  |  |
|                                      |                                                                                                                                        |                          | Pre                           | etional Con                | ponents          |       |  |  |  |  |  |  |  |
|                                      | (                                                                                                                                      | Gravel                   |                               |                            | Sand             | Fines |  |  |  |  |  |  |  |

| Cobbles |        | Gravel |       |        | Sa     | nd   |       |      | Fines |       |
|---------|--------|--------|-------|--------|--------|------|-------|------|-------|-------|
| CODDICS | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt | Clay  | Total |
| 0.0     | 0.0    | 0.0    | 0.0   | 0.1    | 7.3    | 36.7 | 44.1  |      |       | 55.9  |
|         |        |        |       |        |        |      |       |      |       |       |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 | -               |                 |                 |                 | 0.0882          | 0.2049          | 0.2633          | 0.3533          | 0.5298          |


Fineness Modulus

0.44

0.44

\_ Alpha Analytical \_\_\_\_\_

Serial\_No:10271613:37

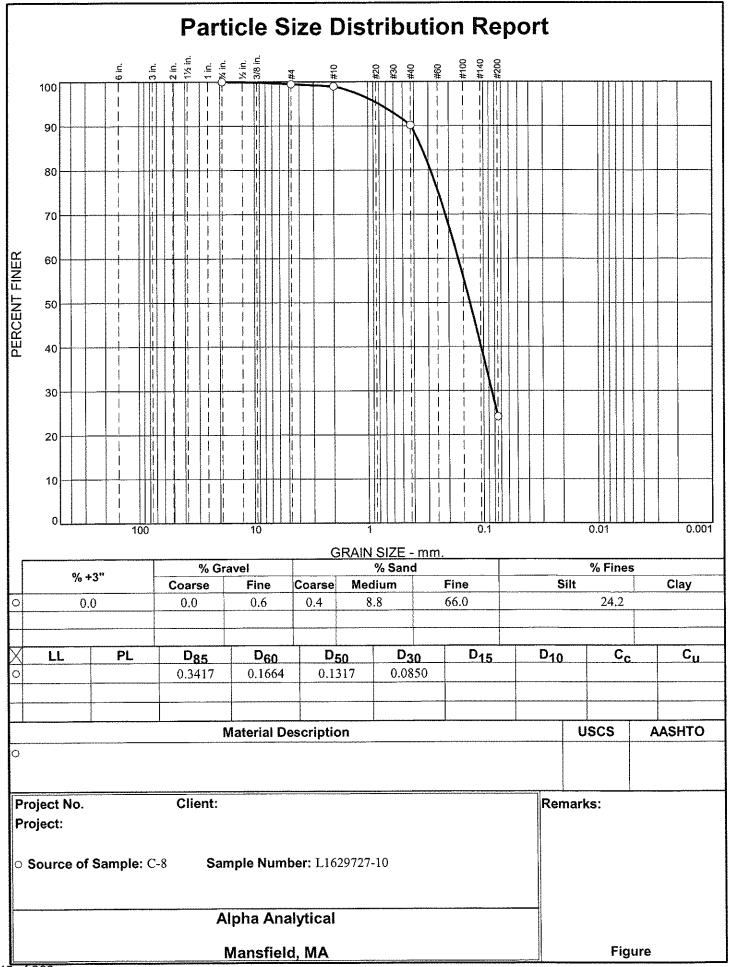


10/17/2016

Location: C-5

Sample Number: L1629727-09

| Post #200 Wa                           | Sieve Test Data         Post #200 Wash Test Weights (grams): Dry Sample and Tare = 109.80<br>Tare Wt. = 0.00<br>Minus #200 from wash = 0.0%         Dry<br>Sample<br>and Tare       Sieve       Weight       Sieve         and Tare       Tare       Opening       Retained       Weight       Percent         (grams)       (grams)       Size       (grams)       Finer         109.80       0.00       3/4"       0.00       100.0         #4       0.65       0.00       99.4         #10       2.17       0.00       93.4         #40       4.39       0.00       93.4 |               |          |             |          |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------|----------|--|--|--|--|--|
| Sample<br>and Tare                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Opening       | Retained | Weight      |          |  |  |  |  |  |
| 109.80                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/4"          | 0.00     | 0.00        | 100.0    |  |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #4            | 0.65     | 0.00        | 99.4     |  |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #10           | 2.17     | 0.00        | 97.4     |  |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #40           | 4.39     | 0.00        | 93.4     |  |  |  |  |  |
| 10111011010001200011010100000000000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #200          | 26.70    | 0.00        | 69.1     |  |  |  |  |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | (åre     | ctional Con | oponents |  |  |  |  |  |
| 1                                      | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Name 1</b> | ł        |             |          |  |  |  |  |  |


| Cobbles | Gravel |      |       |        | Sa     | nd   | Fines |      |      |       |
|---------|--------|------|-------|--------|--------|------|-------|------|------|-------|
|         | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt | Clay | Total |
| 0.0     | 0.0    | 0.6  | 0.6   | 2.0    | 4.0    | 24.3 | 30.3  |      |      | 69.1  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 | 0.1431          | 0.1992          | 0.2948          | 0.5494          |

Fineness

Modulus 0.40

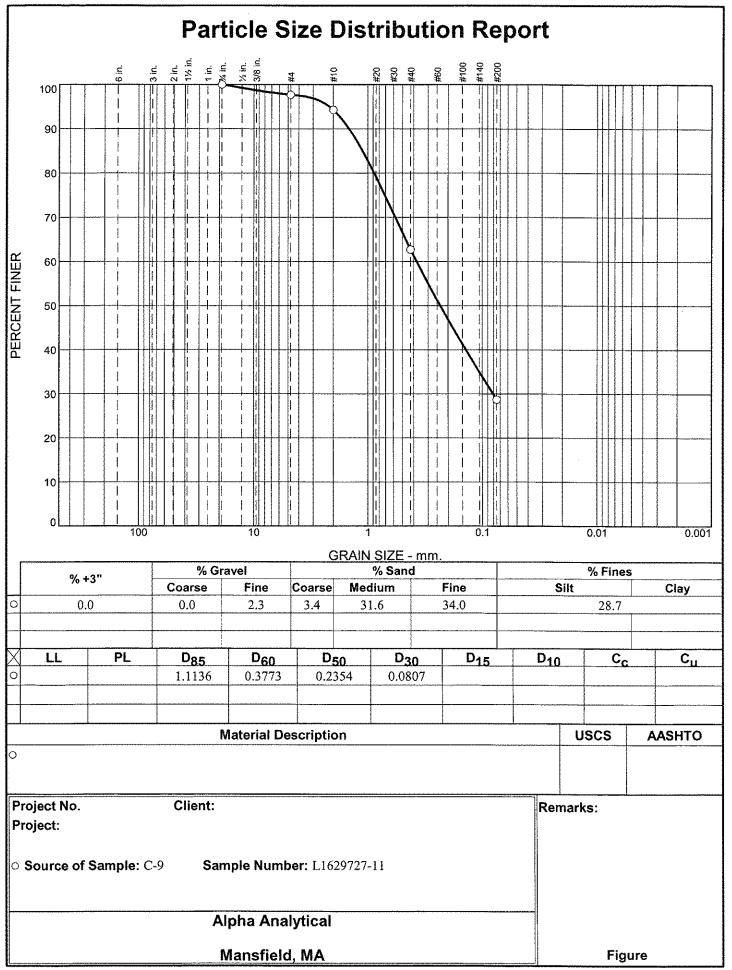
0.40



## 10/17/2016

## Location: C-8

Sample Number: L1629727-10


|                                      | sh Test Weigh   |                     | Tare Wt | ple and Tar                   |                            | Data             |       |      |       |       |
|--------------------------------------|-----------------|---------------------|---------|-------------------------------|----------------------------|------------------|-------|------|-------|-------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Siev<br>Open<br>Siz | ling F  | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |      |       |       |
| 110.68                               | 0.00            |                     | 3/4"    | 0.00                          | 0.00                       | 100.0            |       |      |       |       |
|                                      |                 |                     | #4      | 0.63                          | 0.00                       | 99.4             |       |      |       |       |
|                                      |                 | Ŧ                   | #10     | 0.52                          | 0.00                       | 99.0             |       |      |       |       |
|                                      |                 | 3                   | #40     | 9.74                          | 0.00                       | 90.2             |       |      |       |       |
|                                      |                 | #2                  | 200     | 73.04                         | 0.00                       | 24.2             |       |      |       |       |
|                                      |                 |                     |         | Frax                          | wonal Cem                  | oonents          |       |      |       |       |
| Cobbles                              |                 | Gravel              |         |                               | S                          | Sand             |       |      | Fines |       |
| cobbies                              | Coarse          | Fine                | Total   | Coarse                        | Medium                     | Fine             | Total | Silt | Clay  | Total |
| 0.0                                  | 0.0             | 0.6                 | 0.6     | 0.4                           | 8.8                        | 66.0             | 75.2  |      |       | 24.2  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 | 0.0850          | 0.1317          | 0.1664          | 0.2874          | 0.3417          | 0.4217          | 0.8015          |

| Fineness |
|----------|
| Modulus  |
| 0.75     |

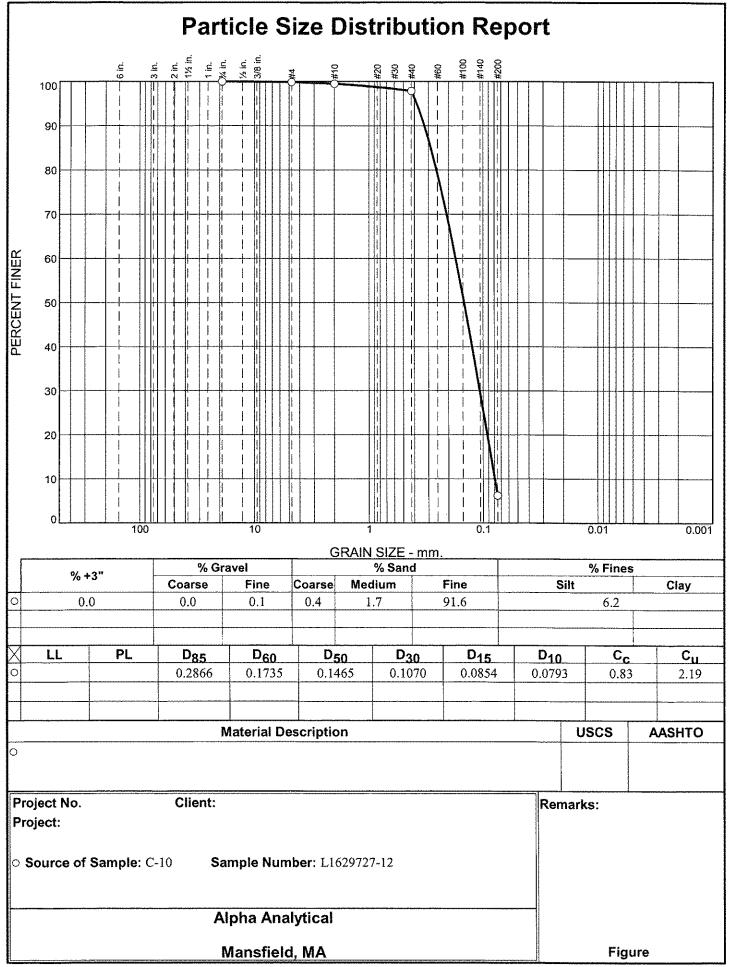
\_\_\_\_\_ Alpha Analytical \_\_\_\_\_

Serial\_No:10271613:37



### 10/17/2016

#### Location: C-9


Sample Number: L1629727-11

| 'ost #200 Was                        | sh Test Weig    |                          |                               |                            | 93(A)            |       |       |      |       |
|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|-------|-------|------|-------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |       |      |       |
| 130.73                               | 0.00            | 3/4"                     | 0.00                          | 0.00                       | 100.0            |       |       |      |       |
|                                      |                 | #4                       | 3.02                          | 0.00                       | 97.7             |       |       |      |       |
|                                      |                 | #10                      | 4.47                          | 0.00                       | 94.3             |       |       |      |       |
|                                      |                 | #40                      | 41.26                         | 0.00                       | 62.7             |       |       |      |       |
|                                      |                 | #200                     | 44.46                         | 0.00                       | 28.7             |       |       |      |       |
|                                      |                 |                          | Rrae                          | tional Com                 | conents          |       |       |      |       |
|                                      |                 | Gravel                   |                               | S                          | and              |       | Fines |      |       |
| Cobbles                              | Coarse          | Fine To                  | tal Coarse                    | Medium                     | Fine             | Total | Silt  | Clay | Total |

| 0.0 | 0.0 | 2.3 | 2.3 | 3.4 | 31.6 | 34.0 | 69.0 |   | 28.7  |   |
|-----|-----|-----|-----|-----|------|------|------|---|-------|---|
| L   |     |     |     |     |      |      |      |   |       |   |
|     | 1   |     |     |     |      |      | _    | _ | <br>_ | l |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D95    |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
|                 |                 |                 | 0.0807          |                 | 0.3773          | 0.8828          | 1.1136          | 1.4588          | 2.1608 |

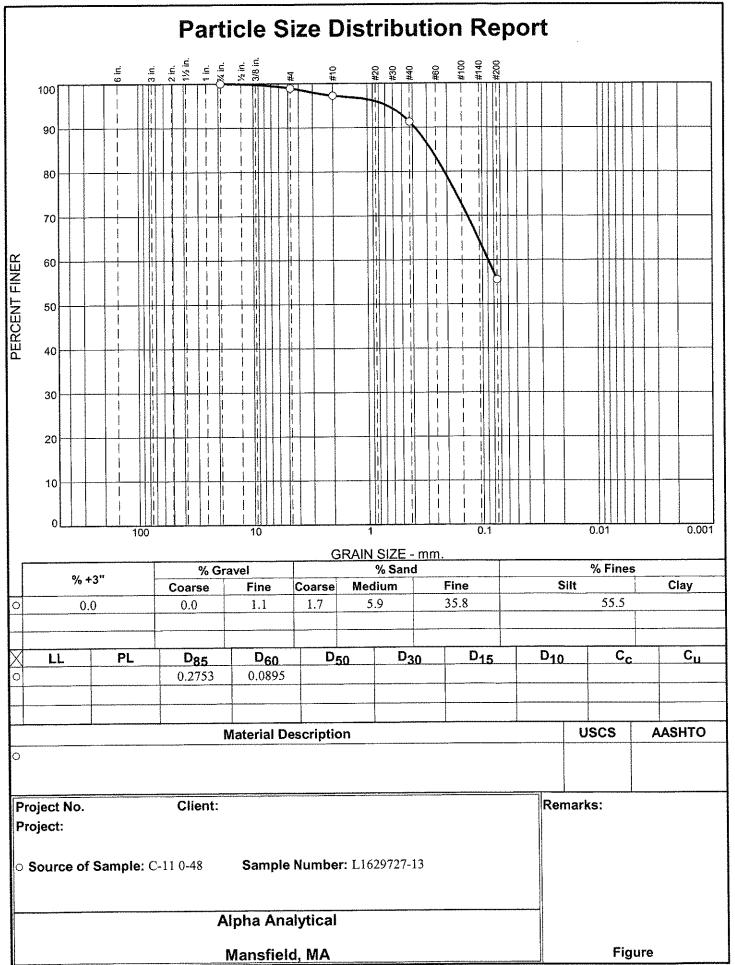
| Fineness<br>Modulus |
|---------------------|
| 1.55                |



### 10/17/2016

Location: C-10

Sample Number: L1629727-12


| Post #200 Wa                         | sh Test Weights | Tare                     | Sample and Ta<br>Wt. = 0.00<br>s #200 from w |                            | Date             |       |
|--------------------------------------|-----------------|--------------------------|----------------------------------------------|----------------------------|------------------|-------|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams)                | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |
| 123.33                               | 0.00            | 3/4"                     | 0.00                                         | 0.00                       | 100.0            |       |
|                                      |                 | #4                       | 0.18                                         | 0.00                       | 99.9             |       |
|                                      |                 | #10                      | 0.47                                         | 0.00                       | 99.5             |       |
|                                      |                 | #40                      | 2.03                                         | 0.00                       | 97.8             |       |
|                                      |                 | #200                     | 112.98                                       | 0.00                       | 6.2              |       |
|                                      |                 |                          | <u>fare</u>                                  | ictional Con               | iponents         |       |
| 0.111                                | (               | Fravel                   |                                              |                            | Sand             | Fines |

| Cobbles |        | Gravel |       |        | Sa     | nd   | Fines |          |      |       |
|---------|--------|--------|-------|--------|--------|------|-------|----------|------|-------|
|         | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt     | Clay | Total |
| 0.0     | 0.0    | 0.1    | 0.1   | 0.4    | 1.7    | 91.6 | 93.7  |          |      | 6.2   |
|         |        |        |       |        |        |      |       | <u>.</u> |      |       |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0.0793          | 0.0854          | 0.0920          | 0.1070          | 0.1465          | 0.1735          | 0.2554          | 0.2866          | 0.3264          | 0.3812          |

| Fineness<br>Modulus | Cu   | Cc   |  |  |  |  |  |
|---------------------|------|------|--|--|--|--|--|
| 0.65                | 2.19 | 0.83 |  |  |  |  |  |

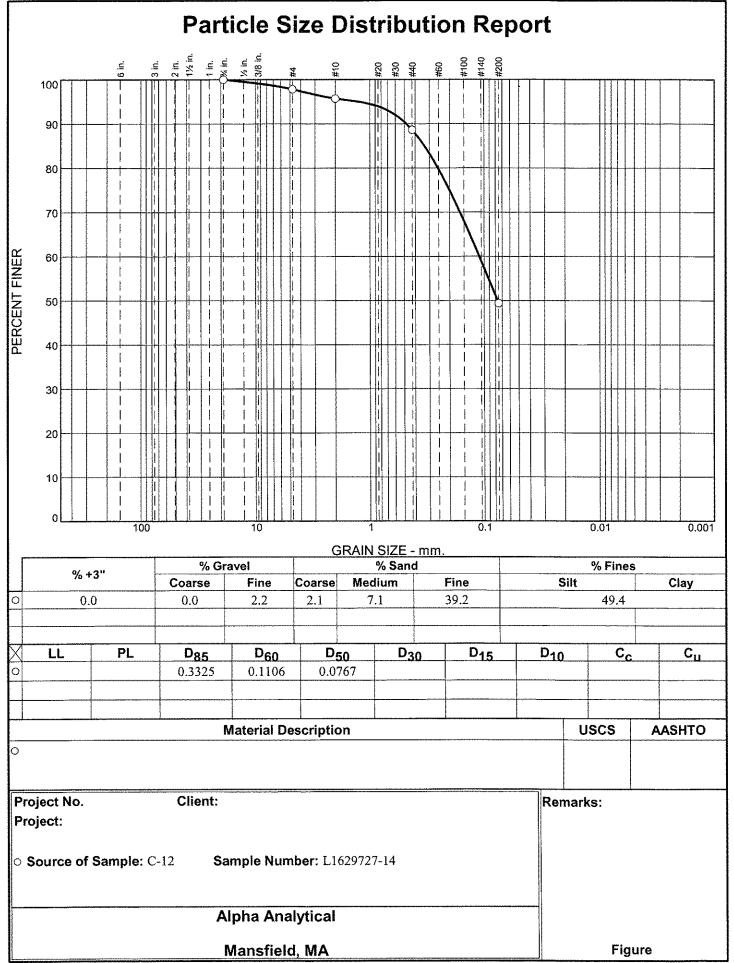
Serial\_No:10271613:37



#### 10/17/2016

# Location: C-11 0-48

Sample Number: L1629727-13


| Po     | st #200 Wa                           | sh Test Weights | Tare                     |                               |                            | Oata             |  |
|--------|--------------------------------------|-----------------|--------------------------|-------------------------------|----------------------------|------------------|--|
| 4      | Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams) | Sieve<br>Weight<br>(grams) | Percent<br>Finer |  |
|        | 121.22                               | 0.00            | 3/4"                     | 0.00                          | 0.00                       | 100.0            |  |
|        |                                      |                 | #4                       | 1.29                          | 0.00                       | 98.9             |  |
|        |                                      |                 | #10                      | 2.07                          | 0.00                       | 97.2             |  |
|        |                                      |                 | #40                      | 7.19                          | 0.00                       | 91.3             |  |
|        |                                      |                 | #200                     | 43.34                         | 0.00                       | 55.5             |  |
|        |                                      |                 |                          | Fr:                           | actional Con               | nponents         |  |
| i (*** |                                      |                 |                          |                               |                            |                  |  |

| Cobbles |        | Gravel |       |        | Sa     | nd   | Fines |      |      |       |  |  |
|---------|--------|--------|-------|--------|--------|------|-------|------|------|-------|--|--|
| Copples | Coarse | Fine   | Total | Coarse | Medium | Fine | Total | Silt | Clay | Total |  |  |
| 0.0     | 0.0    | 1.1    | 1.1   | 1.7    | 5.9    | 35.8 | 43.4  |      |      | 55.5  |  |  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 | 0.0895          | 0.2113          | 0.2753          | 0.3820          | 0.6739          |

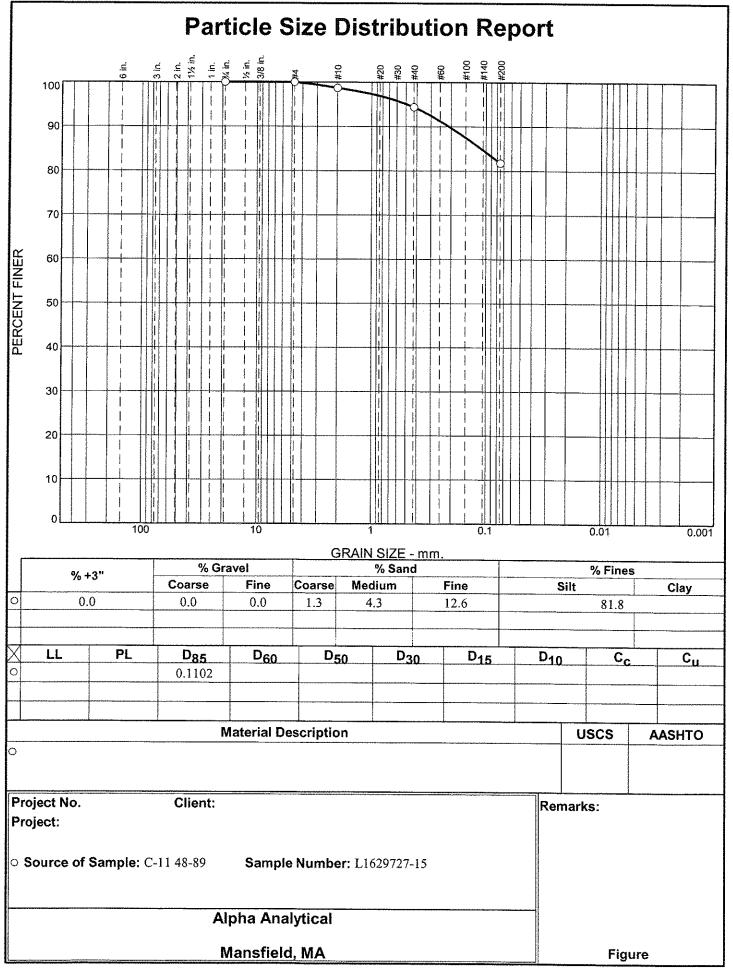
Fineness Modulus

0.54



10/17/2016

### Location: C-12


Sample Number: L1629727-14

| st #200 Wa                           | sh Test Weighl  |                          | Sample and Ta<br>e Wt. = 0.00<br>us #200 from w |                            | Data             |       |      |       |       |
|--------------------------------------|-----------------|--------------------------|-------------------------------------------------|----------------------------|------------------|-------|------|-------|-------|
| Dry<br>Sample<br>Ind Tare<br>(grams) | Tare<br>(grams) | Sieve<br>Opening<br>Size | Weight<br>Retained<br>(grams)                   | Sieve<br>Weight<br>(grams) | Percent<br>Finer |       |      |       |       |
| 142.17                               | 0.00            | 3/4"                     | 0.00                                            | 0.00                       | 100.0            |       |      |       |       |
|                                      |                 | #4                       | 3.10                                            | 0.00                       | 97.8             |       |      |       |       |
|                                      |                 | #10                      | 3.02                                            | 0.00                       | 95.7             |       |      |       |       |
|                                      |                 | #40                      | 10.09                                           | 0.00                       | 88.6             |       |      |       |       |
|                                      |                 | #200                     | 55.75                                           | 0.00                       | 49.4             |       |      |       |       |
|                                      |                 |                          | Fra                                             | ictional Con               | monents          |       |      |       |       |
| Cabbias                              |                 | Gravel                   |                                                 |                            | Sand             |       |      | Fines |       |
| Cobbles                              | Coarse          | Fine To                  | otal Coars                                      | e Mediun                   | n Fine           | Total | Silt | Clay  | Total |
| 0.0                                  | 0.0             | 2.2 2                    | .2 2.1                                          | 7.1                        | 39.2             | 48.4  |      |       | 49.4  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 | 0.0767          | 0.1106          | 0.2536          | 0.3325          | 0.4794          | 1.2650          |

| Fineness<br>Modulus |
|---------------------|
| 0.69                |

Serial\_No:10271613:37



10/17/2016

## Location: C-11 48-89

Sample Number: L1629727-15

| t #200 Wa                          | sh Test Weigl   | nts (grams):        | Tare W | mple and Tare<br>t. = 0.00<br>#200 from wa |                            |                  | 40000000000000000000000000000000000000 |      |       |       |
|------------------------------------|-----------------|---------------------|--------|--------------------------------------------|----------------------------|------------------|----------------------------------------|------|-------|-------|
| Dry<br>Sample<br>nd Tare<br>grams) | Tare<br>(grams) | Siev<br>Open<br>Siz | ing    | Weight<br>Retained<br>(grams)              | Sieve<br>Weight<br>(grams) | Percent<br>Finer |                                        |      |       |       |
| 121.51                             | 0.00            | 0.00 3/4"           |        | 0.00                                       | 0.00                       | 100.0            |                                        |      |       |       |
|                                    |                 | #4                  |        | 0.00                                       | 0.00                       | 100.0            |                                        |      |       |       |
|                                    |                 | ŧ                   | ¥10    | 1.60                                       | 0.00                       | 98.7             |                                        |      |       |       |
|                                    |                 | 1                   | ¥40    | 5.23                                       | 0.00                       | 94.4             |                                        |      |       |       |
|                                    |                 | #;                  | 200    | 15.33                                      | 0.00                       | 81.8             |                                        |      |       |       |
|                                    |                 |                     |        | Frae                                       | tional Com                 | noments          |                                        |      |       |       |
| Cobbles                            |                 | Gravel              |        |                                            | S                          | and              |                                        |      | Fines |       |
| vonnies                            | Coarse          | Fine                | Total  | Coarse                                     | Medium                     | Fine             | Total                                  | Silt | Clay  | Total |
| 0.0                                | 0.0             | 0.0                 | 0.0    | 1.3                                        | 4.3                        | 12.6             | 18.2                                   |      |       | 81.8  |

| D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 |                 |                 |                 |                 |                 |                 | 0.1102          | 0.2086          | 0.4863          |

| Fineness<br>Modulus |
|---------------------|
| 0.28                |

# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B* 

The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.
EPA 624: Volatile Halocarbons & Aromatics,
EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs
EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.
Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

#### Mansfield Facility:

*Drinking Water* EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

*Non-Potable Water* EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

# Serial\_No:10271613:37

| Διρήλ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CH                                                                             | AIN OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CUSTC                   | DY            | PAGE                    | OF                      | – Date                                                                                         | Rec'o             | l in La        | b                            | 9]                   | 201                                  | 16                       |                                                                                                                              | 1      | ALPH                                                             | IA Jo  | ob #:        | : L1      | 6297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27     |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-------------------------|-------------------------|------------------------------------------------------------------------------------------------|-------------------|----------------|------------------------------|----------------------|--------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|--------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 8 Walkup Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 320 Forbes E                                                                   | Blvd 📖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project Inform          | Street Street |                         |                         | Rep                                                                                            | ort In            | form           | ation                        | - De                 | atia D                               | elive                    | ables                                                                                                                        |        | Billin                                                           |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| Westboro, MA 0<br>Tel: 508-898-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | Contraction of the local division of the loc | Project Name: 5         |               |                         |                         |                                                                                                | DEx               |                | M                            | EMAI                 | L                                    |                          |                                                                                                                              | C      | ) Sam                                                            | e as C | lient        | info P    | 0 #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |
| Client Informatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a participant of the second                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Location:       | Little B      | e-                      |                         |                                                                                                |                   |                |                              |                      |                                      |                          |                                                                                                                              | t Info |                                                                  |        |              | irement   | and the second se |        |    |
| Client: Norman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | icites F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project #: 232          | 340.0         | 03                      |                         | □ Ye<br>□ Ye                                                                                   | s 🗆 Ni<br>s 🗔 Ni  | o MA<br>o Mati | MCP .<br>fix Spi             | Analy<br>ke Re       | tical 1<br>equire                    | Methor<br>d on t         | ds<br>his SD                                                                                                                 | G? (F  | Yes I No CT RCP Analytical Methods (Required for MCP Inorganics) |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| Address: 25 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                | J  P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project Manager:        | Sarah         | Aller                   | 3                       | □ Yes □ No GW1 Standards (Info Required for Metals & EPH with Targets)<br>□ Yes □ No NPDES RGP |                   |                |                              |                      |                                      |                          |                                                                                                                              |        |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| and the second s | NH 0341                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALPHA Quote #:          |               |                         |                         |                                                                                                | s U No<br>ner Sta |                |                              |                      | 1                                    |                          |                                                                                                                              |        |                                                                  | Criter | ia           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| Phone: 603 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -637-11                                                                        | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn-Around T           | ime           |                         |                         |                                                                                                | /                 | T              | 1                            | \$/                  | m / 1                                | ./.                      | 1                                                                                                                            | 1      | 1                                                                | 7      | 7            | 77        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |
| Additional Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                | ntion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LTStandard<br>Date Due: | C RUSH (on    | iy confirment et pro-a, | Djiroved <sup>4</sup> ) | D 8260 ANALYSIC                                                                                | SVOC: DABN D524.2 | MET. DMCP 13   | EPH. CIRCRAS C. DACP 14 DRCP | Panges & Target Dep. | The PCP Anges & Tarres D Ranges Only | DPEST Bels D Ranges Only | ant Only DFingerbrin                                                                                                         |        |                                                                  |        |              | 1         | SAMPLE<br>Filtration<br>G Field<br>Lab to o<br>Preservati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to e   | 1  |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ç,                                                                             | lection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                  | Sampler       | NOC:                    | ö                       | I'ALS                                                                                          | H. DI             |                | Pro Pro                      |                      | 11                                   | / /                      | /                                                                                                                            | /      | /                                                                | /      | C Lab to c   | 0 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in face                                                                        | ample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time                    | Matrix        | Initials                | 1 1                     | 1                                                                                              |                   | /4             | 18                           | 1.0                  | Het                                  | / /                      | 1                                                                                                                            | 1      |                                                                  |        | 100 - 201200 | nple Comm | ents S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    |
| d1121-01,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6-6                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/20                    | 1010          | -                       | JBS                     | 2                                                                                              | - 2               | 2              | 12                           | 12                   | 2                                    | 2                        |                                                                                                                              | ***    | 1                                                                |        |              | 0-41      | 3,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -61 14 | -  |
| 02,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 (-7                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/20                    | 1202          |                         | JBS                     |                                                                                                | 22                | 2              | 2                            | 2                    | 2                                    | 21                       | r                                                                                                                            |        |                                                                  |        | -            | 0-45      | , 45-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5414   | 5  |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>C-1</u>                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/20                    | 1258          |                         | 565                     |                                                                                                | 1                 | 1              | t                            | j                    | 1                                    | 1                        |                                                                                                                              |        |                                                                  |        |              |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7      | 1  |
| GEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-2                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9120                    | 1305          |                         | JBS                     | (                                                                                              | (                 | 1              | 1                            | ١                    | (                                    | 1                        | -                                                                                                                            |        |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      | -  |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-3                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/20                    | 1336          |                         | JBS                     |                                                                                                | ( )               | 1              | [                            | 1                    | 1                                    | 1                        |                                                                                                                              | -      |                                                                  |        | -            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      | -( |
| 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C - 4                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9120                    | 1403          |                         | TPS                     | 1                                                                                              | 1                 | 1              | (                            | l                    | 1                                    |                          |                                                                                                                              |        |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7      | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                         |                         | +`                                                                                             |                   | 1              |                              |                      |                                      |                          |                                                                                                                              | 1      |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               |                         |                         |                                                                                                | -                 |                |                              |                      |                                      | -                        |                                                                                                                              | .      |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                | 0009 • 4 <u>4666666</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               | -                       |                         |                                                                                                |                   |                |                              |                      |                                      |                          |                                                                                                                              |        |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | 1                       | -                       |                                                                                                |                   |                |                              |                      |                                      |                          |                                                                                                                              |        |                                                                  |        |              | New       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -  |
| Container Type<br>P= Plastic<br>A= Amber glass<br>V= Vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pastic A= None<br>A= Amber glass B= HCl                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -             |                         | iner Type               |                                                                                                |                   |                |                              |                      |                                      |                          |                                                                                                                              |        |                                                                  |        | 1            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |
| G= Glass<br>B= Bacteria cup<br>C= Cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C= HNO <sub>3</sub><br>D= H <sub>2</sub> SO <sub>4</sub><br>E= NaOH<br>F= MeOH | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relinquished By:        |               |                         |                         | 1                                                                                              |                   | eceive         | ad Bur                       |                      |                                      |                          | Det                                                                                                                          | /Time  |                                                                  | -      |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -  |
| O≍ Other<br>E= Encore<br>D≅ BOD Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 Cm                                                                           | Relinquished By: Date/Time<br>9/20 1645 9<br>Am A. A. D. G. 2014 19:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |               | It                      | En.                     |                                                                                                | A                 | J-             | 4                            | 9-2                  | af le<br>Conf                        | <u>/4</u>                | All samples submitted are subject to<br>Alpha's Terms and Conditions<br>See reverse side<br>FORM NO 01-01 (rev. 12-Mar-2012) |        |                                                                  |        |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |

|                                                           | CH                                                       | IAIN OF   | CUST                    | ODY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | OF                           | – Date   | Rec'd i              | n Lab              | <b>b</b> :       | de                           | 115                       | 22                        | 16                | AL               | .PHA    | Job #               | #: L                | 1629                                                         | 127                            |
|-----------------------------------------------------------|----------------------------------------------------------|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|----------|----------------------|--------------------|------------------|------------------------------|---------------------------|---------------------------|-------------------|------------------|---------|---------------------|---------------------|--------------------------------------------------------------|--------------------------------|
| 8 Walkup Drive                                            |                                                          |           | Project Infor           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                              | Rep      | ort Info             | orma               | ntion            | - Dai                        | ia De                     | liver                     | ables             | Bi               | lling I | nform               | ation               |                                                              | State of                       |
| Weslboro, MA<br>Tel: 508-898-9                            | 220 Tel: 508-8                                           | 22-9300   | Project Name:           | SRP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                              |          | DEx                  |                    | D (E             | EMAIL                        |                           |                           |                   | ۵s               | ame a   | s Client            | t info              | °O #:                                                        |                                |
| Client Informatio                                         |                                                          |           | Project Location        | Little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Berry                 |                              |          |                      |                    |                  |                              |                           |                           |                   | Inform           | natio   | n Requ              | liremen             | nts                                                          |                                |
| Client: Norman                                            | deau Assu                                                | ciutos S  | Project #: 2            | 3840 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v3 Č                  |                              |          |                      | MA Matrix          | ACP A            | Analyti<br>ke Rei            | ical M                    | ethod                     | s<br>is SDG       | 2 (Rer           | Yes     |                     | CT RCF<br>Inorga    | Analytical M                                                 | lethods                        |
| Address: 25 A                                             | Vasha R                                                  | <u> </u>  | Project Manager         | Sarah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Allen                 |                              | C Yes    | 🗆 No                 | GW1                | Stan             | dards                        | (Info                     | Requi                     | red for           | Metals           | & EPI   | H with T            | argets)             | iics)                                                        |                                |
| Bedfind                                                   | NH O3U                                                   | σ         | ALPHA Quote #           | A CONTRACTOR OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT | *************         | Senan Alexandria di Consegna |          | I No<br>er State     |                    |                  |                              |                           |                           |                   |                  | Cr      | iteria              |                     |                                                              |                                |
| Phone: 603 -                                              | 637-1158                                                 |           | Turn-Around             | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                              |          | 1                    | 1                  | 1:               | 27                           | 1.                        | 1                         | 11                | 1                | 7       | 17                  | TI                  | 7                                                            |                                |
| Email: Saller                                             | · @ normand                                              | eas.com   | tra                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                              | 1        |                      | /                  | RCp              | Dpp13                        | s Only                    | Aluo I                    | i /               |                  |         |                     | 11                  | /                                                            |                                |
| Additional Pi<br>Call u<br>Questi                         | roject Inform<br>いれ any<br>っこ                            | ation:    | A Standard<br>Date Due: | C RUSH (or a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r Conlirmed d pre-3   | pprovedij                    | A        | METALS, D ABN D PALL | METALS. DMCP 13 DM | EPH: DP CRAS DA  | UPH: CT Targets Treads DPp13 | Kanges & Targets C. Range | TPH: DQuant C Ranges Only | OXIS DFingerprint | $\downarrow$ /   |         |                     |                     | SAMPLE II<br>Filtration<br>Field<br>Lab to de<br>Preservatio | 0 B                            |
| ALPHA Lab ID<br>(Lab Use Only)                            | s un ander                                               | Sample ID | Date                    | ollection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample<br>Matrix      | - annpier                    |          | ETAL.                | ETAL               | H. H.            |                              | PCB                       | Ц.                        | 6                 |                  |         |                     |                     | C Lab to do                                                  | n r<br>D r<br>L<br>E<br>ents s |
| 29727-09                                                  | C-9                                                      |           | 9/2                     | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                     | Initials                     | / /      | 1                    | 12                 | 14               |                              | 14                        | F /                       | /                 | $\left  \right $ |         |                     | Sa                  | mple Comme                                                   |                                |
|                                                           |                                                          |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | JBS                          |          |                      |                    | 1                |                              | $\frac{1}{1}$             | $\frac{1}{1}$             | 1                 |                  |         |                     |                     |                                                              | 7                              |
| -10                                                       | 6-8                                                      |           | 912                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | JBS                          | <u> </u> |                      |                    | i                |                              |                           |                           |                   |                  |         | -                   |                     |                                                              | 7                              |
| - 11                                                      | C-9                                                      |           | 9/2                     | 1149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                     | JBS                          |          |                      | <u> </u>           | 1                | 1                            | C                         |                           |                   |                  |         |                     |                     |                                                              | 7                              |
| -12                                                       | C-10                                                     |           | 9/2                     | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | JOS                          |          | 11                   | ί                  | (                |                              | ι                         | 1                         |                   |                  |         |                     |                     |                                                              | 7                              |
| -13                                                       | C-II                                                     | 0-48      | 19/2                    | 0903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | JBS                          |          | 1                    | ι                  | 1                |                              | l                         | 1                         |                   |                  |         |                     |                     |                                                              | 7                              |
| - 14                                                      | C-12                                                     |           | 2/2)                    | 0844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | JBS                          |          | $\frac{1}{1}$        | 1                  | 1                | 1                            | 1                         | 1 1                       |                   |                  |         |                     |                     |                                                              | 7                              |
| -15                                                       | C-ll                                                     | 48-89     |                         | 0903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>              | JBS                          |          | $\frac{1}{1}$        | 1                  |                  |                              | $\frac{1}{1}$             | ( 1                       | _                 |                  |         |                     |                     |                                                              |                                |
|                                                           |                                                          | 0、        |                         | <u>  · · · · · · · · · · · · · · · · · · ·</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 11/                          |          | -                    | -                  | - <del>-</del> + | <u> </u>                     |                           |                           | -                 |                  |         |                     |                     |                                                              | 7                              |
|                                                           |                                                          |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                              | -        | +                    |                    |                  |                              |                           |                           |                   |                  |         |                     |                     |                                                              |                                |
|                                                           |                                                          |           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                              |          |                      |                    |                  |                              |                           |                           |                   |                  |         |                     |                     |                                                              |                                |
| Container Type<br>P= Plastic<br>A= Amber glass<br>V= Vial | Preservative<br>A= None<br>B≕ HCl<br>C= HNO <sub>3</sub> | A= None   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ner Type<br>servative |                              |          |                      |                    |                  |                              |                           |                           |                   |                  |         |                     |                     |                                                              |                                |
| G= Glass<br>B= Bacteria cup<br>C= Cube                    | D= H₂SO₄<br>E= NaOH<br>F= MeOH                           | 1         | Relinguished By:        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                     | /Time                        |          | Re                   |                    | d∕By:            |                              |                           | -                         | Date              | Timo             | -       |                     |                     |                                                              |                                |
| O= Other<br>E= Encore<br>D= BOD Bottle                    |                                                          | a free    | Thomps Straiger         | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/21/1                | 16:00                        | all      | C-E                  | A                  | K                | ~ <i>A</i>                   | ete.                      | 9/                        | Date/             | 160<br>417       | N A     | ipha's T<br>ee reve | erms an<br>rse side | litted are sub<br>d Conditions                               | ject to                        |



# Table II-1: Completeness Checklist

| Quality Assurance/Quality Control Questions                                                                                                                           | Yes/No? Comments?  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1. Was the report signed by the responsible applicant approved representative?                                                                                        | Yes                |
| 2. Were the methods for sampling, chemical and biological testing described<br>in the Sampling and Analysis Plan (SAP) and the Laboratory QA Plan<br>(LQAP) followed? | Yes                |
| 3. If not, were deviations documented?                                                                                                                                | N/A                |
| 4. Was the SAP approved by the New England District?                                                                                                                  | Yes                |
| 5. Did the applicant use a laboratory with a LQAP on file at the New England District?                                                                                | Yes                |
| 6. Did the samples adequately represent the physical/chemical variability in the dredging area?                                                                       | Yes                |
| 7. Were the correct stations sampled (include the precision of the navigation method used)?                                                                           | Yes                |
| 8. Were the preservation and storage requirements in Chapter 8 of the EPA/Corps QA/QC Manual (EPA/USACE 1995) and EPA (2001d) followed?                               | Yes                |
| 9. Were the samples properly labeled?                                                                                                                                 | Yes                |
| 10. Were all the requested data included?                                                                                                                             | Yes                |
| 11. Were the reporting limits met?                                                                                                                                    | Yes                |
| 12. Were the chain-of-custody forms properly processed?                                                                                                               | Yes                |
| 13. Were the method blanks run and were the concentration below the acceptance criteria?                                                                              | Yes                |
| 14. Was the MDL study performed on each matrix (with this data submission) or within the last 12 months?                                                              | Yes                |
| 15. Were the SRM/CRM analyses within acceptance criteria?                                                                                                             | No – see narrative |
| 16. Were the matrix spike/matrix spike duplicates run at the required frequency and was the percent recovery/RPD within the acceptance criteria?                      | No – see narrative |
| 17. Were the duplicate samples analyzed and were the RPDs within the required acceptance criteria?                                                                    | Yes                |
| 18. For each analytical fraction of organic compounds, were recoveries for the internal standard within the acceptance criteria?                                      | Yes                |
| 19. Were surrogate recoveries within the required acceptance criteria?                                                                                                | Yes                |





 Table II-1 (Continued): Completeness Checklist

| Quality Assurance/Quality Control Questions                                      | Yes/No? Comments? |
|----------------------------------------------------------------------------------|-------------------|
| 20. Were corrective action forms provided for all non-conforming data?           | Yes               |
| 21. Were all the species-specific test conditions in Appendix V met?             |                   |
| 22. Were the test-specific age requirements met for each test species?           |                   |
| 23. Was the bulk physical/chemical testing performed on the                      |                   |
| sediments/composites that were biologically tested?                              |                   |
| 24. Were the mortality acceptance criteria met for the water column and sediment |                   |
| toxicity tests?                                                                  |                   |
| 25. Were the test performance requirements in Table 11.3 of EPA (1994a)          |                   |
| met?                                                                             |                   |





 Table II-2: Quality Control Summary for Analyses of Polyaromatic Hydrocarbons (PAHs) and other base-neutrals in

 Sediment and Tissue Matrices

# Method Reference Number: 8270C

| Quality Control (QC)                             | Acceptance Criteria*                                                                                                              | Criteria    | List results outside criteria                                                                                                                                                                                                                                                                                                                                                                        | Location of Results                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Element                                          |                                                                                                                                   | Met? Yes/No | (Cross-reference results table in data report)                                                                                                                                                                                                                                                                                                                                                       | (Retained at Lab or in<br>Data Package)      |
| Initial Calibration                              | Must be performed prior to<br>the analysis of any QC<br>sample or field sample (<20<br>% RSD for each compound)                   | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | Retained at Lab                              |
| Calculation of Method<br>Detection Limits (MDLs) | For each matrix, analyzed<br>once per 12 month period<br>(see Section 5.2 for MDL<br>procedure)                                   | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | Retained at Lab and<br>On file at USACoE-NED |
| Calibration Verification<br>(Second Source)      | Once, after initial calibration<br>(80 to 120% recovery of each<br>compound)                                                      | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | Retained at Lab                              |
| Continuing Calibration                           | At the beginning of every 12<br>hour shift $(\pm 15 \% D)$                                                                        | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | Retained at Lab                              |
| Standard Reference Materials                     | Within the limits provided by vendor                                                                                              | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | In Data Package                              |
| Method Blank                                     | No target analytes > RL                                                                                                           | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | In Data Package                              |
| Matrix Spike/Matrix Spike<br>Duplicate (MS/MSD)  | One set (MS/MSD) per group<br>of field samples. Must<br>contain all target analytes.<br>(Recovery Limits 50 to<br>120%; RPD <30%) | No          | WG937275-6 MS naphthalene<br>(38.7%), acenaphthylene (42.3%),<br>acenaphthene (44.7%), fluorene<br>(46.6%), phenanthrene (48.5%),<br>anthracene (45.2%), fluoranthene<br>(49.9%), pyrene (48.2%) and cl3-<br>bz#18 (49.2%).<br>WG937275-7 MS naphthalene<br>(39.6%), acenaphthylene (42.9%),<br>acenaphthene (45.1%), fluorene<br>(47%), phenanthrene (48.9%),<br>anthracene (45.9%), pyrene (48.1%) | In Data Package                              |
| Analytical Replicates                            | Analyze one sample in duplicate for each group of                                                                                 | Yes         |                                                                                                                                                                                                                                                                                                                                                                                                      | In Data Package                              |

M:\Report\QC Summary Tables\2016\NORMAN\L1629727.doc



|                    | $\neg$ |
|--------------------|--------|
| • <b>1</b> • • • • |        |
|                    |        |
|                    |        |
| ימיו               | 19     |
|                    |        |

QC Summary Tables US Army Corps of Engineers

|                         | field samples (RPD < 30%)     |     |                 |
|-------------------------|-------------------------------|-----|-----------------|
| Surrogate Recoveries    | Calculate % recovery (30 to   | Yes | In Data Package |
|                         | 150% recovery)                |     |                 |
| Internal Standard Areas | Within 50 to 200% of internal | Yes | Retained at Lab |
|                         | standards in continuing       |     |                 |
|                         | calibration check             |     |                 |

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.





# Table II-3: Quality Control Summary for the Analyses of Pesticides in Sediment, Tissue, and Water Matrices

| Quality Control (QC)                             | Acceptance Criteria*                                                                                                              | Criteria    | List results outside criteria                  | Location of Results                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------------------|
| Element                                          |                                                                                                                                   | Met? Yes/No | (Cross-reference results table in data report) | (Retained at Lab or in<br>Data Package)      |
| Initial Calibration                              | Must be performed prior to<br>the analysis of any QC<br>sample or field sample (<20<br>% RSD for each compound)                   |             |                                                | Retained at Lab                              |
| Calculation of Method<br>Detection Limits (MDLs) | For each matrix, analyzed<br>once per 12 month period<br>(see Section 5.2 for MDL<br>procedure)                                   |             |                                                | Retained at Lab and<br>On file at USACoE-NED |
| Calibration Verification<br>(Second Source)      | Once, after initial calibration<br>(80 to 120% recovery of each<br>compound)                                                      |             |                                                | Retained at Lab                              |
| Continuing Calibration                           | Every 20 injections<br>(± 15 % D)                                                                                                 |             |                                                | Retained at Lab                              |
| Standard Reference Materials                     | Within the limits provided by vendor                                                                                              |             |                                                | In Data Package                              |
| Method Blank                                     | No target analytes > RL                                                                                                           |             |                                                | In Data Package                              |
| Matrix Spike/Matrix Spike<br>Duplicate (MS/MSD)  | One set (MS/MSD) per group<br>of field samples. Must<br>contain all target analytes.<br>(Recovery Limits 50 to<br>120%; RPD <30%) |             |                                                | In Data Package                              |
| Analytical Replicates                            | Analyze one sample in<br>duplicate for each group of<br>field samples (RPD < 30%)                                                 |             |                                                | In Data Package                              |
| Surrogate Recoveries                             | Calculate % recovery (30 to 150% recovery)                                                                                        |             |                                                | In Data Package                              |

# Method Reference Number: 8081B

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.





 Table II-4: Quality Control Summary for Analyses of Polychlorinated Biphenyls (PCB Congeners) in Sediment, Tissue, and

 Water Matrices

Method Reference Number: 8270C

| Quality Control (QC)<br>Element                  | Acceptance Criteria*                                                                                                              | Criteria<br>Met? Yes/No | List results outside criteria                                       | Location of Results                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------|----------------------------------------------|
| Element                                          |                                                                                                                                   | Met: Yes/No             | (Cross-reference results table in data report)                      | (Retained at Lab or in<br>Data Package)      |
| Initial Calibration                              | Must be performed prior to<br>the analysis of any QC<br>sample or field sample (<20<br>% RSD for each compound)                   | Yes                     |                                                                     | Retained at Lab                              |
| Calculation of Method<br>Detection Limits (MDLs) | For each matrix, analyzed<br>once per 12 month period<br>(see Section 5.2 for MDL<br>procedure)                                   | Yes                     |                                                                     | Retained at Lab and<br>On file at USACoE-NED |
| Calibration Verification<br>(Second Source)      | Once, after initial calibration<br>(80 to 120% recovery of each<br>compound)                                                      | Yes                     |                                                                     | Retained at Lab                              |
| Continuing Calibration                           | Every 20 injections<br>(± 15 % D)                                                                                                 | Yes                     |                                                                     | Retained at Lab                              |
| Standard Reference Materials                     | Within the limits provided by vendor                                                                                              | No                      | cl6-bz#128 (164%)                                                   | In Data Package                              |
| Method Blank                                     | No target analytes > RL                                                                                                           | Yes                     |                                                                     | In Data Package                              |
| Matrix Spike/Matrix Spike<br>Duplicate (MS/MSD)  | One set (MS/MSD) per group<br>of field samples. Must<br>contain all target analytes.<br>(Recovery Limits 50 to<br>120%; RPD <30%) | No                      | WG937275-6 MS cl3-bz#18 (49.2%)<br>WG937275-7 MS cl3-bz#18 (48.7%). | In Data Package                              |
| Analytical Replicates                            | Analyze one sample in<br>duplicate for each group of<br>field samples (RPD < 30%)                                                 | Yes                     |                                                                     | In Data Package                              |
| Surrogate Recoveries                             | Calculate % recovery (30 to 150% recovery)                                                                                        | Yes                     |                                                                     | In Data Package                              |

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

M:\Report\QC Summary Tables\2016\NORMAN\L1629727.doc





# Table II-5: Quality Control Summary for Analyses of Metals in Sediments, Tissue, and Water Matrices

| Quality Control (QC)                                                        | Acceptance Criteria*                                                                                                               | Criteria    | List results outside criteria                  | Location of Results                          |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------------------|
| Element                                                                     |                                                                                                                                    | Met? Yes/No | (Cross-reference results table in data report) | (Retained at Lab or in<br>Data Package)      |
| Linear Range Determination for ICP                                          | Performed Quarterly                                                                                                                | Yes         |                                                | Retained at Lab                              |
| Initial Calibration for AA, Hg                                              | Performed Daily (Correlation<br>Coefficient ≥0.995)                                                                                | Yes         |                                                | Retained at Lab                              |
| Calculation of Method<br>Detection Limits (MDLs)                            | For each matrix, analyzed<br>once per 12 month period<br>(see Section 5.2 for MDL<br>procedure)                                    | Yes         |                                                | Retained at Lab and<br>On file at USACoE-NED |
| Initial Calibration<br>Verification/ Continuing<br>Calibration Verification | Hg: 80 to 120% recovery<br>Other metals: 90 to 110%<br>recovery                                                                    | Yes         |                                                | Retained at Lab                              |
| Initial Calibration Blank/<br>Continuing Calibration Blank                  | No target analytes ><br>Instrument Detection Limit<br>(IDL)                                                                        | No          | Results >3x IDL noted, on file at lab          | Retained at Lab                              |
| Standard Reference Materials                                                | Within the limits provided by vendor                                                                                               | Yes         |                                                | In Data Package                              |
| Method Blank                                                                | No target analytes > RL                                                                                                            | Yes         |                                                | In Data Package                              |
| Sample Spike/ Sample<br>Duplicate                                           | One set per group of field<br>samples. Must contain all<br>target analytes. Recovery<br>Limits (75 to 125%; RPD<br>< 20% or < 35%) | Yes         |                                                | In Data Package                              |
| Analytical Replicates                                                       | Analyze one sample in<br>duplicate for each group of<br>field samples (RPD < 30%)                                                  | Yes         |                                                | In Data Package                              |

Method Reference Numbers: Various Reference Numbers

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.





# Table II-6: Quality Control Summary for Analyses of other Organic Chemicals not listed in Sediment, Tissue, and Water Matrices

Method Reference Numbers:

| Quality Control (QC)         | Acceptance Criteria*            | Criteria    | List results outside criteria     | Location of Results    |
|------------------------------|---------------------------------|-------------|-----------------------------------|------------------------|
| Element                      |                                 | Met? Yes/No | (Cross-reference results table in | (Retained at Lab or in |
|                              |                                 |             | data report)                      | Data Package)          |
| Initial Calibration          | Must be performed prior to      |             |                                   | Retained at Lab        |
|                              | the analysis of any QC          |             |                                   |                        |
|                              | sample or field sample (<20     |             |                                   |                        |
|                              | % RSD for each compound)        |             |                                   |                        |
| Calculation of Method        | For each matrix, analyzed       |             |                                   | In Data Package        |
| Detection Limits (MDLs)      | once per 12 month period        |             |                                   |                        |
|                              | (see Section 5.2 for MDL        |             |                                   |                        |
|                              | procedure)                      |             |                                   |                        |
| Calibration Verification     | Once, after initial calibration |             |                                   | Retained at Lab        |
| (Second Source)              | (80 to 120% recovery of each    |             |                                   |                        |
|                              | compound)                       |             |                                   |                        |
| Continuing Calibration       | At the beginning of every 12    |             |                                   | Retained at Lab        |
|                              | hour shift ( $\pm$ 15 % D)      |             |                                   |                        |
| Standard Reference Materials | Within the limits provided by   |             |                                   | In Data Package        |
|                              | vendor                          |             |                                   |                        |
| Method Blank                 | No target analytes > RL         |             |                                   | In Data Package        |
| Matrix Spike/Matrix Spike    | One set (MS/MSD) per group      |             |                                   | In Data Package        |
| Duplicate (MS/MSD)           | of field samples. Must          |             |                                   |                        |
|                              | contain all target analytes.    |             |                                   |                        |
|                              | (Recovery Limits 50 to          |             |                                   |                        |
| A 1 2 1 B 12                 | 120%; RPD <30%)                 |             |                                   | L D . D 1              |
| Analytical Replicates        | Analyze one sample in           |             |                                   | In Data Package        |
|                              | duplicate for each group of     |             |                                   |                        |
| C                            | field samples (RPD < 30%)       |             |                                   | L. D. ( . D. ( )       |
| Surrogate Recoveries         | Calculate % recovery (30 to     |             |                                   | In Data Package        |
|                              | 150% recovery)                  |             |                                   | L. D. ( D. 1           |
| Internal Standard Areas      | Within 50 to 200% of internal   |             |                                   | In Data Package        |
| (if applicable)              | standards in continuing         |             |                                   |                        |
|                              | calibration check               |             |                                   |                        |

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

M:\Report\QC Summary Tables\2016\NORMAN\L1629727.doc





# Table II-7: Quality Control Summary for Analyses of Sediment Grain Size and Total Organic Carbon

Method Reference Numbers:

| Quality Control (QC)         | Acceptance Criteria*          | Criteria    | List results outside criteria     | Location of Results    |
|------------------------------|-------------------------------|-------------|-----------------------------------|------------------------|
| Element                      |                               | Met? Yes/No | (Cross-reference results table in | (Retained at Lab or in |
|                              |                               |             | data report)                      | Data Package)          |
| Grain Size:                  | Analyze one sample in         | Yes         |                                   | In Data Package        |
| Analytical Replicates        | duplicate for each group of   |             |                                   |                        |
|                              | field samples (RPD < 25%)     |             |                                   |                        |
| Total Organic Carbon:        | Within the limits provided by | Yes         |                                   | In Data Package        |
| Standard Reference Materials | vendor                        |             |                                   |                        |
| Total Organic Carbon:        | Analyze one sample in         | Yes         |                                   | In Data Package        |
| Analytical Replicates        | duplicate for each group of   |             |                                   |                        |
|                              | field samples (RPD <30%)      |             |                                   |                        |

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.





# Table II-8: Quality Control Summary for Biological Toxicity Testing only

Method Reference Numbers:

| Quality Control (QC)<br>Element                                                                                     | Acceptance Criteria*                                                                | Criteria<br>Met?<br>Yes/No | List results outside criteria<br>(Cross-reference results table<br>in data report) | Location of Results<br>(Retained at Lab or<br>in Data Package) |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Test condition requirements for<br>each species:<br>Temperature, Salinity, pH, D.O.,<br>Ammonia (Total, Un-ionized) | Test conditions within the<br>requirements specified for each<br>species            |                            |                                                                                    | In Data Package                                                |
| Test species age                                                                                                    | Age/health within guidelines for<br>each species (Appendix V)                       |                            |                                                                                    | In Data Package                                                |
| Bulk physical/chemical analyses<br>(If required by the Sampling<br>plan)                                            | Required? If so, performed? Yes<br>or No                                            |                            |                                                                                    | In Data Package                                                |
| Water column toxicity test:                                                                                         |                                                                                     |                            |                                                                                    | In Data Package                                                |
| Control mortality<br>Control abnormality                                                                            | < 10% mean<br>< 30% mussel/oyster; < 40%<br>clam larvae, < 30% sea urchin<br>larvae |                            |                                                                                    |                                                                |
| Sediment toxicity test:                                                                                             |                                                                                     |                            |                                                                                    | In Data Package                                                |
| Control mortality                                                                                                   | < 10% mean (no chamber >20%)                                                        |                            |                                                                                    |                                                                |
| Compliance with applicable<br>test acceptability requirements<br>in Table 11.3 (EPA 1994a)                          | See EPA (1994a) Section 9;<br>Table 11.3                                            |                            |                                                                                    |                                                                |

\* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

# Reference:

Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters, U.S. EPA and U.S. Army Corps of Engineers, New England District, April 2004.

M:\Report\QC Summary Tables\2016\NORMAN\L1629727.doc





October 13, 2016

# Vista Work Order No. 1601237

Ms. Liz Porta Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581

Dear Ms. Porta,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on September 27, 2016. This sample set was analyzed on a rush turn-around time, under your Project Name 'L1629727'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Karenjopez for

Martha Maier Laboratory Director



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfeld Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1601237 Case Narrative

# Sample Condition on Receipt:

Fifteen aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. As directed, the sample IDs were confirmed for the following samples:

Sample C-8 (L1629727-10) collected 21-SEP-16 13:00 Sample C-9 (L1629727-11) collected 21-SEP-16 11:45

# **Analytical Notes:**

# **Modified EPA Method 537**

The samples were extracted and analyzed for PFOA and PFOS using Modified EPA Method 537. The results include both linear and branched isomers.

# Holding Times

The samples were extracted and analyzed within the method hold times.

# Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The recoveries of all internal standards in the QC and field samples were within the acceptance criteria.

As requested, an MS/MSD was performed on sample "C-6 (0-48)".

# TABLE OF CONTENTS

| Case Narrative     | 1  |
|--------------------|----|
| Table of Contents  | 3  |
| Sample Inventory   | 4  |
| Analytical Results | 5  |
| Qualifiers         | 24 |
| Certifications     | 25 |
| Sample Receipt     | 28 |

# **Sample Inventory Report**

| Vista<br>Sample ID | Client<br>Sample ID |        | Sampled         | Received        | Components/Containers |
|--------------------|---------------------|--------|-----------------|-----------------|-----------------------|
| 1601237-01         | C-6 (0-48)          | MS/MSD | 20-Sep-16 10:10 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-02         | C-7 (0-48)          |        | 20-Sep-16 12:02 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-03         | C-1                 |        | 20-Sep-16 12:58 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-04         | C-2                 |        | 20-Sep-16 13:05 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-05         | C-3                 |        | 20-Sep-16 13:36 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-06         | C-4                 |        | 20-Sep-16 14:05 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-07         | C-6 (48-61)         |        | 20-Sep-16 10:10 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-08         | C-7 (48-54)         |        | 20-Sep-16 12:02 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-09         | C-5                 |        | 21-Sep-16 08:35 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-10         | C-9                 |        | 21-Sep-16 13:00 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-11         | C-9                 |        | 21-Sep-16 11:45 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-12         | C-10                |        | 21-Sep-16 12:20 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-13         | C-11 (0-48)         |        | 21-Sep-16 09:03 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-14         | C-12                |        | 21-Sep-16 08:44 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |
| 1601237-15         | C-11 (48-89)        |        | 21-Sep-16 09:03 | 27-Sep-16 10:06 | HDPE Jar, 4 oz        |

Vista Project: 1601237

Page 173 of 262 Work Order 1601237 Client Project: L1629727

# ANALYTICAL RESULTS

| Sample II               | ): Method Blank |                                                        |                                                                                                                        |                                                   |             | VA                   | L - PFAS   |
|-------------------------|-----------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------|----------------------|------------|
| Matrix:<br>Sample Size: | Solid<br>1.00 g | QC Batch: B6J0020<br>Date Extracted: 05-Oct-2016 15:22 |                                                                                                                        | Lab Sample: B6J0020-E<br>Date Analyzed: 11-Oct-16 |             | I C18                |            |
| Analyte                 | Conc. (ng/g)    | RL                                                     | Qualifiers                                                                                                             | Labeled Standard                                  | %R          | LCL-UCL              | Qualifiers |
| PFOA<br>PFOS            | ND<br>ND        | 2.00<br>2.00                                           |                                                                                                                        | IS 13C2-PFOA<br>IS 13C8-PFOS                      | 99.0<br>107 | 60 - 150<br>60 - 150 |            |
|                         |                 | RL - Reporting limit                                   | LCL-UCL - Lower control limit - upp<br>The results are reported in dry weight<br>The sample size is reported in wet we |                                                   |             |                      |            |

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

| Sample ID: OPR                       |                             |                           |         |          |                       |                                                  |            | VAL - PFAS |
|--------------------------------------|-----------------------------|---------------------------|---------|----------|-----------------------|--------------------------------------------------|------------|------------|
| Matrix: Solid<br>Sample Size: 1.00 g | QC Batch:<br>Date Extracted | B6J0020<br>d: 05-Oct-2010 | 6 15:22 |          | Lab Samp<br>Date Anal | ele: B6J0020-BS1<br>yzed: 11-Oct-16 20:02 Column | n: BEH C18 |            |
| Analyte                              | Amt Found (ng/g )           | Spike Amt                 | %R      | Limits   |                       | Labeled Standard                                 | %R         | LCL-UCL    |
| PFOA                                 | 9.68                        | 10.0                      | 96.8    | 70 - 130 | IS                    | 13C2-PFOA                                        | 95.4       | 60 - 150   |
| PFOS                                 | 8.31                        | 10.0                      | 83.1    | 70 - 130 | IS                    | 13C8-PFOS                                        | 105        | 60 - 150   |

LCL-UCL - Lower control limit - upper control limit

| Sample ID:      | C-6 (0-48)           |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp  | le: 1601237-01              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             | -       | Sample Size: | 1.48 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 10:10    |         | % Solids:    | 67.5   | Da         | te Anal | yzed: 11-Oct-16 20:53 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 2.00    |              |        |            | IS      | 13C2-PFOA                   | 92.1            | 60 - 150   |            |
| PFOS            | ND                   | 2.00    |              |        |            | IS      | 13C8-PFOS                   | 81.1            | 60 - 150   |            |

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

| Matrix Spike Re                                                   | esults                                           |                    |          |             |                     |           |      |                 |             |               |                  |                       |                                                             |                  | VAL -     | PFAS        |
|-------------------------------------------------------------------|--------------------------------------------------|--------------------|----------|-------------|---------------------|-----------|------|-----------------|-------------|---------------|------------------|-----------------------|-------------------------------------------------------------|------------------|-----------|-------------|
| Source Client ID:<br>Source LabNumber:<br>Matrix:<br>Sample Size: | C-6 (0-48)<br>1601237-01<br>Solid<br>1.52/1.49 g |                    |          |             | QC Bate<br>Date Ex  |           |      | 0020<br>Oct-201 | 6 15:22     |               | Lab Sa<br>Date A | nalyzed: 11-Oct-16 21 | S1/B6J0020-MSD1<br>:05 Column: BEH C1<br>:18 Column: BEH C1 |                  |           |             |
| Analyte                                                           |                                                  | Spike-MS<br>(ng/g) | MS<br>%R | MS<br>Qual. | Spike-MSD<br>(ng/g) | MSD<br>%R | RPD  | MSD<br>Qual.    | %R<br>Limit | %RPD<br>Limit | I                | abeled Standard       | MS<br>%R                                                    | MS<br>Qualifiers | MSD<br>%R | MS<br>Qual. |
| PFOA                                                              |                                                  | 9.75               | 108      |             | 9.94                | 93.9      | 14.0 |                 | 70 - 130    | 25            | IS               | 13C2-PFOA             | 92.0                                                        |                  | 101       |             |
| PFOS                                                              |                                                  | 9.75               | 97.3     |             | 9.94                | 91.2      | 6.47 |                 | 70 - 130    | 25            | IS               | 13C8-PFOS             | 70.6                                                        |                  | 77.5      |             |

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

Only the linear isomer is reported for all other analytes.

| Sample ID:      | C-7 (0-48)           |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lal        | b Samp  | le: 1601237-02              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.41 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 5 15:22    |
| Date Collected: | 20-Sep-2016 12:02    |         | % Solids:    | 72.6   | Da         | te Anal | yzed: 11-Oct-16 21:31 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.95    |              |        |            | IS      | 13C2-PFOA                   | 93.1            | 60 - 150   |            |
| PFOS            | ND                   | 1.95    |              |        |            | IS      | 13C8-PFOS                   | 82.8            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-1                  |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lal        | b Samp  | ble: 1601237-03             | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.79 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 12:58    |         | % Solids:    | 58.5   | Da         | te Anal | yzed: 11-Oct-16 21:43 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.91    |              |        |            | IS      | 13C2-PFOA                   | 93.5            | 60 - 150   |            |
| PFOS            | ND                   | 1.91    |              |        |            | IS      | 13C8-PFOS                   | 90.7            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-2                  |         |              |        |            |         |                            |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                     |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lal        | o Samp  | ble: 1601237-04            | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.70 g | QC         | Batch   | : B6J0020                  | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 13:05    |         | % Solids:    | 61.8   | Da         | te Anal | yzed: 11-Oct-16 21:56 Colu | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard           | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.91    |              |        |            | IS      | 13C2-PFOA                  | 101             | 60 - 150   |            |
| PFOS            | ND                   | 1.91    |              |        |            | IS      | 13C8-PFOS                  | 80.6            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-3                  |         |              |        |            |         |                              |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|------------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                       |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lab        | o Samp  | ble: 1601237-05              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.64 g | QC         | Batch   | :: B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 13:36    |         | % Solids:    | 62.9   | Dat        | te Anal | lyzed: 11-Oct-16 22:08 Colur | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard             | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.94    |              |        |            | IS      | 13C2-PFOA                    | 97.0            | 60 - 150   |            |
| PFOS            | ND                   | 1.94    |              |        |            | IS      | 13C8-PFOS                    | 76.6            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-4                  |         |              |        |            |         |                              |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|------------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                       |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lab        | o Samp  | ble: 1601237-06              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.58 g | QC         | Batch   | :: B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 14:05    |         | % Solids:    | 65.9   | Dat        | te Anal | lyzed: 11-Oct-16 22:21 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard             | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.92    |              |        |            | IS      | 13C2-PFOA                    | 94.6            | 60 - 150   |            |
| PFOS            | ND                   | 1.92    |              |        |            | IS      | 13C8-PFOS                    | 78.6            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-6 (48-61)          |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory | y Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp  | le: 1601237-07              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             | -       | Sample Size: | 1.61 g | Q          | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 10:10    |         | % Solids:    | 64.2   | Da         | te Anal | yzed: 11-Oct-16 22:34 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      | ļ            |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.93    |              |        |            | IS      | 13C2-PFOA                   | 97.6            | 60 - 150   |            |
| PFOS            | ND                   | 1.93    |              |        |            | IS      | 13C8-PFOS                   | 74.6            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-7 (48-54)          |         |              |        |            |          |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|----------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory  | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp   | le: 1601237-08              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.50 g | Q          | C Batch  | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 20-Sep-2016 12:02    |         | % Solids:    | 71.5   | Da         | ate Anal | yzed: 11-Oct-16 23:49 Colur | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |          | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.87    |              |        |            | IS       | 13C2-PFOA                   | 111             | 60 - 150   |            |
| PFOS            | ND                   | 1.87    |              |        |            | IS       | 13C8-PFOS                   | 90.4            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-5                  |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lat        | o Samp  | ble: 1601237-09             | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.51 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 8:35     |         | % Solids:    | 68.4   | Dat        | te Anal | yzed: 12-Oct-16 00:02 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.94    |              |        |            | IS      | 13C2-PFOA                   | 103             | 60 - 150   |            |
| PFOS            | ND                   | 1.94    |              |        |            | IS      | 13C8-PFOS                   | 81.1            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-8                  |         |              |        |            |         |                              |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|------------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                       |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lal        | b Samp  | ble: 1601237-10              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.46 g | QC         | Batch   | : B6J0020                    | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 13:00    |         | % Solids:    | 74.2   | Da         | te Anal | lyzed: 12-Oct-16 00:15 Colur | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard             | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.85    |              |        |            | IS      | 13C2-PFOA                    | 105             | 60 - 150   |            |
| PFOS            | ND                   | 1.85    |              |        |            | IS      | 13C8-PFOS                    | 85.9            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-9                  |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory | y Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp  | ble: 1601237-11             | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             | -       | Sample Size: | 1.22 g | Q          | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 11:45    |         | % Solids:    | 83.0   | Da         | te Anal | yzed: 12-Oct-16 00:27 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.97    |              |        |            | IS      | 13C2-PFOA                   | 108             | 60 - 150   |            |
| PFOS            | ND                   | 1.97    |              |        |            | IS      | 13C8-PFOS                   | 88.6            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-10                 |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp  | le: 1601237-12              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.34 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 12:20    |         | % Solids:    | 81.5   | Da         | te Anal | yzed: 12-Oct-16 00:40 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.83    |              |        |            | IS      | 13C2-PFOA                   | 107             | 60 - 150   |            |
| PFOS            | ND                   | 1.83    |              |        |            | IS      | 13C8-PFOS                   | 75.0            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-11 (0-48)          |         |              |        |            |          |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|----------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Lab        | oratory  | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | La         | b Samp   | le: 1601237-13              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             | 2       | Sample Size: | 1.46 g | Q          | Batch    | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 9:03     |         | % Solids:    | 70.1   | Da         | ite Anal | yzed: 12-Oct-16 00:53 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      | l            |        | Qualifiers |          | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.95    |              |        |            | IS       | 13C2-PFOA                   | 111             | 60 - 150   |            |
| PFOS            | ND                   | 1.95    |              |        |            | IS       | 13C8-PFOS                   | 89.3            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-12                 |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | y Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lat        | o Samp  | ble: 1601237-14             | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             |         | Sample Size: | 1.29 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 8:44     |         | % Solids:    | 78.3   | Dat        | te Anal | lyzed: 12-Oct-16 01:05 Colu | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      |              |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.98    |              |        |            | IS      | 13C2-PFOA                   | 110             | 60 - 150   |            |
| PFOS            | ND                   | 1.98    |              |        |            | IS      | 13C8-PFOS                   | 94.4            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

| Sample ID:      | C-11 (48-89)         |         |              |        |            |         |                             |                 | VA         | L - PFAS   |
|-----------------|----------------------|---------|--------------|--------|------------|---------|-----------------------------|-----------------|------------|------------|
| Client Data     |                      |         | Sample Data  |        | Labo       | oratory | v Data                      |                 |            |            |
| Name:           | Alpha Analytical Lab | oratory | Matrix:      | Solid  | Lat        | b Samp  | le: 1601237-15              | Date Received:  | 27-Sep-201 | 6 10:06    |
| Project:        | L1629727             | -       | Sample Size: | 1.48 g | QC         | Batch   | : B6J0020                   | Date Extracted: | 05-Oct-201 | 6 15:22    |
| Date Collected: | 21-Sep-2016 9:03     |         | % Solids:    | 69.3   | Dat        | te Anal | yzed: 12-Oct-16 01:18 Colum | nn: BEH C18     |            |            |
| Analyte         | Conc. (ng/g)         | RL      | l            |        | Qualifiers |         | Labeled Standard            | %R              | LCL-UCL    | Qualifiers |
| PFOA            | ND                   | 1.95    |              |        |            | IS      | 13C2-PFOA                   | 107             | 60 - 150   |            |
| PFOS            | ND                   | 1.95    |              |        |            | IS      | 13C8-PFOS                   | 81.3            | 60 - 150   |            |

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight.

The sample size is reported in wet weight.

Results reported to RL.

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.

## **DATA QUALIFIERS & ABBREVIATIONS**

| В     | This compound was also detected in the method blank.                                    |
|-------|-----------------------------------------------------------------------------------------|
| D     | Dilution                                                                                |
| E     | The associated compound concentration exceeded the calibration range of the instrument. |
| Н     | Recovery and/or RPD was outside laboratory acceptance limits.                           |
| I     | Chemical Interference                                                                   |
| J     | The amount detected is below the Reporting Limit/LOQ.                                   |
| *     | See Cover Letter                                                                        |
| Conc. | Concentration                                                                           |
| NA    | Not applicable                                                                          |
| ND    | Not Detected                                                                            |
| TEQ   | Toxic Equivalency                                                                       |

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

| Accrediting Authority                               | Certificate Number |
|-----------------------------------------------------|--------------------|
| California Department of Health – ELAP              | 2892               |
| DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005     | 3091.01            |
| Florida Department of Health                        | E87777             |
| Hawaii Department of Health                         | N/A                |
| Louisiana Department of Environmental Quality       | 01977              |
| Maine Department of Health                          | 2014022            |
| Nevada Division of Environmental Protection         | CA004132015-1      |
| New Jersey Department of Environmental Protection   | CA003              |
| New York Department of Health                       | 11411              |
| Oregon Laboratory Accreditation Program             | 4042-004           |
| Pennsylvania Department of Environmental Protection | 012                |
| South Carolina Department of Health                 | 87002001           |
| Texas Commission on Environmental Quality           | T104704189-15-6    |
| Virginia Department of General Services             | 7923               |
| Washington Department of Ecology                    | C584               |
| Wisconsin Department of Natural Resources           | 998036160          |

### **CERTIFICATIONS**

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request

### **NELAP Accredited Test Methods**

| MATRIX: Air                                                  |        |
|--------------------------------------------------------------|--------|
| Description of Test                                          | Method |
| Determination of Polychlorinated p-Dioxins & Polychlorinated | EPA 23 |
| Dibenzofurans                                                |        |

| MATRIX: Biological Tissue                                              |             |
|------------------------------------------------------------------------|-------------|
| Description of Test                                                    | Method      |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope          | EPA 1613B   |
| Dilution GC/HRMS                                                       |             |
| Brominated Diphenyl Ethers by HRGC/HRMS                                | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue    | EPA 1668A/C |
| by GC/HRMS                                                             |             |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by          | EPA 1699    |
| HRGC/HRMS                                                              |             |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS       | EPA 537     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by | EPA 8280A/B |
| GC/HRMS                                                                |             |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated             | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                       | 8290/8290A  |

| MATRIX: Drinking Water                                           |          |
|------------------------------------------------------------------|----------|
| Description of Test                                              | Method   |
| 2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS      | EPA 1613 |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS | EPA 537  |

| MATRIX: Non-Potable Water                                               |             |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| Description of Test                                                     | Method      |  |  |  |  |  |  |  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope           | EPA 1613B   |  |  |  |  |  |  |  |
| Dilution GC/HRMS                                                        |             |  |  |  |  |  |  |  |
| Brominated Diphenyl Ethers by HRGC/HRMS                                 | EPA 1614A   |  |  |  |  |  |  |  |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue     | EPA 1668A/C |  |  |  |  |  |  |  |
| by GC/HRMS                                                              |             |  |  |  |  |  |  |  |
| Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS | EPA 1699    |  |  |  |  |  |  |  |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS        | EPA 537     |  |  |  |  |  |  |  |
| Dioxin by GC/HRMS                                                       | EPA 613     |  |  |  |  |  |  |  |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated                   | EPA 8280A/B |  |  |  |  |  |  |  |
| Dibenzofurans by GC/HRMS                                                |             |  |  |  |  |  |  |  |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated              | EPA         |  |  |  |  |  |  |  |
| Dibenzofurans (PCDFs) by GC/HRMS                                        | 8290/8290A  |  |  |  |  |  |  |  |

| MATRIX: Solids                                                        |           |
|-----------------------------------------------------------------------|-----------|
| Description of Test                                                   | Method    |
| Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS | EPA 1613  |
| Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope         | EPA 1613B |

| Dilution GC/HRMS                                                                  |             |
|-----------------------------------------------------------------------------------|-------------|
| Brominated Diphenyl Ethers by HRGC/HRMS                                           | EPA 1614A   |
| Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS    | EPA 1668A/C |
| Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS                  | EPA 537     |
| Polychlorinated Dibenzo-p-Dioxins and Polychlorinated<br>Dibenzofurans by GC/HRMS | EPA 8280A/B |
| Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated                        | EPA         |
| Dibenzofurans (PCDFs) by GC/HRMS                                                  | 8290/8290A  |

| 1601237 | 7.0 |
|---------|-----|
|         |     |

|                                                            | CHAIN OF (                                         | CUSTO            | DY              | PAGE 1 C        | of 2         | Date            | Rec'd ii  | n Lab: |       |        |         | 1               |                     | ALP     | HA Jo                         | ob #:                                    | L162               | 9727                                                              |  |  |  |
|------------------------------------------------------------|----------------------------------------------------|------------------|-----------------|-----------------|--------------|-----------------|-----------|--------|-------|--------|---------|-----------------|---------------------|---------|-------------------------------|------------------------------------------|--------------------|-------------------------------------------------------------------|--|--|--|
| ALPH                                                       | A                                                  | Project Inform   | mation          |                 |              | Rep             | ort In    | form   | ation | Data   | Deliv   | verab           | les                 | Billi   | ng Inf                        | forma                                    | ation              | ecological and the                                                |  |  |  |
| ANALYT                                                     | ICAL                                               |                  |                 |                 |              |                 | AX        |        |       | EMAIL  |         |                 |                     |         | ame as                        | PO #:                                    |                    |                                                                   |  |  |  |
|                                                            | Mansfield, MA<br>TEL: 508-822-9300                 | Project Name:    |                 |                 |              |                 | ADEx      |        |       | □ A    | dd'l De | liverabl        | rerables            |         |                               |                                          |                    |                                                                   |  |  |  |
| all and the second to be                                   | FAX: 508-822-3288                                  |                  |                 |                 |              | Reg             | julato    | ry Re  | quire | ment   | s/Rep   | ort L           | imits               |         |                               |                                          |                    |                                                                   |  |  |  |
| Client Information                                         | on                                                 | Project Location | n: NJ           |                 |              | State           | /Fed Pr   | ogram  |       |        |         |                 |                     | Criteri | ia                            |                                          |                    |                                                                   |  |  |  |
| Client: Alpha Analytical Lab Project #:                    |                                                    |                  |                 |                 |              |                 |           |        | DEN   |        |         |                 |                     |         |                               |                                          |                    |                                                                   |  |  |  |
| Address: 320 Forbe                                         | es Blvd.                                           | Project Manage   | er: Elizabeth P | orta            |              |                 |           | 1      | No    | E CEF  |         | a star be de la |                     |         |                               |                                          | NFIDENCE PROTOCOLS |                                                                   |  |  |  |
| Mansfield, Ma 0204                                         | 18                                                 | ALPHA Quote #    | <b>#</b> :      |                 |              |                 |           |        | No No |        |         |                 | and a second second |         |                               | equired?<br>fidence Protocols) Required? |                    |                                                                   |  |  |  |
| Phone: 508-822-93                                          | 300                                                | Turn-Around      | Time            |                 |              |                 | ALYSI     | s      |       |        |         |                 |                     |         |                               |                                          |                    | Ť                                                                 |  |  |  |
| Fax:                                                       |                                                    | Standard         | 🗌 Ru            | ISh (ONLY IF PI | RE-APPROVED) |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | SAMPLE HANDLING T<br><i>Filtration</i> L                          |  |  |  |
| Email:                                                     |                                                    |                  |                 |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Done                                                              |  |  |  |
| subreports@alphal                                          | ab.com,eporta@alphalab.com                         | Due Date:        | Time:           |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Not Needed  Lab to do B                                           |  |  |  |
| These samples have                                         | been Previously analyzed by Alpha                  |                  |                 |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Preservation Q                                                    |  |  |  |
| Other Project Sp                                           | ecific Requirements/Comments                       | /Detection Limi  | ts:             |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Lab to do T                                                       |  |  |  |
|                                                            |                                                    |                  |                 |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | (Please specify L<br>below) E<br>S                                |  |  |  |
| Please include Alp                                         | Please include Alpha job #L1629727 on this report. |                  |                 | SC              |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    |                                                                   |  |  |  |
|                                                            |                                                    |                  |                 |                 |              | PFOA/PFOS       |           |        |       |        |         |                 |                     |         |                               |                                          |                    |                                                                   |  |  |  |
| ALPHA Lab ID                                               | Sample ID                                          | Col              | lection         | Sample          | Sampler's    | NO <sup>1</sup> |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Sample Specific                                                   |  |  |  |
| (Lab Use Only)                                             |                                                    | Date             | Time            | Matrix          | Initials     | d d             |           |        |       |        |         |                 |                     |         |                               |                                          |                    | Comments                                                          |  |  |  |
| MS/MSD                                                     | C-6 (0-48)                                         | 9/20/16          | 101/0           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-01                                                       |  |  |  |
|                                                            | C-7 (0-48)                                         | 9/20/16          | 12:02           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-02                                                       |  |  |  |
|                                                            | C-1                                                | 9/20/16          | 12:58           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-03                                                       |  |  |  |
|                                                            | C-2                                                | 9/20/16          | 13:05           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-04                                                       |  |  |  |
|                                                            | C-3                                                | 9/20/16          | 13:36           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-05                                                       |  |  |  |
|                                                            | C-4                                                | 9/20/16          | 14:05           |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-06                                                       |  |  |  |
|                                                            | C-6 (48-61)                                        | 9/20/16          | 15:10           |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-07                                                       |  |  |  |
|                                                            | C-7 (48-54)                                        | 9/20/16          | 12:02           |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L162972-08                                                        |  |  |  |
|                                                            | C-5                                                | 9/21/16          | 08:35           |                 |              |                 |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-09                                                       |  |  |  |
|                                                            | C-9                                                | 9/21/16          | 13:00           |                 |              | $\square$       |           |        |       |        |         |                 |                     |         |                               |                                          |                    | L1629727-10                                                       |  |  |  |
| PLEASE ANSWER QUESTIONS ABOVE! Container Type Preservation |                                                    | ontainer Type    | A               | -               | -            | -               | -         | -      | -     | -      | -       | -               | -                   | -       | Please print clearly, legibly |                                          |                    |                                                                   |  |  |  |
|                                                            |                                                    |                  |                 |                 | Preservative | A               | -         | -      | -     | -      | -       | -               | -                   | -       | -                             | -                                        | -                  | and completely. Samples can<br>not be logged in and               |  |  |  |
|                                                            | PROJECT                                            | 11               | Relin           | quished By:     |              | D Inta          | ate/Tim   |        |       | 6      |         | ved By:         |                     |         | C                             | )ate/Tir                                 | ne                 | turnaround time clock will not<br>start until any ambiguities are |  |  |  |
| MA MCP                                                     | or CT RCP?                                         | M                | r Choal         | K               |              | 4/29            | $\varphi$ | 1700   |       | inante | )PS     |                 |                     |         | 9-2                           | 1-10                                     | 1017               | resolved. All samples<br>submitted are subject to                 |  |  |  |
| FORM NO: 01-01(I)<br>(rev. 30-JUL-07)                      |                                                    |                  |                 | ,               |              |                 |           |        | W     | you    | à       |                 |                     |         | 12-                           | t_16                                     | UL                 | Alpha's Payment Terms.                                            |  |  |  |
|                                                            |                                                    |                  |                 |                 |              |                 |           |        | 1     | -      |         |                 |                     |         | 1                             |                                          |                    |                                                                   |  |  |  |

# 1601237,7.0

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHAIN OF                          | CUSTO             | DY              | PAGE 2                    | DF 2                          | Date            | Rec'd i | n Lab:           |       |      |           |         |       | ALPHA Job #: L1629727 |                 |               |                                                    |                                                         |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|-----------------|---------------------------|-------------------------------|-----------------|---------|------------------|-------|------|-----------|---------|-------|-----------------------|-----------------|---------------|----------------------------------------------------|---------------------------------------------------------|-------------|--|
| <b>ALPH</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                 | Project Infor     | mation          |                           |                               |                 |         | form             | ation | Data | Deliv     | erab    | les   | Billi                 | ng In           | forma         | ation                                              |                                                         |             |  |
| Westborough, MA M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cal.<br>ansfield, MA              |                   |                 |                           |                               | D F             | AX      |                  |       | ΒE   | MAIL      |         |       |                       | Same as         | s Client      | info                                               | PO #:                                                   |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EL: 508-822-9300                  | Project Name:     |                 |                           |                               | D A             | ADEx    |                  |       | □ A  | dd'l De   | liverab | es    |                       |                 |               |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AX: 508-822-3288                  |                   |                 |                           |                               | Reg             | julato  | ry Re            | quire | ment | s/Rep     | ort L   | imits |                       |                 |               |                                                    |                                                         |             |  |
| Client Informatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                 | Project Location  | n: NJ           |                           |                               | State           | /Fed P  | rogram           |       |      |           |         |       | Criter                | ria             |               |                                                    |                                                         |             |  |
| Client: Alpha Analyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ical Lab                          | Project #:        |                 |                           |                               | MC              |         | = <u>e i i m</u> | DTIV  |      |           |         | T DE  | 100                   | MARI            | E CC          | NEID                                               | ENCE PROTOCO                                            | 9           |  |
| Address: 320 Forbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s Blvd.                           | Project Manage    | er: Elizabeth F | Porta                     |                               |                 |         |                  | No No |      |           |         |       | I Metho               |                 |               |                                                    | ENCETROTOGO                                             |             |  |
| Mansfield, Ma 0204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                 | ALPHA Quote       | #:              | atta an interest star and |                               |                 |         |                  | No No |      |           |         |       |                       |                 |               |                                                    | s) Required?                                            |             |  |
| Phone: 508-822-930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                | Turn-Around       | l Time          |                           |                               | ANA             | ALYS    | IS               |       |      |           |         |       |                       | T               | 1             |                                                    |                                                         | T<br>O      |  |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Standard Standard | 🗌 Ri            | ISH (ONLY IF F            | RE-APPROVED                   |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    | SAMPLE HANDLING<br>Filtration                           | T<br>A<br>L |  |
| Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 255 H 162 S. M S. F               |                   |                 |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    | Done Not Needed                                         | #           |  |
| subreports@alphala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ab.com,eporta@alphalab.com        | - Due Date:       | Time            |                           |                               |                 |         |                  |       |      |           |         |       |                       | ų.              |               |                                                    | Lab to do                                               | в           |  |
| Contraction of the second | been Previously analyzed by Alpha |                   | •               |                           |                               | +               |         |                  |       |      |           |         |       |                       |                 |               |                                                    | Preservation                                            | BOTTLES     |  |
| Other Project Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ecific Requirements/Comments      | s/Detection Limi  |                 |                           |                               |                 |         |                  |       |      |           |         |       |                       | (Please specify | Ľ             |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           |                               |                 |         |                  |       |      |           |         |       |                       | below)          | E<br>S        |                                                    |                                                         |             |  |
| Please include Alph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a job #L1629727 on this report.   |                   | so              |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           | -                             | VPF             |         |                  |       |      |           |         |       |                       |                 |               |                                                    |                                                         |             |  |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample ID                         |                   | lection         | Sample<br>Matrix          | Sampler's<br>Initials         | PFOA/PFOS       |         |                  |       |      |           |         |       |                       |                 |               |                                                    | Sample Specific<br>Comments                             |             |  |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | Date              | Time            | Matrix                    |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-9                               | 9/21/16           | 11:45           |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    | L1629727-11                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-10                              | 9/21/16           | 12:20           |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    | L1629727-12                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-11 (0-48)                       | 9/21/16           | 9:03            |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 |               |                                                    | L1629727-13                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-12                              | 9/21/16           | 8:44            |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 | ⊢⊢            |                                                    | L1629727-14                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-11 (48-89)                      | 9/21/16           | 9:03            |                           |                               |                 |         |                  |       |      | $\exists$ |         |       |                       |                 |               |                                                    | L1629727-15                                             |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           |                               |                 | ╎┝┤     |                  |       |      |           |         |       |                       | $+\square$      | ⊢⊢            |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           |                               |                 |         |                  | ╞╤    |      |           |         |       |                       |                 | HH            |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           |                               |                 |         |                  |       |      |           |         |       |                       |                 | H             |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           |                               |                 | =       |                  |       |      |           |         |       |                       |                 | ГП            |                                                    |                                                         |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                   |                 |                           | antainar Typa                 | A               | -       | -                | -     | -    | -         | -       | -     | -                     | -               | -             | -                                                  |                                                         |             |  |
| PLEASE ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QUESTIONS ABOVE!                  |                   |                 |                           | ontainer Type<br>Preservative | A               | -       | -                | -     | -    | -         | -       | -     | -                     | -               | -             | -                                                  | Please print clearly, legibl<br>and completely. Samples |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DROJECT                           |                   | Relin           | quished By:               | 11000144146                   |                 | ate/Tim | l<br>ne          |       | 1    | Receiv    | ed Bv:  |       |                       | ſ               | L<br>Date/Tir | ne                                                 | not be logged in and<br>turnaround time clock will      |             |  |
| - HAN 1977년의 전철학 신간도가 문화하면 기가(1978년)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT                           | 11                | m alba          |                           |                               |                 | P       | 1483             |       | 1    | IPS       | 12 0 /1 |       |                       |                 | 1             |                                                    | start until any ambiguities<br>resolved. All samples    |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or CT RCP?                        | 100               | in very         |                           |                               | NJG/16/1700 UPS |         |                  |       |      |           |         |       | 92                    | 2/16            | 1012          | submitted are subject to<br>Alpha's Payment Terms. |                                                         |             |  |
| (rev. 30-JUL-07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                   |                 |                           |                               | × .             |         |                  |       | and  |           |         |       |                       |                 |               |                                                    |                                                         |             |  |

| SAMPLE | LOG-IN | CHECKLIST |
|--------|--------|-----------|
|        |        |           |



| Vista Project #: | ]6            | 01237    |           |     | TAT      | 14           |           |  |
|------------------|---------------|----------|-----------|-----|----------|--------------|-----------|--|
|                  | Date/Time     |          | Initials: |     | Location | : W          | R-Z       |  |
| Samples Arrival: | 9/27/16 1     | 006      | MAS       |     | Shelf/Ra |              |           |  |
|                  | Date/Time     | \$       | Initials: |     | Location | : W          | R-2       |  |
| Logged In:       | 9/28/16       | 1620     | 8R        |     | Shelf/Ra | ck:          | F5        |  |
| Delivered By:    | FedEx         | UPS      | On Trac   | DHL |          | and<br>/ered | Other     |  |
| Preservation:    | Ice           | В        | lue Ice   | Dr  | y Ice    | None         |           |  |
| Temp °C: 7,6     | (uncorrected) | Time:    | 025       |     | Thermon  | otorl        | DT-1      |  |
| Temp °C: 7,0     | (corrected)   | Probe us | ed: Yes   | No□ | Thermon  | neter I      | MX 9/27/F |  |
|                  |               |          |           |     |          |              |           |  |

|                               |                                               |              |           |    | YES          | NO   | NA           |
|-------------------------------|-----------------------------------------------|--------------|-----------|----|--------------|------|--------------|
| Adequate Sample Volume Re     | eceived?                                      |              |           |    | $\bigvee$    |      |              |
| Holding Time Acceptable?      |                                               |              |           |    |              |      |              |
| Shipping Container(s) Intact? | )                                             |              |           |    |              |      |              |
| Shipping Custody Seals Intac  | ct?                                           |              |           |    | $\checkmark$ |      |              |
| Shipping Documentation Pre    | sent?                                         |              |           |    |              |      |              |
| Airbill Trk #                 |                                               | $\checkmark$ |           |    |              |      |              |
| Sample Container Intact?      |                                               | J            |           |    |              |      |              |
| Sample Custody Seals Intact   | ?                                             |              |           |    |              |      | $\checkmark$ |
| Chain of Custody / Sample D   | ocumentation Pres                             | sent?        |           |    | $\bigvee$    |      |              |
| COC Anomaly/Sample Accept     | otance Form comp                              | leted?       |           |    | $\checkmark$ |      |              |
| If Chlorinated or Drinking Wa | ter Samples, Acce                             | ptable Pres  | ervation? |    |              |      | $\checkmark$ |
| Preservation Documented:      | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Т            | rizma     |    | Yes          | No   | (NA)         |
| Shipping Container            | Vista                                         | Client       | Retain    | Re | eturn        | Disp | ose          |

Comments:

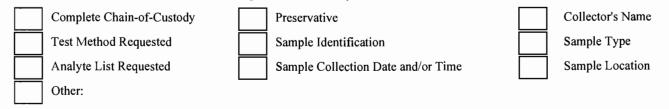
Label ID: C-8 COC ID: C-9 Vista ID: 16001237-10

BLA 09/06/2016

### Chain of Custody Anomaly/Sample Acceptance Form



Client:Alpha Analytical LaboratoryContact:Liz PortaEmail:eporta@alphalab.comPhone:(508) 844-4124


Workorder Number:1601237Date Received:27-Sep-16 11:16Documented by/date:S.Roughton 9/28/16

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier mmaier@vista-analytical.com 916-673-1520

### The following information or item is needed to proceed with analysis:



### The following anomalies were noted. Authorization is needed to proceed with analysis.

| Temperature outside <                                                     | 6°C Range | Sam               | ples Affect | ted:                                         |              |               |  |
|---------------------------------------------------------------------------|-----------|-------------------|-------------|----------------------------------------------|--------------|---------------|--|
| Temperature _                                                             | °C        | Ice Present?      | Yes         | No Melte                                     | ed           |               |  |
| Sample ID Discrepance<br>Sample Holding Time<br>Custody Seals Broken      |           |                   | Sam         | fficient Sam<br>ple Contain<br>prrect Contai | er(s) Broken |               |  |
| Comments:                                                                 |           |                   |             |                                              |              |               |  |
| Client Label ID: C-8<br>COC ID: C-9<br>Vista ID: 1601237-10<br>See page 2 |           |                   |             |                                              |              |               |  |
| Client Authorization                                                      |           |                   | . 1         |                                              |              |               |  |
| Proceed with Analysis, YPS                                                | NO Si     | ignature and Date | - Ka        | MM                                           | 10-13-10     |               |  |
| Client Comments/Instructions _                                            | C-8 C     | ollected          | in 9/       | 21/ile                                       | 13:00.       |               |  |
| age 200 of 262                                                            | C-9 00    | lected c          | n 91        | 21/14                                        | u: 45.       |               |  |
| Work Order 1601237                                                        |           |                   |             |                                              |              | Page 31 of 32 |  |

### Serial\_No:10271613:37

# Chain of Custody Anomaly/Sample Acceptance Form



Alpha Analytical Laboratory Liz Porta eporta@alphalab.com (508) 844-4124 Workorder Number:1601237Date Received:27-Sep-1611:Documented by/date:S.Roughton

27-Sep-16 11:16 S.Roughton 9/28/16

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier mmaier@vista-analytical.com 916-673-1520



Sample IDs on Chain of Custody do not match Sample Container Labels

| Chain of Custody ID | Container Label ID |
|---------------------|--------------------|
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
| C-9                 | C-8                |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |
|                     |                    |

| Client Authorization<br>Proceed with Analysis: YES NO | Signature and Date | 10-13-16 |               |
|-------------------------------------------------------|--------------------|----------|---------------|
| Client Comments/Instructions                          |                    |          |               |
| Page 201 of 262                                       |                    |          |               |
| Work Order 1601237                                    |                    |          | Page 32 of 32 |



### an affiliate of The GEL Group INC

3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405 P 910.795.0421

www.capefearanalytical.com

October 19, 2016

Ms. Elizabeth Porta Alpha Analytical Laboratory 8 Walkup Drive Westborough, Massachusetts 01581

Re: Dioxin and PCB Subcontract, Liz Porta PM Work Order: 9822 SDG: L1629727

Dear Ms. Porta:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 27, 2016. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Cynde Larking

Cynde Larkins Project Manager

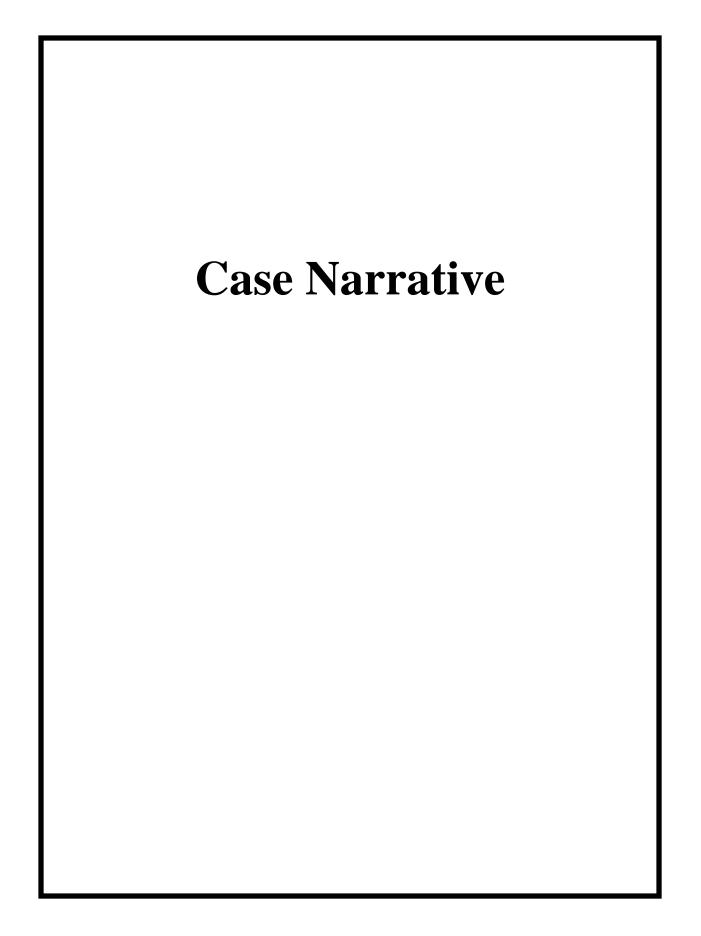
Enclosures

| , NC          |
|---------------|
| FEAR          |
| CAPE FEAR, NC |
| JPS:          |
| SUB U         |

| 1.1    | ) |
|--------|---|
| ∝      | > |
| C<br>T |   |
| F      | 5 |
|        |   |

| Band SUB UPS: C.              | SUB UPS: CAPE FEAR, NC                                         |                                  |             |                             |                |             |                   |                                       |          |                    |           |                                      |                                         | 3                     | UD049822                                               | 2                                                                                                              |
|-------------------------------|----------------------------------------------------------------|----------------------------------|-------------|-----------------------------|----------------|-------------|-------------------|---------------------------------------|----------|--------------------|-----------|--------------------------------------|-----------------------------------------|-----------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| e 20;<br>2-of                 | CHAIN OF CUSTODY                                               | CUSTO                            | ≿           | PAGE OF                     | 4              | Date Re     | Date Rec'd in Lab | ib:                                   |          |                    |           | ALP                                  | OL AH                                   | ALPHA Job #: L1629727 | 329727                                                 |                                                                                                                |
| THIS OF 20                    | 47                                                             | Project Information              | ation       |                             |                | Report      | rt Infor<br>×     | Report Information                    |          | Data Deliverables  | rables    |                                      | <mark>ng Info</mark><br>same as (       | Billing Information   | n<br>PO#:                                              |                                                                                                                |
|                               | Mansfield, MA<br>TEL: 508-822-9300                             | Project Name:                    |             |                             |                | D ADEx      | Ĕ                 |                                       | ¥<br>I 🗆 | Add'l Deliverables | erables   |                                      |                                         |                       |                                                        |                                                                                                                |
|                               | FAX: 508-822-3288                                              | Divised Leastion:                |             |                             |                | Regu        | atory             | Regulatory Requirements/Report Limits | ments    | /Repo              | rt Limi   |                                      | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |                                                        |                                                                                                                |
|                               |                                                                |                                  | R           |                             |                | State/F     | State/Fed Program | am                                    |          |                    |           | Criteria                             | ia                                      |                       |                                                        | ter a ser a se |
| Client: Alpha Analytical Lab  | cal Lab                                                        | Project #:                       |             |                             |                | MCP         | PRESI             | UMPTIV                                | E CER    | TAINT              | Y-CT F    | EASO                                 | NABLE                                   | CONF                  | IDENCE P                                               | MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS                                                   |
| Address: 320 Forbes Blvd      | Blvd.                                                          | Project Manager: Elizabeth Porta | Elizabeth F | orta                        |                | □ Yes       |                   | °N<br>⊠                               |          | Are MCI            | P Analyti | Are MCP Analytical Methods Required? | ods Requ                                | ired?                 |                                                        |                                                                                                                |
| Mansfield, Ma 02048           |                                                                | ALPHA Quote #:                   |             |                             |                | □ Yes       |                   | °N<br>⊠                               |          | Are CT             | RCP (Re   | asonable                             | : Confide                               | nce Proto             | Are CT RCP (Reasonable Confidence Protocols) Required? |                                                                                                                |
| Phone: 508-822-9300           | 0                                                              | Turn-Around Time                 | Time        |                             |                | ANAL        | ANALYSIS          |                                       |          |                    |           |                                      |                                         |                       |                                                        | 1996.                                                                                                          |
| Fax:                          |                                                                | X Standard                       | Ц<br>Ц      | Rush (ONLY IF PRE-APPROVED) | E-APPROVED)    |             |                   |                                       |          |                    |           |                                      |                                         |                       | SAMPLE HANDLING                                        | ANDLING T                                                                                                      |
| Email:<br>subreports@alphalat | Email:<br>subreports@atphatab.com.eporta@atphatab.com          |                                  | i           |                             |                |             |                   |                                       |          |                    |           |                                      |                                         |                       | Done Not Needed                                        |                                                                                                                |
| These samples have be         | These samples have been Previously analyzed by Alpha           | · Due Date:                      | Ime:        |                             |                |             |                   |                                       |          |                    |           |                                      |                                         |                       | Lab to do     Preservation                             |                                                                                                                |
| Other Project Spec            | Other Project Specific Requirements/Comments/Detection Limits: | /Detection Limits                |             |                             |                |             |                   |                                       |          |                    |           |                                      |                                         |                       | Lab to do                                              |                                                                                                                |
|                               | -                                                              |                                  |             |                             |                |             |                   |                                       |          |                    |           |                                      | ****                                    |                       | (Please specify<br>below)                              | ecify E                                                                                                        |
| Please include Alphé          | Mease include Alpha Job #L1529/2/ on this report.              |                                  |             |                             |                | 81631       |                   |                                       |          | *****              |           |                                      |                                         |                       |                                                        |                                                                                                                |
| ALPHA Lab ID                  | Sample ID                                                      | Collection                       | ction       | Sample                      | Sampler's      | uix         |                   |                                       |          |                    |           |                                      |                                         |                       |                                                        |                                                                                                                |
| (Lab Use Only)                |                                                                | Date                             | Time        | Matrix                      | Initials       | oiQ         |                   |                                       |          |                    |           |                                      | i                                       |                       | Sample Specific<br>Comments                            | ific                                                                                                           |
| CISM/SM                       | C-6 (0-48)                                                     | 9/20/46                          | 0.0         | Seliment                    |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | ] L1629727-01                                          | 7-01                                                                                                           |
|                               | C-7 (0-48)                                                     | 9/20/16                          | 13:02       |                             |                |             |                   |                                       |          |                    |           |                                      |                                         |                       | ] L1629727-02                                          | 7-02 1                                                                                                         |
|                               | C-1                                                            | 9/20/16                          | la:58       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | J L1629727-03                                          | 7-03                                                                                                           |
|                               | C-2                                                            | 9/20/16                          | 13:05       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | ] L1629727-04                                          | 7-04                                                                                                           |
|                               | C-3                                                            | 9/20/16                          | 13:36       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | L1629727-05                                            | 7-05 1                                                                                                         |
|                               | C-4                                                            | 9/20/16                          | 14:02       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | ] L1629727-06                                          | 7-06                                                                                                           |
|                               | C-6 (48-61)                                                    | 9/20/16                          | 10:10       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           | Se                                   |                                         |                       | J L1629727-07                                          | 1 20-2                                                                                                         |
|                               | C-7 (48-54)                                                    | 9/20/16                          | 10:03       |                             |                |             |                   |                                       |          |                    |           | rial                                 |                                         |                       | J L162972-08                                           | -08                                                                                                            |
|                               | C-5                                                            | 9/21/16                          | 08:35       |                             |                | $\boxtimes$ |                   |                                       |          |                    |           |                                      |                                         |                       | L1629727-09                                            | 1 60-2                                                                                                         |
|                               | C-9                                                            | 9/21/16                          | 13:00       | 2                           |                | $\boxtimes$ |                   |                                       |          |                    |           | □<br>>:1(                            |                                         |                       | L1629727-10                                            | 7-10                                                                                                           |
| PLEASE ANSWER QUESTIONS ABOVE | <b>IUESTIONS ABOVEI</b>                                        |                                  |             | Cor                         | Container Type | A           | •                 | ,                                     |          |                    | •         | 27                                   |                                         | •                     | i<br>i                                                 | alameter taminte                                                                                               |
|                               |                                                                |                                  |             |                             | Preservative   | ۲           |                   |                                       | <u>.</u> | <u>-</u>           | ·         | 1 <u>'6</u> 1                        |                                         | <u>-</u>              | and comple                                             | riease print dearry, regiony<br>and completely. Samples can                                                    |
| IS YOUR PROJECT               | PROJECT                                                        | 11                               | Belin       | Selinquished By:            |                | Date        | Date/Time         |                                       |          | Received By:       | By:       | 3:37                                 | Ğ                                       | Date/Time             | tumaround<br>start until a                             | turnaround time clock will not<br>start until any ambiguities are                                              |
|                               | MA MCP or CT RCP?                                              | 1114                             |             | XU XU                       |                | 119191      | 6 H               | <u>3</u><br>2.                        | M        | ₫j                 | Ø.        | ل   ۲                                | 2) CAlla                                | 0 [[a                 | resolved.<br>submitted<br>Alpha's Pa                   | resolved. All samples<br>submitted are subject to<br>Alpha's Payment Terms.                                    |
| (rev. 30-JUL-07)              |                                                                |                                  |             |                             |                |             |                   |                                       |          |                    |           |                                      | 8                                       | 0/01                  |                                                        |                                                                                                                |

5.6°C


| 2236 #QM               | Date Rec'd in Lab: ALPHA Job #: L1629727 | Report Information Data Deliverables Billing Information | Add'l Deliverables                                                    | Regulatory Requirements/Report Limits | State/Fed Program Criteria |                              |                                  |                     | YSIS                | <br>                                 |                                                       | The second |                                                                | pelow)                                             | nixc                   |                       |                        |               |                       |                |                  |  |  | ·<br>·<br>·<br>·               | ·            | Date/Time     Received By:     C     Date/Time     Indree loges will not and time clock will not time clock will not time clock will not start until any ambiguities are resolved. All samples       Received Diff.     PRO     Diff.     PRO     Diff.       Received By:     C     L     time clock will not start until any ambiguities are resolved. All samples |
|------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|----------------------------|------------------------------|----------------------------------|---------------------|---------------------|--------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------------|-----------------------|------------------------|---------------|-----------------------|----------------|------------------|--|--|--------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | JSTODY PAGE 2 OF 2                       | Project Information                                      | Project Name:                                                         |                                       | Project Location: NJ       | Project #:                   | Project Manager: Elizabeth Porta | ALPHA Quote #:      | Turn-Around Time    | Standard Cush (onLy IF PRE-APPROVED) |                                                       | Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tection Limits:                                                |                                                    |                        | Date Time Matrix Init | 9/21/16 11:45 Sediment | 9/21/16 (2:20 | 9/21/16 <b>79</b> .03 | 9/21/16 08:44- | 9/21/16 D9:103 U |  |  | <br>Container Type             | Preservative | Relinquished By:                                                                                                                                                                                                                                                                                                                                                     |
| SUB UPS: CAPE FEAR, NC |                                          | HITTICAL<br>NALITICAL                                    | Owestborough, MA Mansfield, MA<br>TEL: 508-838-9220 TEL: 508-822-9300 |                                       | Client Information         | Client: Alpha Analytical Lab | Address: 320 Forbes Blvd.        | Mansfield, Ma 02048 | Phone: 508-822-9300 | Fax:                                 | Email:<br>subreports@alphalab.com,eporta@alphalab.com |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other Project Specific Requirements/Comments/Detection Limits. | Please include Alpha iob #L1629727 on this report. | ALPHA Lab ID Sample ID | (Lab Use Only)        | C-9                    | C-10          | C-11 (0-48)           | C-12           | C-11 (48-89)     |  |  | PLEASE ANSWER QUESTIONS ABOVE! |              | IS YOUR PROJECT<br>MA MCP or CT RCP?                                                                                                                                                                                                                                                                                                                                 |

### SAMPLE RECEIPT CHECKLIST

| Cape Fear Analytical |  |
|----------------------|--|
|----------------------|--|

| Clie                                                         | nt: ALPH                                                       |     |                                                                                    |    | Work Order: 9822                                                                              |
|--------------------------------------------------------------|----------------------------------------------------------------|-----|------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------|
| Shi                                                          | oping Company: UPS                                             |     |                                                                                    |    | Date/Time Received: 27802016 TO:26.10:05                                                      |
| Suspected Hazard InformationYesNANoShipped as DOT Hazardous? |                                                                | No  | DOE Site Sample Packages       Yes       NA       No*         Screened <0.5 mR/hr? |    |                                                                                               |
|                                                              | Sample Receipt Specifics<br>sample in shipment?                | Yes | NA                                                                                 | No | Air Witness:                                                                                  |
|                                                              | Sample Receipt Criteria                                        | Yes | NA                                                                                 | No | Comments/Qualifiers (required for Non-Conforming Items)                                       |
| 1                                                            | Shipping containers received intact and sealed?                |     |                                                                                    |    | Circle Applicable:<br>seals broken damaged container leaking container other(describe)        |
| 2                                                            | Chain of Custody documents included with shipment?             | 7   |                                                                                    | :  |                                                                                               |
| 3                                                            | Samples requiring cold preservation within 0-6°C?              | 7   |                                                                                    | (  | Presengtion Method:<br>ice bags blue ice dry ice none other (describe)<br>5, 6 C              |
| 4                                                            | Aqueous samples found to have visible solids?                  |     | 7                                                                                  | /  | Sample IDs, containers affected:                                                              |
| 5                                                            | Samples requiring chemical<br>preservation at proper pH?       |     | 1                                                                                  | /  | Sample IDs, containers affected and pH observed:<br>If preservative added, Lot#:              |
| 6                                                            | Samples requiring preservation have no residual chlorine?      |     | /                                                                                  | ~  | Sample IDs, containers affected:<br>If preservative added, Lot#:                              |
| 7                                                            | Samples received within holding time?                          | /   |                                                                                    |    | Sample IDs, tests affected:                                                                   |
| 8                                                            | Sample IDs on COC match IDs on containers?                     |     |                                                                                    | V  | Sample 10, containers affected:<br>Sample #10 is C-8 on container<br>#11 is C-9 on container  |
| 9                                                            | Date & time of COC match date & time<br>on containers?         | J   |                                                                                    |    | Sample IDs, containers affected:                                                              |
| 10                                                           | Number of containers received match number indicated on COC?   | 7   | $\lambda$                                                                          |    | List type and number of containers / Sample IDs, containers affected:<br>1 - 402 CAMBER ECLCH |
| 11                                                           | COC form is properly signed in relinquished/received sections? | 7   |                                                                                    |    |                                                                                               |
| Cor                                                          | nments:                                                        |     |                                                                                    |    |                                                                                               |

# High Resolution Dioxins and Furans Analysis



### HDOX Case Narrative Alpha Analytical Laboratory (ALPH) **SDG L1629727** Work Order 9822

### **Method/Analysis Information**

| Product:                 | Dioxins/Furans by EPA Method 1613B in Solids |
|--------------------------|----------------------------------------------|
| Analytical Method:       | EPA Method 1613B                             |
| Extraction Method:       | SW846 3540C                                  |
| Analytical Batch Number: | 33023                                        |
| Clean Up Batch Number:   | 33022                                        |
| Extraction Batch Number: | 33021                                        |

<u>Sample Analysis</u> The following samples were analyzed using the analytical protocol as established in Method 1613B:

| Sample ID | Client ID                                        |
|-----------|--------------------------------------------------|
| 9822001   | C-6 (0-48)                                       |
| 9822002   | 9822001(C-6 (0-48)) Matrix Spike (MS)            |
| 9822003   | 9822001(C-6 (0-48)) Matrix Spike Duplicate (MSD) |
| 9822004   | C-7 (0-48)                                       |
| 9822005   | C-1                                              |
| 9822006   | C-2                                              |
| 9822007   | C-3                                              |
| 9822008   | C-4                                              |
| 9822009   | C-6 (48-61)                                      |
| 9822010   | C-7 (48-54)                                      |
| 9822011   | C-5                                              |
| 9822012   | C-8                                              |
| 9822013   | C-9                                              |
| 9822014   | C-10                                             |
| 9822015   | C-11(0-48)                                       |
| 9822016   | C-12                                             |
| 9822017   | C-11(48-89)                                      |
| 12017085  | Method Blank (MB)                                |
| 12017086  | Laboratory Control Sample (LCS)                  |
| 12017087  | Laboratory Control Sample Duplicate (LCSD)       |
|           |                                                  |

The samples in this SDG were analyzed on a "dry weight" basis.

### **SOP Reference**

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 14.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

### **Calibration Information**

### **Initial Calibration**

All initial calibration requirements have been met for this sample delivery group (SDG).

### **Continuing Calibration Verification (CCV) Requirements**

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

### **Quality Control (QC) Information**

### **Certification Statement**

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

### Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

### **Surrogate Recoveries**

All surrogate recoveries were within the established acceptance criteria for this SDG.

### Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

### Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

### LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

### **QC Sample Designation**

Sample 9822001 (C-6 (0-48))- Batch 33023 was selected for analysis as the matrix spike and matrix spike duplicate.

### Matrix Spike (MS) Recovery Statement

The MS recoveries were within the established acceptance limits.

### Matrix Spike Duplicate (MSD) Recovery Statement

One analyte recovered outside the acceptance limits. 9822003 (C-6 (0-48))- Batch 33023.

### MS/MSD Relative Percent Difference (RPD) Statement

One RPD was outside the acceptance limits. 9822003 (C-6 (0-48))- Batch 33023.

### **Technical Information**

### **Holding Time Specifications**

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

### **Preparation/Analytical Method Verification**

All procedures were performed as stated in the SOP.

### **Sample Dilutions**

The samples in this SDG did not require dilutions.

### Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

### **Miscellaneous Information**

### Nonconformance (NCR) Documentation

The following NCR was generated for this SDG: 646052 9822003 (C-6 (0-48))- Batch 33023.

### **Manual Integrations**

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

### **Sample preparation**

No difficulties were encountered during sample preparation.

### **Electronic Packaging Comment**

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also

includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

# **Sample Data Summary**

# Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

### Certificate of Analysis Report for

### ALPH001 Alpha Analytical Laboratory

### Client SDG: L1629727 CFA Work Order: 9822

### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the specified detection limit.

### **Review/Validation**

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heath attason

Date: 19 OCT 2016

Name: Heather Patterson

Title: Group Leader

# Serial\_Report 027:1613:37 19, 2016

|                                                                  |                                          | Hi-Res I                                     | Dioxins/Furans                                  |       |                                                  | Page 1                                  | of 2 |
|------------------------------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|------|
|                                                                  |                                          | Certific                                     | ate of Analysis                                 |       |                                                  |                                         |      |
|                                                                  |                                          | Samp                                         | le Summary                                      |       |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:             | ID: 9822001                              | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 10:10<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>34.7<br>Dry Weight |      |
| Batch ID:<br>Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch: | 33023<br>10/17/2016 19:22<br>b17oct16a-5 | Method:<br>Analyst:<br>Prep Method:          | EPA Method 1613B<br>CLP<br>SW846 3540C          |       | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| Prep Date:                                                       | 16-OCT-16                                | Prep Aliquot:                                | 16.14 g                                         |       |                                                  |                                         |      |
| CAS No.                                                          | Parmname                                 | Qual                                         | Result                                          | Units |                                                  | PQL                                     |      |
| 1746-01-6                                                        | 2,3,7,8-TCDD                             | U                                            | .949                                            | pg/g  |                                                  | 0.949                                   |      |
| 40321-76-4                                                       | 1,2,3,7,8-PeCDD                          | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 39227-28-6                                                       | 1,2,3,4,7,8-HxCDD                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 57653-85-7                                                       | 1,2,3,6,7,8-HxCDD                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 19408-74-3                                                       | 1,2,3,7,8,9-HxCDD                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 35822-46-9                                                       | 1,2,3,4,6,7,8-HpCDD                      | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 3268-87-9                                                        | 1,2,3,4,6,7,8,9-OCDD                     |                                              | 98.2                                            | pg/g  |                                                  | 9.49                                    |      |
| 51207-31-9                                                       | 2,3,7,8-TCDF                             | U                                            | .949                                            | pg/g  |                                                  | 0.949                                   |      |
| 57117-41-6                                                       | 1,2,3,7,8-PeCDF                          | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 57117-31-4                                                       | 2,3,4,7,8-PeCDF                          | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 70648-26-9                                                       | 1,2,3,4,7,8-HxCDF                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 57117-44-9                                                       | 1,2,3,6,7,8-HxCDF                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 60851-34-5                                                       | 2,3,4,6,7,8-HxCDF                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 72918-21-9                                                       | 1,2,3,7,8,9-HxCDF                        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 67562-39-4                                                       | 1,2,3,4,6,7,8-HpCDF                      | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 55673-89-7                                                       | 1,2,3,4,7,8,9-HpCDF                      | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 39001-02-0                                                       | 1,2,3,4,6,7,8,9-OCDF                     | U                                            | 9.49                                            | pg/g  |                                                  | 9.49                                    |      |
| 41903-57-5                                                       | Total Tetrachlorodibenzo-p-dioxin        | U                                            | .949                                            | pg/g  |                                                  | 0.949                                   |      |
| 36088-22-9                                                       | Total Pentachlorodibenzo-p-dioxin        | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 34465-46-8                                                       | Total Hexachlorodibenzo-p-dioxin         | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 37871-00-4                                                       | Total Heptachlorodibenzo-p-dioxin        |                                              | 5.28                                            | pg/g  |                                                  | 4.74                                    |      |
| 30402-14-3                                                       | Total Tetrachlorodibenzofuran            | U                                            | .949                                            | pg/g  |                                                  | 0.949                                   |      |
| 30402-15-4                                                       | Total Pentachlorodibenzofuran            | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 55684-94-1                                                       | Total Hexachlorodibenzofuran             | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 38998-75-3                                                       | Total Heptachlorodibenzofuran            | U                                            | 4.74                                            | pg/g  |                                                  | 4.74                                    |      |
| 3333-30-0                                                        | TEQ WHO2005 ND=0                         |                                              | 0.0295                                          | pg/g  |                                                  |                                         |      |
| 3333-30-1                                                        | TEQ WHO2005 ND=0.5                       |                                              | 5.44                                            | pg/g  |                                                  |                                         |      |
|                                                                  |                                          |                                              |                                                 |       |                                                  |                                         |      |

| Surrogate/Tracer recovery |  | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|--|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |  | 131    | 190     | pg/g  | 69.2      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |  | 125    | 190     | pg/g  | 65.9      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |  | 126    | 190     | pg/g  | 66.5      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |  | 128    | 190     | pg/g  | 67.4      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |  | 117    | 190     | pg/g  | 61.5      | (23%-140%)        |
| 13C-OCDD                  |  | 136    | 379     | pg/g  | 35.7      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |  | 129    | 190     | pg/g  | 68.1      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |  | 119    | 190     | pg/g  | 62.9      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |  | 116    | 190     | pg/g  | 61.1      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |  | 128    | 190     | pg/g  | 67.3      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |  | 129    | 190     | pg/g  | 67.8      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |  | 131    | 190     | pg/g  | 69.2      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |  | 129    | 190     | pg/g  | 68.2      | (29%-147%)        |

|                                                    |                                                        |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis  |                    |                                       | Page 2                    | of 2 |
|----------------------------------------------------|--------------------------------------------------------|------|------------------------------------|---------------------------------------|---------|--------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822001<br>1613B Soil                      |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 5 10:10 | Ν                  | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>34.7 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-6 (0-48)<br>33023<br>10/17/2016 19:22<br>b17oct16a-5 | Ana  | Method: EPA Method<br>Analyst: CLP |                                       |         | :<br>Iı            | Prep Basis: 1 Instrument: 1 Dilution: |                           |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                     | Prep | ) Method:<br>) Aliquot:            | SW846 35<br>16.14 g                   | 540C    | T 1 <b>*</b> 4     |                                       | DOI                       |      |
| CAS No. Surrogate/Tracer                           | Parmname<br>r recovery                                 | Qual | Qual<br>Result                     | Result<br>Nominal                     | Units   | Units<br>Recovery% | Acceptab                              | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | oCDF                                                   |      | 106                                | 190                                   | pg/g    | 56.1               | (28%-1                                | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-HI                               | oCDF                                                   |      | 119                                |                                       | pg/g    | 62.8               | (26%-1                                | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                        |      | 14.3                               | 19.0                                  | pg/g    | 75.5               | (35%-1                                | 197%)                     |      |

Comments:

|                                        |                                   | Hi-Res I                                     | Dioxins/Furans                                  |       |                                   | Page 1                    | of 2 |
|----------------------------------------|-----------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------|---------------------------|------|
|                                        |                                   | Certific                                     | ate of Analysis                                 |       |                                   |                           |      |
|                                        |                                   | Samp                                         | le Summary                                      |       |                                   |                           |      |
| SDG Numbe<br>Lab Sample<br>Client Samp | ID: 9822004                       | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 12:02<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture: | ALPH00416<br>SOIL<br>31.5 |      |
| Client ID:                             | C-7 (0-48)                        | Dute Received                                | 0,72772020 22000                                |       | Prep Basis:                       | Dry Weight                |      |
| Batch ID:                              | 33023                             | Method:                                      | EPA Method 1613B                                |       | Trep Dasis.                       | Diy weight                |      |
| Run Date:                              | 10/17/2016 21:43                  | Analyst:                                     | CLP                                             |       | Instrument:                       | HRP763                    |      |
| Data File:                             | b17oct16a-8                       |                                              | SW046 25406                                     |       | Dilution:                         | 1                         |      |
| Prep Batch:<br>Prep Date:              | 33021<br>16-OCT-16                | Prep Method:<br>Prep Aliquot:                | SW846 3540C<br>15.66 g                          |       |                                   |                           |      |
| -                                      |                                   |                                              |                                                 |       |                                   |                           |      |
| CAS No.                                | Parmname                          | Qual                                         | Result                                          | Units |                                   | PQL                       |      |
| 1746-01-6                              | 2,3,7,8-TCDD                      | U                                            | .932                                            | pg/g  |                                   | 0.932                     |      |
| 40321-76-4                             | 1,2,3,7,8-PeCDD                   | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 39227-28-6                             | 1,2,3,4,7,8-HxCDD                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 57653-85-7                             | 1,2,3,6,7,8-HxCDD                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 19408-74-3                             | 1,2,3,7,8,9-HxCDD                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 35822-46-9                             | 1,2,3,4,6,7,8-HpCDD               | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 3268-87-9                              | 1,2,3,4,6,7,8,9-OCDD              |                                              | 36.9                                            | pg/g  |                                   | 9.32                      |      |
| 51207-31-9                             | 2,3,7,8-TCDF                      | U                                            | .932                                            | pg/g  |                                   | 0.932                     |      |
| 57117-41-6                             | 1,2,3,7,8-PeCDF                   | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 57117-31-4                             | 2,3,4,7,8-PeCDF                   | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 70648-26-9                             | 1,2,3,4,7,8-HxCDF                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 57117-44-9                             | 1,2,3,6,7,8-HxCDF                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 60851-34-5                             | 2,3,4,6,7,8-HxCDF                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 72918-21-9                             | 1,2,3,7,8,9-HxCDF                 | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 67562-39-4                             | 1,2,3,4,6,7,8-HpCDF               | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 55673-89-7                             | 1,2,3,4,7,8,9-HpCDF               | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 39001-02-0                             | 1,2,3,4,6,7,8,9-OCDF              | U                                            | 9.32                                            | pg/g  |                                   | 9.32                      |      |
| 41903-57-5                             | Total Tetrachlorodibenzo-p-dioxin | U                                            | .932                                            | pg/g  |                                   | 0.932                     |      |
| 36088-22-9                             | Total Pentachlorodibenzo-p-dioxin | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 34465-46-8                             | Total Hexachlorodibenzo-p-dioxin  | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 37871-00-4                             | Total Heptachlorodibenzo-p-dioxin | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 30402-14-3                             | Total Tetrachlorodibenzofuran     | U                                            | .932                                            | pg/g  |                                   | 0.932                     |      |
| 30402-15-4                             | Total Pentachlorodibenzofuran     | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 55684-94-1                             | Total Hexachlorodibenzofuran      | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 38998-75-3                             | Total Heptachlorodibenzofuran     | U                                            | 4.66                                            | pg/g  |                                   | 4.66                      |      |
| 3333-30-0                              | TEQ WHO2005 ND=0                  |                                              | 0.0111                                          | pg/g  |                                   |                           |      |
| 3333-30-1                              | TEQ WHO2005 ND=0.5                |                                              | 5.33                                            | pg/g  |                                   |                           |      |
|                                        |                                   |                                              |                                                 |       |                                   |                           |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 146    | 186     | pg/g  | 78.3      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 138    | 186     | pg/g  | 74.2      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 141    | 186     | pg/g  | 75.6      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 130    | 186     | pg/g  | 69.7      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 125    | 186     | pg/g  | 67.1      | (23%-140%)        |
| I3C-OCDD                  |      | 143    | 373     | pg/g  | 38.4      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 139    | 186     | pg/g  | 74.4      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 134    | 186     | pg/g  | 72.0      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 131    | 186     | pg/g  | 70.2      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 139    | 186     | pg/g  | 74.8      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 131    | 186     | pg/g  | 70.3      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 138    | 186     | pg/g  | 73.9      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 138    | 186     | pg/g  | 74.0      | (29%-147%)        |

|                                                    |                                                        |      | Certific                       | Dioxins/Fu<br>ate of Ana<br>de Summa | alysis                  |           |                                       | Page 2                    | of 2 |
|----------------------------------------------------|--------------------------------------------------------|------|--------------------------------|--------------------------------------|-------------------------|-----------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822004<br>1613B Soil                      |      | nt:<br>Collected:<br>Received: | ALPH001<br>09/20/2010<br>09/27/2010  | 5 12:02                 | Ν         | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>31.5 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-7 (0-48)<br>33023<br>10/17/2016 21:43<br>b17oct16a-8 |      |                                | EPA Meth<br>CLP                      | EPA Method 1613B<br>CLP |           | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                     | -    | ) Method:<br>) Aliquot:        | SW846 35<br>15.66 g                  | 540C                    | L         | fiution.                              | 1                         |      |
| CAS No.                                            | Parmname                                               |      | Qual                           | Result                               |                         | Units     |                                       | PQL                       |      |
| Surrogate/Tracer                                   | recovery                                               | Qual | Result                         | Nominal                              | Units                   | Recovery% | Acceptab                              | le Limits                 |      |
| 13C-1,2,3,4,6,7,8-HpCDF 113                        |                                                        | 186  | pg/g                           | 60.7                                 | (28%-1                  | 143%)     |                                       |                           |      |
| 13C-1,2,3,4,7,8,9-Hg                               | CDF                                                    | 128  |                                | 186                                  | pg/g                    | 68.8      | (26%-1                                | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                        |      | 15.1                           | 18.6                                 | pg/g                    | 80.9      | (35%-1                                | 197%)                     |      |

Comments:

|                                                                   |                                                          | Hi-Res I                                     | Dioxins/Furans                                  |       |                                         | Page 1                    | of 2 |
|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------------|---------------------------|------|
|                                                                   |                                                          | Certific                                     | ate of Analysis                                 |       |                                         |                           |      |
|                                                                   |                                                          | Samp                                         | ole Summary                                     |       |                                         |                           |      |
| SDG Numbe<br>Lab Sample<br>Client Samp                            | ID: 9822005<br>le: 1613B Soil                            | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 12:58<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>39.7 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch: | C-1<br>33023<br>10/17/2016 22:30<br>b17oct16a-9<br>33021 | Method:<br>Analyst:<br>Prep Method:          | EPA Method 1613B<br>CLP<br>SW846 3540C          |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Date:                                                        | 16-OCT-16                                                | Prep Aliquot:                                | 17.05 g                                         |       |                                         |                           |      |
| CAS No.                                                           | Parmname                                                 | Qual                                         | Result                                          | Units |                                         | PQL                       |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                                             | U                                            | .972                                            | pg/g  |                                         | 0.972                     |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                                          | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD                                      |                                              | 7.41                                            | pg/g  |                                         | 4.86                      |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD                                     |                                              | 84.9                                            | pg/g  |                                         | 9.72                      |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                                             | U                                            | .972                                            | pg/g  |                                         | 0.972                     |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                                          | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                                          | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF                                      | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF                                      | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF                                     | U                                            | 9.72                                            | pg/g  |                                         | 9.72                      |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin                        | U                                            | .972                                            | pg/g  |                                         | 0.972                     |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin                        | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin                         | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin                        |                                              | 17.7                                            | pg/g  |                                         | 4.86                      |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran                            | U                                            | .972                                            | pg/g  |                                         | 0.972                     |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran                            | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran                             | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran                            | U                                            | 4.86                                            | pg/g  |                                         | 4.86                      |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                                         |                                              | 0.0995                                          | pg/g  |                                         |                           |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                                       |                                              | 5.62                                            | pg/g  |                                         |                           |      |
|                                                                   |                                                          |                                              |                                                 |       |                                         |                           |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 110    | 194     | pg/g  | 56.8      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 109    | 194     | pg/g  | 56.2      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 111    | 194     | pg/g  | 57.3      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 115    | 194     | pg/g  | 59.1      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 109    | 194     | pg/g  | 56.1      | (23%-140%)        |
| 13C-OCDD                  |      | 135    | 389     | pg/g  | 34.6      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 111    | 194     | pg/g  | 57.3      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 108    | 194     | pg/g  | 55.7      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 104    | 194     | pg/g  | 53.7      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 116    | 194     | pg/g  | 59.5      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 116    | 194     | pg/g  | 59.5      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 118    | 194     | pg/g  | 60.8      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 118    | 194     | pg/g  | 60.6      | (29%-147%)        |

|                                                 |                                   |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis   |           |                                        | Page 2                    | of 2 |
|-------------------------------------------------|-----------------------------------|------|------------------------------------|---------------------------------------|----------|-----------|----------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample: | L1629727<br>9822005<br>1613B Soil |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 5 12:58  | Ν         | Project:<br>Aatrix:<br>%Moisture:      | ALPH00416<br>SOIL<br>39.7 |      |
| Client ID:<br>Batch ID:<br>Run Date:            | C-1<br>33023<br>10/17/2016 22:30  |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | od 1613B | i<br>I    | Prep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763      |      |
| Data File:<br>Prep Batch:<br>Prep Date:         | b17oct16a-9<br>33021<br>16-OCT-16 |      | o Method:<br>o Aliquot:            | SW846 35<br>17.05 g                   | 540C     | I         |                                        | 1                         |      |
| CAS No.                                         | Parmname                          |      | Qual                               | Result                                |          | Units     |                                        | PQL                       |      |
| Surrogate/Trace                                 | r recovery                        | Qual | Result                             | Nominal                               | Units    | Recovery% | Acceptab                               | le Limits                 |      |
| 13C-1,2,3,4,6,7,8-H                             | CDF                               |      | 102                                | 194                                   | pg/g     | 52.7      | (28%-                                  | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-H                             | oCDF                              |      | 114                                |                                       | pg/g     | 58.6      | (26%-                                  | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                               |                                   |      | 13.6                               | 19.4                                  | pg/g     | 70.0      | (35%-                                  | 197%)                     |      |

### Comments:

|                                                    |                                                  | Certific                                     | Dioxins/Furans<br>ate of Analysis<br>le Summary |       | Page 1 of 2                                        |
|----------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|----------------------------------------------------|
| SDG Number<br>Lab Sample I<br>Client Sampl         | ID: 9822006                                      | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 13:05<br>09/27/2016 12:00 | Mat   | ject: ALPH00416<br>trix: SOIL<br>foisture: 38.9    |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-2<br>33023<br>10/17/2016 23:17<br>b17oct16a-10 | Method:<br>Analyst:                          | EPA Method 1613B<br>CLP                         | Inst  | p Basis: Dry Weight<br>rrument: HRP763<br>ntion: 1 |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                               | Prep Method:<br>Prep Aliquot:                | SW846 3540C<br>17.19 g                          |       |                                                    |
| CAS No.                                            | Parmname                                         | Qual                                         | Result                                          | Units | PQL                                                |
| 746-01-6                                           | 2,3,7,8-TCDD                                     | U                                            | .952                                            | pg/g  | 0.952                                              |
| 0321-76-4                                          | 1,2,3,7,8-PeCDD                                  | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 9227-28-6                                          | 1,2,3,4,7,8-HxCDD                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 7653-85-7                                          | 1,2,3,6,7,8-HxCDD                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 9408-74-3                                          | 1,2,3,7,8,9-HxCDD                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 5822-46-9                                          | 1,2,3,4,6,7,8-HpCDD                              | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 268-87-9                                           | 1,2,3,4,6,7,8,9-OCDD                             |                                              | 33.7                                            | pg/g  | 9.52                                               |
| 1207-31-9                                          | 2,3,7,8-TCDF                                     | U                                            | .952                                            | pg/g  | 0.952                                              |
| 7117-41-6                                          | 1,2,3,7,8-PeCDF                                  | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 7117-31-4                                          | 2,3,4,7,8-PeCDF                                  | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 0648-26-9                                          | 1,2,3,4,7,8-HxCDF                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 7117-44-9                                          | 1,2,3,6,7,8-HxCDF                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 0851-34-5                                          | 2,3,4,6,7,8-HxCDF                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 2918-21-9                                          | 1,2,3,7,8,9-HxCDF                                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 7562-39-4                                          | 1,2,3,4,6,7,8-HpCDF                              | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 5673-89-7                                          | 1,2,3,4,7,8,9-HpCDF                              | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 9001-02-0                                          | 1,2,3,4,6,7,8,9-OCDF                             | U                                            | 9.52                                            | pg/g  | 9.52                                               |
| 1903-57-5                                          | Total Tetrachlorodibenzo-p-dioxin                | U                                            | .952                                            | pg/g  | 0.952                                              |
| 6088-22-9                                          | Total Pentachlorodibenzo-p-dioxin                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 4465-46-8                                          | Total Hexachlorodibenzo-p-dioxin                 | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 7871-00-4                                          | Total Heptachlorodibenzo-p-dioxin                | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 0402-14-3                                          | Total Tetrachlorodibenzofuran                    | U                                            | .952                                            | pg/g  | 0.952                                              |
| 0402-15-4                                          | Total Pentachlorodibenzofuran                    | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 5684-94-1                                          | Total Hexachlorodibenzofuran                     | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 8998-75-3                                          | Total Heptachlorodibenzofuran                    | U                                            | 4.76                                            | pg/g  | 4.76                                               |
| 333-30-0                                           | TEQ WHO2005 ND=0                                 |                                              | 0.0101                                          | pg/g  |                                                    |
| 333-30-1                                           | TEQ WHO2005 ND=0.5                               |                                              | 5.44                                            | pg/g  |                                                    |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 3C-2,3,7,8-TCDD           |      | 99.0   | 190     | pg/g  | 52.0      | (25%-164%)        |
| 3C-1,2,3,7,8-PeCDD        |      | 105    | 190     | pg/g  | 54.9      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD      |      | 116    | 190     | pg/g  | 61.1      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD      |      | 107    | 190     | pg/g  | 56.3      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 110    | 190     | pg/g  | 57.5      | (23%-140%)        |
| 3C-OCDD                   |      | 137    | 381     | pg/g  | 35.9      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 98.3   | 190     | pg/g  | 51.6      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 102    | 190     | pg/g  | 53.7      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 98.8   | 190     | pg/g  | 51.9      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 115    | 190     | pg/g  | 60.1      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 108    | 190     | pg/g  | 56.8      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 113    | 190     | pg/g  | 59.3      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 113    | 190     | pg/g  | 59.6      | (29%-147%)        |
|                           |      |        |         |       |           |                   |

|                                                    |                                                  |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>de Summa | alysis    |                    |                                        | Page 2                    | of 2 |
|----------------------------------------------------|--------------------------------------------------|------|------------------------------------|--------------------------------------|-----------|--------------------|----------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822006<br>1613B Soil                |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010  | 5 13:05   | Ν                  | Project:<br>Aatrix:<br>%Moisture:      | ALPH00416<br>SOIL<br>38.9 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-2<br>33023<br>10/17/2016 23:17<br>b17oct16a-10 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                      | nod 1613B | i<br>I             | Prep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                               | Prep | ) Method:<br>) Aliquot:            | SW846 35<br>17.19 g                  | 540C      |                    |                                        | -                         |      |
| CAS No.<br>                                        | Parmname                                         | Qual | Qual<br>Result                     | Result                               | Units     | Units<br>Recovery% | Acceptab                               | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | •                                                |      | 99.3                               | 190                                  | pg/g      | 52.2               | (28%-1                                 |                           |      |
| 13C-1,2,3,4,7,8,9-HI                               | oCDF                                             |      | 114                                |                                      | pg/g      | 60.1               | (26%-1                                 | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                  |      | 14.0                               | 19.0                                 | pg/g      | 73.3               | (35%-1                                 | 197%)                     |      |

**Comments:** 

|                                                                   |                                           | Hi-Res I                                             | Dioxins/Furans                                    |       |                                                  | Page 1 o                                | of 2 |
|-------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|------|
|                                                                   |                                           | Certific                                             | ate of Analysis                                   |       |                                                  |                                         |      |
|                                                                   |                                           | Samp                                                 | ole Summary                                       |       |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:              | ID: 9822007                               | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/20/2016 13:36<br>09/27/2016 12:00   |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>37.7<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:<br>Prep Date: | 33023<br>10/18/2016 00:04<br>b17oct16a-11 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>17.03 g |       | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| CAS No.                                                           | Parmname                                  | Qual                                                 | Result                                            | Units |                                                  | PQL                                     |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                              | U                                                    | .942                                              | pg/g  |                                                  | 0.942                                   |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                           | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD                       | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD                      | U                                                    | 9.42                                              | pg/g  |                                                  | 9.42                                    |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                              | U                                                    | .942                                              | pg/g  |                                                  | 0.942                                   |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                           | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                           | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF                       | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF                       | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF                      | U                                                    | 9.42                                              | pg/g  |                                                  | 9.42                                    |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin         | U                                                    | .942                                              | pg/g  |                                                  | 0.942                                   |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin          | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin         | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran             | U                                                    | .942                                              | pg/g  |                                                  | 0.942                                   |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran             | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran              | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran             | U                                                    | 4.71                                              | pg/g  |                                                  | 4.71                                    |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                          |                                                      | 0.00                                              | pg/g  |                                                  |                                         |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                        |                                                      | 5.37                                              | pg/g  |                                                  |                                         |      |
|                                                                   |                                           |                                                      |                                                   |       |                                                  |                                         |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 117    | 188     | pg/g  | 62.0      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 117    | 188     | pg/g  | 62.0      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 124    | 188     | pg/g  | 66.0      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 117    | 188     | pg/g  | 62.2      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 113    | 188     | pg/g  | 60.1      | (23%-140%)        |
| 3C-OCDD                   |      | 139    | 377     | pg/g  | 36.8      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 113    | 188     | pg/g  | 60.2      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 111    | 188     | pg/g  | 58.9      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 109    | 188     | pg/g  | 57.6      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 122    | 188     | pg/g  | 64.8      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 119    | 188     | pg/g  | 63.1      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 122    | 188     | pg/g  | 64.5      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 122    | 188     | pg/g  | 64.5      | (29%-147%)        |

|                                                    |                                                  |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis  |           |                                        | Page 2                    | of 2 |
|----------------------------------------------------|--------------------------------------------------|------|------------------------------------|---------------------------------------|---------|-----------|----------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822007<br>1613B Soil                |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 5 13:36 | Ν         | Project:<br>Aatrix:<br>%Moisture:      | ALPH00416<br>SOIL<br>37.7 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-3<br>33023<br>10/18/2016 00:04<br>b17oct16a-11 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | 1613B   | i<br>I    | Prep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                               | Prep | ) Method:<br>) Aliquot:            | SW846 35<br>17.03 g                   | 540C    |           | Juiton.                                |                           |      |
| CAS No.                                            | Parmname                                         |      | Qual                               | Result                                |         | Units     |                                        | PQL                       |      |
| Surrogate/Trace                                    | recovery                                         | Qual | Result                             | Nominal                               | Units   | Recovery% | Acceptab                               | le Limits                 |      |
| 13С-1,2,3,4,6,7,8-Нр                               | oCDF                                             |      | 102                                | 188                                   | pg/g    | 54.2      | (28%-1                                 | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-HI                               | CDF                                              |      | 114                                |                                       | pg/g    | 60.4      | (26%-1                                 | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                  |      | 14.9                               | 18.8                                  | pg/g    | 78.9      | (35%-1                                 | 197%)                     |      |

### Comments:

|                                                                   |                                           | Hi-Res I                                             | Dioxins/Furans                                    |       |                                                  | Page 1                                | of 2 |
|-------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------|--------------------------------------------------|---------------------------------------|------|
|                                                                   |                                           | Certific                                             | ate of Analysis                                   |       |                                                  |                                       |      |
|                                                                   |                                           | Samp                                                 | ole Summary                                       |       |                                                  |                                       |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:              | ID: 9822008                               | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/20/2016 14:05<br>09/27/2016 12:00   |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>34<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:<br>Prep Date: | 33023<br>10/18/2016 00:51<br>b17oct16a-12 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>16.22 g |       | Instrument:<br>Dilution:                         | HRP763<br>1                           |      |
| CAS No.                                                           | Parmname                                  | Qual                                                 | Result                                            | Units |                                                  | PQL                                   |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                              | U                                                    | .934                                              | pg/g  |                                                  | 0.934                                 |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                           | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD                       | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD                      |                                                      | 30.7                                              | pg/g  |                                                  | 9.34                                  |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                              | U                                                    | .934                                              | pg/g  |                                                  | 0.934                                 |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                           | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                           | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF                       | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF                       | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF                      | U                                                    | 9.34                                              | pg/g  |                                                  | 9.34                                  |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin         | U                                                    | .934                                              | pg/g  |                                                  | 0.934                                 |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin          | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin         | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran             | U                                                    | .934                                              | pg/g  |                                                  | 0.934                                 |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran             | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran              | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran             | U                                                    | 4.67                                              | pg/g  |                                                  | 4.67                                  |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                          |                                                      | 0.00921                                           | pg/g  |                                                  |                                       |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                        |                                                      | 5.33                                              | pg/g  |                                                  |                                       |      |
|                                                                   |                                           |                                                      |                                                   |       |                                                  |                                       |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 132    | 187     | pg/g  | 70.5      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 124    | 187     | pg/g  | 66.2      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 129    | 187     | pg/g  | 69.0      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 128    | 187     | pg/g  | 68.7      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 117    | 187     | pg/g  | 62.6      | (23%-140%)        |
| 13C-OCDD                  |      | 154    | 373     | pg/g  | 41.2      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 128    | 187     | pg/g  | 68.4      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 116    | 187     | pg/g  | 62.3      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 115    | 187     | pg/g  | 61.8      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 129    | 187     | pg/g  | 69.3      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 127    | 187     | pg/g  | 67.9      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 130    | 187     | pg/g  | 69.8      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 129    | 187     | pg/g  | 69.2      | (29%-147%)        |

|                                                    |                                                  |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis  |           |                                       | Page 2                  | of 2 |
|----------------------------------------------------|--------------------------------------------------|------|------------------------------------|---------------------------------------|---------|-----------|---------------------------------------|-------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822008<br>1613B Soil                |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 5 14:05 | Ν         | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>34 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-4<br>33023<br>10/18/2016 00:51<br>b17oct16a-12 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | 1613B   | ;<br>It   | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763    |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                               | Prep | ) Method:<br>) Aliquot:            | SW846 35<br>16.22 g                   | 540C    |           | intron.                               |                         |      |
| CAS No.                                            | Parmname                                         |      | Qual                               | Result                                |         | Units     |                                       | PQL                     |      |
| Surrogate/Trace                                    | r recovery                                       | Qual | Result                             | Nominal                               | Units   | Recovery% | Acceptab                              | le Limits               |      |
| 13C-1,2,3,4,6,7,8-H                                | CDF                                              |      | 105                                | 187                                   | pg/g    | 56.5      | (28%-1                                | 143%)                   |      |
| 13C-1,2,3,4,7,8,9-H                                | oCDF                                             |      | 122                                |                                       | pg/g    | 65.5      | (26%-1                                | 138%)                   |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                  |      | 14.3                               | 18.7                                  | pg/g    | 76.7      | (35%-1                                | 197%)                   |      |

### Comments:

|                                                    |                                                          | Certific                                     | Dioxins/Furans<br>ate of Analysis<br>le Summary |       |                                         | Page 1                    | of 2 |
|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------------|---------------------------|------|
| SDG Numbe<br>Lab Sample<br>Client Sampl            | ID: 9822009                                              | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 10:10<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>35.4 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-6 (48-61)<br>33023<br>10/18/2016 01:38<br>b17oct16a-13 | Method:<br>Analyst:                          | EPA Method 1613B<br>CLP                         |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                       | Prep Method:<br>Prep Aliquot:                | SW846 3540C<br>16.52 g                          |       |                                         |                           |      |
| CAS No.                                            | Parmname                                                 | Qual                                         | Result                                          | Units |                                         | PQL                       |      |
| 1746-01-6                                          | 2,3,7,8-TCDD                                             | U                                            | .937                                            | pg/g  |                                         | 0.937                     |      |
| 40321-76-4                                         | 1,2,3,7,8-PeCDD                                          | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 39227-28-6                                         | 1,2,3,4,7,8-HxCDD                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 57653-85-7                                         | 1,2,3,6,7,8-HxCDD                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 9408-74-3                                          | 1,2,3,7,8,9-HxCDD                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 5822-46-9                                          | 1,2,3,4,6,7,8-HpCDD                                      | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 268-87-9                                           | 1,2,3,4,6,7,8,9-OCDD                                     | U                                            | 9.37                                            | pg/g  |                                         | 9.37                      |      |
| 1207-31-9                                          | 2,3,7,8-TCDF                                             | U                                            | .937                                            | pg/g  |                                         | 0.937                     |      |
| 7117-41-6                                          | 1,2,3,7,8-PeCDF                                          | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 7117-31-4                                          | 2,3,4,7,8-PeCDF                                          | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 0648-26-9                                          | 1,2,3,4,7,8-HxCDF                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 57117-44-9                                         | 1,2,3,6,7,8-HxCDF                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 50851-34-5                                         | 2,3,4,6,7,8-HxCDF                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 2918-21-9                                          | 1,2,3,7,8,9-HxCDF                                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 57562-39-4                                         | 1,2,3,4,6,7,8-HpCDF                                      | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 5673-89-7                                          | 1,2,3,4,7,8,9-HpCDF                                      | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 9001-02-0                                          | 1,2,3,4,6,7,8,9-OCDF                                     | U                                            | 9.37                                            | pg/g  |                                         | 9.37                      |      |
| 1903-57-5                                          | Total Tetrachlorodibenzo-p-dioxin                        | U                                            | .937                                            | pg/g  |                                         | 0.937                     |      |
| 86088-22-9                                         | Total Pentachlorodibenzo-p-dioxin                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 4465-46-8                                          | Total Hexachlorodibenzo-p-dioxin                         | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 7871-00-4                                          | Total Heptachlorodibenzo-p-dioxin                        | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 0402-14-3                                          | Total Tetrachlorodibenzofuran                            | U                                            | .937                                            | pg/g  |                                         | 0.937                     |      |
| 0402-15-4                                          | Total Pentachlorodibenzofuran                            | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 5684-94-1                                          | Total Hexachlorodibenzofuran                             | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 38998-75-3                                         | Total Heptachlorodibenzofuran                            | U                                            | 4.68                                            | pg/g  |                                         | 4.68                      |      |
| 333-30-0                                           | TEQ WHO2005 ND=0                                         |                                              | 0.00                                            | pg/g  |                                         |                           |      |
| 3333-30-1                                          | TEQ WHO2005 ND=0.5                                       |                                              | 5.34                                            | pg/g  |                                         |                           |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 3C-2,3,7,8-TCDD           |      | 135    | 187     | pg/g  | 71.9      | (25%-164%)        |
| 3C-1,2,3,7,8-PeCDD        |      | 129    | 187     | pg/g  | 68.9      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD      |      | 131    | 187     | pg/g  | 69.9      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD      |      | 133    | 187     | pg/g  | 71.0      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 119    | 187     | pg/g  | 63.6      | (23%-140%)        |
| 3C-OCDD                   |      | 143    | 375     | pg/g  | 38.2      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 131    | 187     | pg/g  | 69.8      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 122    | 187     | pg/g  | 65.4      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 121    | 187     | pg/g  | 64.5      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 133    | 187     | pg/g  | 71.0      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 131    | 187     | pg/g  | 69.7      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 134    | 187     | pg/g  | 71.6      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 133    | 187     | pg/g  | 70.8      | (29%-147%)        |

|                                                    |                                                          |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis    |                       |                                       | Page 2                    | of 2 |
|----------------------------------------------------|----------------------------------------------------------|------|------------------------------------|---------------------------------------|-----------|-----------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822009<br>1613B Soil                        |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 6 10:10   | Ν                     | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>35.4 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-6 (48-61)<br>33023<br>10/18/2016 01:38<br>b17oct16a-13 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | nod 1613B | I                     | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                       | Prej | ) Method:<br>) Aliquot:            | SW846 35<br>16.52 g                   | 540C      | <b>T</b> T <b>*</b> 4 |                                       | DOL                       |      |
| CAS No. Surrogate/Trace                            | Parmname<br>r recovery                                   | Qual | Qual<br>Result                     | Result<br>Nominal                     | Units     | Units<br>Recovery%    | Acceptab                              | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | pCDF                                                     |      | 111                                | 187                                   | pg/g      | 59.2                  | (28%-1                                | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-H                                | pCDF                                                     | 123  |                                    | 187                                   | pg/g      | 65.6                  | (26%-138%)                            |                           |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                          |      | 14.5                               | 18.7                                  | pg/g      | 77.4                  | (35%-1                                | 197%)                     |      |

Comments:

|                                                                   |                                   | Hi-Res I                                     | Dioxins/Furans                                  |       |                                         | Page 1                    | of 2 |
|-------------------------------------------------------------------|-----------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------------|---------------------------|------|
|                                                                   |                                   | Certific                                     | ate of Analysis                                 |       |                                         |                           |      |
|                                                                   |                                   | Samp                                         | le Summary                                      |       |                                         |                           |      |
| SDG Numbe<br>Lab Sample<br>Client Samp                            | ID: 9822010<br>le: 1613B Soil     | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 12:02<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>26.4 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch: |                                   | Method:<br>Analyst:<br>Prep Method:          | EPA Method 1613B<br>CLP<br>SW846 3540C          |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Date:                                                        | 16-OCT-16                         | Prep Aliquot:                                | 14.89 g                                         |       |                                         |                           |      |
| CAS No.                                                           | Parmname                          | Qual                                         | Result                                          | Units |                                         | PQL                       |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                      | U                                            | .912                                            | pg/g  |                                         | 0.912                     |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                   | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD               | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD              |                                              | 60.6                                            | pg/g  |                                         | 9.12                      |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                      | U                                            | .912                                            | pg/g  |                                         | 0.912                     |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                   | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                   | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                 | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF               | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF               | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF              | U                                            | 9.12                                            | pg/g  |                                         | 9.12                      |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin | U                                            | .912                                            | pg/g  |                                         | 0.912                     |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin  | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran     | U                                            | .912                                            | pg/g  |                                         | 0.912                     |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran     | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran      | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran     | U                                            | 4.56                                            | pg/g  |                                         | 4.56                      |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                  |                                              | 0.0182                                          | pg/g  |                                         |                           |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                |                                              | 5.22                                            | pg/g  |                                         |                           |      |
|                                                                   |                                   |                                              |                                                 |       |                                         |                           |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 133    | 182     | pg/g  | 73.2      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 128    | 182     | pg/g  | 70.1      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD      |      | 134    | 182     | pg/g  | 73.4      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 127    | 182     | pg/g  | 69.9      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 116    | 182     | pg/g  | 63.7      | (23%-140%)        |
| 3C-OCDD                   |      | 139    | 365     | pg/g  | 38.0      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 131    | 182     | pg/g  | 71.8      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 122    | 182     | pg/g  | 66.7      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 119    | 182     | pg/g  | 65.4      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 134    | 182     | pg/g  | 73.4      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 130    | 182     | pg/g  | 71.4      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 133    | 182     | pg/g  | 72.7      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 133    | 182     | pg/g  | 73.0      | (29%-147%)        |
|                           |      |        |         |       |           |                   |

|                                                    |                                                          |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis    |                    |                                        | Page 2                    | of 2 |
|----------------------------------------------------|----------------------------------------------------------|------|------------------------------------|---------------------------------------|-----------|--------------------|----------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822010<br>1613B Soil                        |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/20/2010<br>09/27/2010   | 6 12:02   | Ν                  | Project:<br>Aatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>26.4 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-7 (48-54)<br>33023<br>10/18/2016 02:25<br>b17oct16a-14 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | nod 1613B | I                  | Prep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                       | Prej | ) Method:<br>) Aliquot:            | SW846 35<br>14.89 g                   | 540C      | ¥1                 |                                        | DOL                       |      |
| CAS No. Surrogate/Trace                            | Parmname<br>r recovery                                   | Qual | Qual<br>Result                     | Result<br>Nominal                     | Units     | Units<br>Recovery% | Acceptab                               | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | pCDF                                                     |      | 109                                | 182                                   | pg/g      | 60.0               | (28%-                                  | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-Hj                               | pCDF                                                     |      | 123                                |                                       | pg/g      | 67.4               | (26%-                                  | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                          |      | 12.6                               | 18.2                                  | pg/g      | 68.9               | (35%-1                                 | 197%)                     |      |

Comments:

|                                                      |                                                                  | Hi-Res I                                             | Dioxins/Furans                                    |              |                                                  | Page 1                                  | of 2 |
|------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------|--------------------------------------------------|-----------------------------------------|------|
|                                                      |                                                                  | Certific                                             | ate of Analysis                                   |              |                                                  |                                         |      |
|                                                      |                                                                  | Samp                                                 | ole Summary                                       |              |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID: | ID: 9822011                                                      | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/21/2016 08:35<br>09/27/2016 12:00   |              | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>31.2<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:  | 33023<br>10/18/2016 04:54<br>b17oct16a_2-2<br>33021<br>16-OCT-16 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>15.43 g |              | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| Prep Date:<br>CAS No.                                | 10-OC I-10<br>Parmname                                           | Qual                                                 | Result                                            | Units        |                                                  | PQL                                     |      |
| 1746-01-6                                            | 2,3,7,8-TCDD                                                     | U                                                    | .942                                              |              |                                                  | 0.942                                   |      |
| 40321-76-4                                           | 1,2,3,7,8-PeCDD                                                  | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 40321-70-4<br>39227-28-6                             | 1,2,3,4,7,8-HxCDD                                                | U                                                    | 4.71                                              | pg/g<br>pg/g |                                                  | 4.71                                    |      |
| 57653-85-7                                           | 1,2,3,6,7,8-HxCDD                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 19408-74-3                                           | 1,2,3,7,8,9-HxCDD                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 35822-46-9                                           | 1,2,3,4,6,7,8-HpCDD                                              | -                                                    | 5.54                                              | pg/g         |                                                  | 4.71                                    |      |
| 3268-87-9                                            | 1,2,3,4,6,7,8,9-OCDD                                             |                                                      | 62.7                                              | pg/g         |                                                  | 9.42                                    |      |
| 51207-31-9                                           | 2,3,7,8-TCDF                                                     | U                                                    | .942                                              | pg/g         |                                                  | 0.942                                   |      |
| 57117-41-6                                           | 1,2,3,7,8-PeCDF                                                  | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 57117-31-4                                           | 2,3,4,7,8-PeCDF                                                  | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 70648-26-9                                           | 1,2,3,4,7,8-HxCDF                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 57117-44-9                                           | 1,2,3,6,7,8-HxCDF                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 60851-34-5                                           | 2,3,4,6,7,8-HxCDF                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 72918-21-9                                           | 1,2,3,7,8,9-HxCDF                                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 67562-39-4                                           | 1,2,3,4,6,7,8-HpCDF                                              | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 55673-89-7                                           | 1,2,3,4,7,8,9-HpCDF                                              | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 39001-02-0                                           | 1,2,3,4,6,7,8,9-OCDF                                             | U                                                    | 9.42                                              | pg/g         |                                                  | 9.42                                    |      |
| 41903-57-5                                           | Total Tetrachlorodibenzo-p-dioxin                                | U                                                    | .942                                              | pg/g         |                                                  | 0.942                                   |      |
| 36088-22-9                                           | Total Pentachlorodibenzo-p-dioxin                                | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 34465-46-8                                           | Total Hexachlorodibenzo-p-dioxin                                 | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 37871-00-4                                           | Total Heptachlorodibenzo-p-dioxin                                |                                                      | 13.2                                              | pg/g         |                                                  | 4.71                                    |      |
| 30402-14-3                                           | Total Tetrachlorodibenzofuran                                    | U                                                    | .942                                              | pg/g         |                                                  | 0.942                                   |      |
| 30402-15-4                                           | Total Pentachlorodibenzofuran                                    | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 55684-94-1                                           | Total Hexachlorodibenzofuran                                     | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 38998-75-3                                           | Total Heptachlorodibenzofuran                                    | U                                                    | 4.71                                              | pg/g         |                                                  | 4.71                                    |      |
| 3333-30-0                                            | TEQ WHO2005 ND=0                                                 |                                                      | 0.0743                                            | pg/g         |                                                  |                                         |      |
| 3333-30-1                                            | TEQ WHO2005 ND=0.5                                               |                                                      | 5.42                                              | pg/g         |                                                  |                                         |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 126    | 188     | pg/g  | 66.9      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 117    | 188     | pg/g  | 62.2      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 118    | 188     | pg/g  | 62.7      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD      |      | 119    | 188     | pg/g  | 63.1      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 108    | 188     | pg/g  | 57.2      | (23%-140%)        |
| 3C-OCDD                   |      | 124    | 377     | pg/g  | 32.9      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 123    | 188     | pg/g  | 65.4      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 117    | 188     | pg/g  | 62.1      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 112    | 188     | pg/g  | 59.2      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 120    | 188     | pg/g  | 63.9      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 121    | 188     | pg/g  | 64.4      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 119    | 188     | pg/g  | 63.3      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 121    | 188     | pg/g  | 64.0      | (29%-147%)        |

|                                                    |                                                   |      | Certific                       | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis  |                    |                                       | Page 2                    | of 2 |
|----------------------------------------------------|---------------------------------------------------|------|--------------------------------|---------------------------------------|---------|--------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822011<br>1613B Soil                 |      | nt:<br>Collected:<br>Received: | ALPH001<br>09/21/2010<br>09/27/2010   | 6 08:35 | N                  | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>31.2 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-5<br>33023<br>10/18/2016 04:54<br>b17oct16a 2-2 |      | hod:<br>lyst:                  | EPA Meth<br>CLP                       | 1613B   | ;<br>In            | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                | Prep | ) Method:<br>) Aliquot:        | SW846 35<br>15.43 g                   | 540C    |                    | intron.                               |                           |      |
| CAS No.                                            | Parmname                                          | Qual | Qual<br>Result                 | Result                                | Units   | Units<br>Recovery% | Accentab                              | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-Hj                               | •                                                 | Quai | 100                            | 188                                   | pg/g    | 53.3               | (28%-)                                |                           |      |
| 13C-1,2,3,4,7,8,9-H                                | oCDF                                              |      | 112                            |                                       | pg/g    | 59.2               | (26%-138%)                            |                           |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                   |      | 13.6                           | 18.8                                  | pg/g    | 72.2               | (35%-1                                | 197%)                     |      |

Comments:

|                                                                   |                                            | Hi-Res I                                             | Dioxins/Furans                                    |       |                                                  | Page 1                                  | of 2 |
|-------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|------|
|                                                                   |                                            | Certific                                             | ate of Analysis                                   |       |                                                  |                                         |      |
|                                                                   |                                            | Samp                                                 | ole Summary                                       |       |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:              | ID: 9822012                                | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/21/2016 13:00<br>09/27/2016 12:00   |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>29.3<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:<br>Prep Date: | 33023<br>10/18/2016 05:40<br>b17oct16a_2-3 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>15.79 g |       | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| CAS No.                                                           | Parmname                                   | Qual                                                 | Result                                            | Units |                                                  | PQL                                     |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                               | U                                                    | .896                                              | pg/g  |                                                  | 0.896                                   |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                            | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD                        | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD                       |                                                      | 23.0                                              | pg/g  |                                                  | 8.96                                    |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                               | U                                                    | .896                                              | pg/g  |                                                  | 0.896                                   |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                            | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                            | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF                        | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF                        | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF                       | U                                                    | 8.96                                              | pg/g  |                                                  | 8.96                                    |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin          | U                                                    | .896                                              | pg/g  |                                                  | 0.896                                   |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin           | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin          | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran              | U                                                    | .896                                              | pg/g  |                                                  | 0.896                                   |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran              | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran               | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran              | U                                                    | 4.48                                              | pg/g  |                                                  | 4.48                                    |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                           |                                                      | 0.00689                                           | pg/g  |                                                  |                                         |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                         |                                                      | 5.12                                              | pg/g  |                                                  |                                         |      |
|                                                                   |                                            |                                                      |                                                   |       |                                                  |                                         |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 127    | 179     | pg/g  | 70.7      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 120    | 179     | pg/g  | 66.8      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 122    | 179     | pg/g  | 67.9      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 118    | 179     | pg/g  | 66.0      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 110    | 179     | pg/g  | 61.5      | (23%-140%)        |
| 13C-OCDD                  |      | 139    | 358     | pg/g  | 38.9      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 124    | 179     | pg/g  | 69.0      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 118    | 179     | pg/g  | 66.0      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 113    | 179     | pg/g  | 62.9      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 126    | 179     | pg/g  | 70.4      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 125    | 179     | pg/g  | 70.0      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 126    | 179     | pg/g  | 70.4      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 128    | 179     | pg/g  | 71.4      | (29%-147%)        |

|                                                    |                                                   |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis  |                    |                                       | Page 2                    | of 2 |
|----------------------------------------------------|---------------------------------------------------|------|------------------------------------|---------------------------------------|---------|--------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822012<br>1613B Soil                 |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/21/2010<br>09/27/2010   | 5 13:00 | Ν                  | Project:<br>Aatrix:<br>6Moisture:     | ALPH00416<br>SOIL<br>29.3 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-8<br>33023<br>10/18/2016 05:40<br>b17oct16a 2-3 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | 1613B   | ;<br>It            | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                | Prej | ) Method:<br>) Aliquot:            | SW846 35<br>15.79 g                   | 540C    |                    |                                       | -                         |      |
| CAS No.                                            | Parmname<br>r recoverv                            | Qual | Qual<br>Result                     | Result                                | Units   | Units<br>Recovery% | Acceptab                              | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | •                                                 | Quui | 109                                | 179                                   | pg/g    | 60.7               | (28%-1                                |                           |      |
| 13C-1,2,3,4,7,8,9-H                                | pCDF                                              |      | 118                                | 179                                   | pg/g    | 66.1               | (26%-1                                | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                   |      | 13.4                               | 17.9                                  | pg/g    | 74.9               | (35%-1                                | 197%)                     |      |

### Comments:

|                         |                                   | Hi-Res I        | Dioxins/Furans   |       |             | Page 1       | of 2 |
|-------------------------|-----------------------------------|-----------------|------------------|-------|-------------|--------------|------|
|                         |                                   | Certific        | ate of Analysis  |       |             |              |      |
|                         |                                   | Samp            | ole Summary      |       |             |              |      |
| SDG Numbe               |                                   | Client:         | ALPH001          |       | Project:    | ALPH00416    |      |
| Lab Sample              |                                   | Date Collected: | 09/21/2016 11:45 |       | Matrix:     | SOIL<br>17.9 |      |
| Client Samp             |                                   | Date Received:  | 09/27/2016 12:00 |       | %Moisture:  |              |      |
| Client ID:<br>Batch ID: | C-9<br>33023                      | Method:         | EPA Method 1613B |       | Prep Basis: | Dry Weight   |      |
| Run Date:               | 10/18/2016 06:27                  | Analyst:        | CLP              |       | Instrument: | HRP763       |      |
| Data File:              | b17oct16a_2-4                     |                 |                  |       | Dilution:   | 1            |      |
| Prep Batch:             |                                   | Prep Method:    | SW846 3540C      |       |             |              |      |
| Prep Date:              | 16-OCT-16                         | Prep Aliquot:   | 13.34 g          |       |             |              |      |
| CAS No.                 | Parmname                          | Qual            | Result           | Units |             | PQL          |      |
| 1746-01-6               | 2,3,7,8-TCDD                      | U               | .913             | pg/g  |             | 0.913        |      |
| 40321-76-4              | 1,2,3,7,8-PeCDD                   | U               | 4.57             | pg/g  |             | 4.57         |      |
| 39227-28-6              | 1,2,3,4,7,8-HxCDD                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 57653-85-7              | 1,2,3,6,7,8-HxCDD                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 19408-74-3              | 1,2,3,7,8,9-HxCDD                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 35822-46-9              | 1,2,3,4,6,7,8-HpCDD               | U               | 4.57             | pg/g  |             | 4.57         |      |
| 3268-87-9               | 1,2,3,4,6,7,8,9-OCDD              |                 | 14.8             | pg/g  |             | 9.13         |      |
| 51207-31-9              | 2,3,7,8-TCDF                      | U               | .913             | pg/g  |             | 0.913        |      |
| 57117-41-6              | 1,2,3,7,8-PeCDF                   | U               | 4.57             | pg/g  |             | 4.57         |      |
| 57117-31-4              | 2,3,4,7,8-PeCDF                   | U               | 4.57             | pg/g  |             | 4.57         |      |
| 70648-26-9              | 1,2,3,4,7,8-HxCDF                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 57117-44-9              | 1,2,3,6,7,8-HxCDF                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 60851-34-5              | 2,3,4,6,7,8-HxCDF                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 72918-21-9              | 1,2,3,7,8,9-HxCDF                 | U               | 4.57             | pg/g  |             | 4.57         |      |
| 67562-39-4              | 1,2,3,4,6,7,8-HpCDF               | U               | 4.57             | pg/g  |             | 4.57         |      |
| 55673-89-7              | 1,2,3,4,7,8,9-HpCDF               | U               | 4.57             | pg/g  |             | 4.57         |      |
| 39001-02-0              | 1,2,3,4,6,7,8,9-OCDF              | U               | 9.13             | pg/g  |             | 9.13         |      |
| 41903-57-5              | Total Tetrachlorodibenzo-p-dioxin | U               | .913             | pg/g  |             | 0.913        |      |
| 36088-22-9              | Total Pentachlorodibenzo-p-dioxin | U               | 4.57             | pg/g  |             | 4.57         |      |
| 34465-46-8              | Total Hexachlorodibenzo-p-dioxin  | U               | 4.57             | pg/g  |             | 4.57         |      |
| 37871-00-4              | Total Heptachlorodibenzo-p-dioxin | U               | 4.57             | pg/g  |             | 4.57         |      |
| 30402-14-3              | Total Tetrachlorodibenzofuran     | U               | .913             | pg/g  |             | 0.913        |      |
| 30402-15-4              | Total Pentachlorodibenzofuran     | U               | 4.57             | pg/g  |             | 4.57         |      |
| 55684-94-1              | Total Hexachlorodibenzofuran      | U               | 4.57             | pg/g  |             | 4.57         |      |
| 38998-75-3              | Total Heptachlorodibenzofuran     | U               | 4.57             | pg/g  |             | 4.57         |      |
| 3333-30-0               | TEQ WHO2005 ND=0                  |                 | 0.00445          | pg/g  |             |              |      |
| 3333-30-1               | TEQ WHO2005 ND=0.5                |                 | 5.21             | pg/g  |             |              |      |
|                         |                                   |                 |                  |       |             |              |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 3C-2,3,7,8-TCDD           |      | 131    | 183     | pg/g  | 71.5      | (25%-164%)        |
| 3C-1,2,3,7,8-PeCDD        |      | 125    | 183     | pg/g  | 68.2      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD      |      | 132    | 183     | pg/g  | 72.2      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD      |      | 123    | 183     | pg/g  | 67.3      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 114    | 183     | pg/g  | 62.3      | (23%-140%)        |
| 3C-OCDD                   |      | 134    | 365     | pg/g  | 36.7      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 130    | 183     | pg/g  | 71.0      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 119    | 183     | pg/g  | 65.2      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 118    | 183     | pg/g  | 64.8      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 130    | 183     | pg/g  | 71.4      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 126    | 183     | pg/g  | 68.9      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 127    | 183     | pg/g  | 69.6      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 129    | 183     | pg/g  | 70.7      | (29%-147%)        |

|                                                 |                                     |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis   |           |                                       | Page 2                    | of 2 |
|-------------------------------------------------|-------------------------------------|------|------------------------------------|---------------------------------------|----------|-----------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample: | L1629727<br>9822013<br>1613B Soil   |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/21/2010<br>09/27/2010   | 5 11:45  | Ν         | Project:<br>Aatrix:<br>6Moisture:     | ALPH00416<br>SOIL<br>17.9 |      |
| Client ID:<br>Batch ID:<br>Run Date:            | C-9<br>33023<br>10/18/2016 06:27    |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | od 1613B | I         | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763      |      |
| Data File:<br>Prep Batch:<br>Prep Date:         | b17oct16a_2-4<br>33021<br>16-OCT-16 | -    | o Method:<br>o Aliquot:            | SW846 35<br>13.34 g                   | 540C     | L         |                                       | 1                         |      |
| CAS No.                                         | Parmname                            |      | Qual                               | Result                                |          | Units     |                                       | PQL                       |      |
| Surrogate/Trace                                 | r recovery                          | Qual | Result                             | Nominal                               | Units    | Recovery% | Acceptab                              | ole Limits                |      |
| 13C-1,2,3,4,6,7,8-H                             | pCDF                                |      | 104                                | 183                                   | pg/g     | 57.1      | (28%-                                 | 143%)                     |      |
| 13C-1,2,3,4,7,8,9-H                             | pCDF                                |      | 121                                | 183                                   | pg/g     | 66.2      | (26%-                                 | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                               |                                     |      | 13.2                               | 18.3                                  | pg/g     | 72.4      | (35%-                                 | 197%)                     |      |

Comments:

|                                                      |                                                     | Hi-Res I                                     | Dioxins/Furans                                  |       |                                                  | Page 1                                  | of 2 |
|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|------|
|                                                      |                                                     | Certific                                     | ate of Analysis                                 |       |                                                  |                                         |      |
|                                                      |                                                     | Samp                                         | ole Summary                                     |       |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID: | ID: 9822014                                         | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/21/2016 12:20<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>20.8<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:  | 33023<br>10/18/2016 07:15<br>b17oct16a_2-5<br>33021 | Method:<br>Analyst:<br>Prep Method:          | EPA Method 1613B<br>CLP<br>SW846 3540C          |       | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| Prep Date:                                           | 16-OCT-16                                           | Prep Aliquot:                                | 13.07 g                                         |       |                                                  |                                         |      |
| CAS No.                                              | Parmname                                            | Qual                                         | Result                                          | Units |                                                  | PQL                                     |      |
| 1746-01-6                                            | 2,3,7,8-TCDD                                        | U                                            | .966                                            | pg/g  |                                                  | 0.966                                   |      |
| 40321-76-4                                           | 1,2,3,7,8-PeCDD                                     | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 39227-28-6                                           | 1,2,3,4,7,8-HxCDD                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 57653-85-7                                           | 1,2,3,6,7,8-HxCDD                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 19408-74-3                                           | 1,2,3,7,8,9-HxCDD                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 35822-46-9                                           | 1,2,3,4,6,7,8-HpCDD                                 |                                              | 8.87                                            | pg/g  |                                                  | 4.83                                    |      |
| 3268-87-9                                            | 1,2,3,4,6,7,8,9-OCDD                                |                                              | 135                                             | pg/g  |                                                  | 9.66                                    |      |
| 51207-31-9                                           | 2,3,7,8-TCDF                                        | U                                            | .966                                            | pg/g  |                                                  | 0.966                                   |      |
| 57117-41-6                                           | 1,2,3,7,8-PeCDF                                     | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 57117-31-4                                           | 2,3,4,7,8-PeCDF                                     | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 70648-26-9                                           | 1,2,3,4,7,8-HxCDF                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 57117-44-9                                           | 1,2,3,6,7,8-HxCDF                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 60851-34-5                                           | 2,3,4,6,7,8-HxCDF                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 72918-21-9                                           | 1,2,3,7,8,9-HxCDF                                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 67562-39-4                                           | 1,2,3,4,6,7,8-HpCDF                                 | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 55673-89-7                                           | 1,2,3,4,7,8,9-HpCDF                                 | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 39001-02-0                                           | 1,2,3,4,6,7,8,9-OCDF                                | U                                            | 9.66                                            | pg/g  |                                                  | 9.66                                    |      |
| 41903-57-5                                           | Total Tetrachlorodibenzo-p-dioxin                   |                                              | 0.970                                           | pg/g  |                                                  | 0.966                                   |      |
| 36088-22-9                                           | Total Pentachlorodibenzo-p-dioxin                   | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 34465-46-8                                           | Total Hexachlorodibenzo-p-dioxin                    | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 37871-00-4                                           | Total Heptachlorodibenzo-p-dioxin                   |                                              | 26.9                                            | pg/g  |                                                  | 4.83                                    |      |
| 30402-14-3                                           | Total Tetrachlorodibenzofuran                       | U                                            | .966                                            | pg/g  |                                                  | 0.966                                   |      |
| 30402-15-4                                           | Total Pentachlorodibenzofuran                       | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 55684-94-1                                           | Total Hexachlorodibenzofuran                        | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 38998-75-3                                           | Total Heptachlorodibenzofuran                       | U                                            | 4.83                                            | pg/g  |                                                  | 4.83                                    |      |
| 3333-30-0                                            | TEQ WHO2005 ND=0                                    |                                              | 0.129                                           | pg/g  |                                                  |                                         |      |
| 3333-30-1                                            | TEQ WHO2005 ND=0.5                                  |                                              | 5.61                                            | pg/g  |                                                  |                                         |      |
|                                                      |                                                     |                                              |                                                 |       |                                                  |                                         |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 143    | 193     | pg/g  | 74.2      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 140    | 193     | pg/g  | 72.3      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 147    | 193     | pg/g  | 76.2      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 135    | 193     | pg/g  | 70.0      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 126    | 193     | pg/g  | 65.4      | (23%-140%)        |
| 13C-OCDD                  |      | 147    | 386     | pg/g  | 38.1      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 143    | 193     | pg/g  | 74.2      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 132    | 193     | pg/g  | 68.2      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 132    | 193     | pg/g  | 68.2      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 146    | 193     | pg/g  | 75.5      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 137    | 193     | pg/g  | 70.7      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 142    | 193     | pg/g  | 73.7      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 142    | 193     | pg/g  | 73.6      | (29%-147%)        |

|                                                    |                                                    |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis    |                    |                                       | Page 2                    | of 2 |
|----------------------------------------------------|----------------------------------------------------|------|------------------------------------|---------------------------------------|-----------|--------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822014<br>1613B Soil                  |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/21/2010<br>09/27/2010   | 6 12:20   | Ν                  | Project:<br>Aatrix:<br>6Moisture:     | ALPH00416<br>SOIL<br>20.8 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-10<br>33023<br>10/18/2016 07:15<br>b17oct16a_2-5 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                       | 10d 1613B | I                  | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                 | Prej | ) Method:<br>) Aliquot:            | SW846 35<br>13.07 g                   | 540C      |                    | intron.                               | -                         |      |
| CAS No.<br>                                        | Parmname                                           | Qual | Qual<br>Result                     | Result                                | Units     | Units<br>Recovery% | Accentab                              | PQL<br>le Limits          |      |
| 13C-1,2,3,4,6,7,8-H                                | •                                                  | Quai | 118                                | 193                                   | pg/g      | 60.9               | (28%-3                                |                           |      |
| 13C-1,2,3,4,7,8,9-H                                | •                                                  |      | 131                                | 193                                   | pg/g      | 67.7<br>73 2       | (26%-)                                | ,                         |      |
|                                                    | pCDF                                               |      |                                    |                                       |           |                    |                                       | 138%)                     |      |

Comments:

|                                                                   |                                            | Hi-Res I                                             | Dioxins/Furans                                    |       |                                                  | Page 1                                  | of 2 |
|-------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------|--------------------------------------------------|-----------------------------------------|------|
|                                                                   |                                            | Certific                                             | ate of Analysis                                   |       |                                                  |                                         |      |
|                                                                   |                                            | Samp                                                 | le Summary                                        |       |                                                  |                                         |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:              | ID: 9822015                                | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/21/2016 09:03<br>09/27/2016 12:00   |       | Project:<br>Matrix:<br>%Moisture:<br>Prep Basis: | ALPH00416<br>SOIL<br>31.4<br>Dry Weight |      |
| Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:<br>Prep Date: | 33023<br>10/18/2016 08:02<br>b17oct16a_2-6 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>15.68 g |       | Instrument:<br>Dilution:                         | HRP763<br>1                             |      |
| CAS No.                                                           | Parmname                                   | Qual                                                 | Result                                            | Units |                                                  | PQL                                     |      |
| 1746-01-6                                                         | 2,3,7,8-TCDD                               | U                                                    | .93                                               | pg/g  |                                                  | 0.930                                   |      |
| 40321-76-4                                                        | 1,2,3,7,8-PeCDD                            | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 39227-28-6                                                        | 1,2,3,4,7,8-HxCDD                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 57653-85-7                                                        | 1,2,3,6,7,8-HxCDD                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 19408-74-3                                                        | 1,2,3,7,8,9-HxCDD                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 35822-46-9                                                        | 1,2,3,4,6,7,8-HpCDD                        |                                                      | 11.6                                              | pg/g  |                                                  | 4.65                                    |      |
| 3268-87-9                                                         | 1,2,3,4,6,7,8,9-OCDD                       |                                                      | 334                                               | pg/g  |                                                  | 9.30                                    |      |
| 51207-31-9                                                        | 2,3,7,8-TCDF                               | U                                                    | .93                                               | pg/g  |                                                  | 0.930                                   |      |
| 57117-41-6                                                        | 1,2,3,7,8-PeCDF                            | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 57117-31-4                                                        | 2,3,4,7,8-PeCDF                            | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 70648-26-9                                                        | 1,2,3,4,7,8-HxCDF                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 57117-44-9                                                        | 1,2,3,6,7,8-HxCDF                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 60851-34-5                                                        | 2,3,4,6,7,8-HxCDF                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 72918-21-9                                                        | 1,2,3,7,8,9-HxCDF                          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 67562-39-4                                                        | 1,2,3,4,6,7,8-HpCDF                        | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 55673-89-7                                                        | 1,2,3,4,7,8,9-HpCDF                        | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 39001-02-0                                                        | 1,2,3,4,6,7,8,9-OCDF                       | U                                                    | 9.3                                               | pg/g  |                                                  | 9.30                                    |      |
| 41903-57-5                                                        | Total Tetrachlorodibenzo-p-dioxin          | U                                                    | .93                                               | pg/g  |                                                  | 0.930                                   |      |
| 36088-22-9                                                        | Total Pentachlorodibenzo-p-dioxin          | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 34465-46-8                                                        | Total Hexachlorodibenzo-p-dioxin           |                                                      | 5.77                                              | pg/g  |                                                  | 4.65                                    |      |
| 37871-00-4                                                        | Total Heptachlorodibenzo-p-dioxin          |                                                      | 41.4                                              | pg/g  |                                                  | 4.65                                    |      |
| 30402-14-3                                                        | Total Tetrachlorodibenzofuran              | U                                                    | .93                                               | pg/g  |                                                  | 0.930                                   |      |
| 30402-15-4                                                        | Total Pentachlorodibenzofuran              | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 55684-94-1                                                        | Total Hexachlorodibenzofuran               | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 38998-75-3                                                        | Total Heptachlorodibenzofuran              | U                                                    | 4.65                                              | pg/g  |                                                  | 4.65                                    |      |
| 3333-30-0                                                         | TEQ WHO2005 ND=0                           |                                                      | 0.217                                             | pg/g  |                                                  |                                         |      |
| 3333-30-1                                                         | TEQ WHO2005 ND=0.5                         |                                                      | 5.50                                              | pg/g  |                                                  |                                         |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 3C-2,3,7,8-TCDD           |      | 137    | 186     | pg/g  | 73.6      | (25%-164%)        |
| 3C-1,2,3,7,8-PeCDD        |      | 131    | 186     | pg/g  | 70.6      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD      |      | 140    | 186     | pg/g  | 75.3      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD      |      | 133    | 186     | pg/g  | 71.5      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD    |      | 122    | 186     | pg/g  | 65.4      | (23%-140%)        |
| 3C-OCDD                   |      | 140    | 372     | pg/g  | 37.7      | (17%-157%)        |
| 3C-2,3,7,8-TCDF           |      | 135    | 186     | pg/g  | 72.7      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF        |      | 129    | 186     | pg/g  | 69.2      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF        |      | 125    | 186     | pg/g  | 67.0      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF      |      | 139    | 186     | pg/g  | 74.7      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF      |      | 134    | 186     | pg/g  | 71.9      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF      |      | 138    | 186     | pg/g  | 74.0      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF      |      | 138    | 186     | pg/g  | 74.1      | (29%-147%)        |

|                                                    |                                                          |      | Certific                           | Dioxins/Fu<br>ate of Ana<br>de Summa | alysis    |                    |                                       | Page 2                    | of 2 |
|----------------------------------------------------|----------------------------------------------------------|------|------------------------------------|--------------------------------------|-----------|--------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822015<br>1613B Soil                        |      | nt:<br>e Collected:<br>e Received: | ALPH001<br>09/21/2010<br>09/27/2010  | 5 09:03   | Ν                  | roject:<br>Iatrix:<br>6Moisture:      | ALPH00416<br>SOIL<br>31.4 |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-11(0-48)<br>33023<br>10/18/2016 08:02<br>b17oct16a 2-6 |      | hod:<br>lyst:                      | EPA Meth<br>CLP                      | nod 1613B | ;<br>Iı            | rep Basis:<br>nstrument:<br>vilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                       | Prep | ) Method:<br>) Aliquot:            | SW846 35<br>15.68 g                  | 540C      |                    |                                       | -                         |      |
| CAS No.                                            | Parmname                                                 |      | Qual<br>Result                     | Result                               | Units     | Units<br>Recovery% | Acceptab                              | PQL                       |      |
| 13C-1,2,3,4,6,7,8-Hp                               | · · ·                                                    | Qual | 109                                | 186                                  | pg/g      | 58.8               | (28%-1                                |                           |      |
| 13C-1,2,3,4,7,8,9-H                                | oCDF                                                     |      | 126                                | 186                                  | pg/g      | 67.5               | (26%-1                                | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                          |      | 11.7                               | 18.6                                 | pg/g      | 62.6               | (35%-1                                | 197%)                     |      |

Comments:

|                           |                                   | Hi-Res I                          | Dioxins/Furans                       |       |                       | Page 1       | of 2 |
|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------|-------|-----------------------|--------------|------|
|                           |                                   | Certific                          | ate of Analysis                      |       |                       |              |      |
|                           |                                   | Samp                              | le Summary                           |       |                       |              |      |
| SDG Numbe                 |                                   | Client:                           | ALPH001                              |       | Project:              | ALPH00416    |      |
| Lab Sample<br>Client Samp |                                   | Date Collected:<br>Date Received: | 09/21/2016 08:44<br>09/27/2016 12:00 |       | Matrix:<br>%Moisture: | SOIL<br>22.7 |      |
| Client ID:                | C-12                              | Date Received.                    | 07/2//2010 12:00                     |       | Prep Basis:           | Dry Weight   |      |
| Batch ID:                 | 33023                             | Method:                           | EPA Method 1613B                     |       | Trep Dusis.           | Diy Weight   |      |
| Run Date:                 | 10/18/2016 08:49                  | Analyst:                          | CLP                                  |       | Instrument:           | HRP763       |      |
| Data File:                | b17oct16a_2-7                     | Duon Mothoda                      | SW846 3540C                          |       | Dilution:             | 1            |      |
| Prep Batch:<br>Prep Date: | 33021<br>16-OCT-16                | Prep Method:<br>Prep Aliquot:     | 13.18 g                              |       |                       |              |      |
| CAS No.                   | Parmname                          | Qual                              | Result                               | Units |                       | PQL          |      |
| 1746-01-6                 | 2,3,7,8-TCDD                      | U                                 | .981                                 | pg/g  |                       | 0.981        |      |
| 40321-76-4                | 1,2,3,7,8-PeCDD                   | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 39227-28-6                | 1,2,3,4,7,8-HxCDD                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 57653-85-7                | 1,2,3,6,7,8-HxCDD                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 19408-74-3                | 1,2,3,7,8,9-HxCDD                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 35822-46-9                | 1,2,3,4,6,7,8-HpCDD               |                                   | 30.5                                 | pg/g  |                       | 4.91         |      |
| 3268-87-9                 | 1,2,3,4,6,7,8,9-OCDD              |                                   | 410                                  | pg/g  |                       | 9.81         |      |
| 51207-31-9                | 2,3,7,8-TCDF                      | U                                 | .981                                 | pg/g  |                       | 0.981        |      |
| 57117-41-6                | 1,2,3,7,8-PeCDF                   | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 57117-31-4                | 2,3,4,7,8-PeCDF                   | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 70648-26-9                | 1,2,3,4,7,8-HxCDF                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 57117-44-9                | 1,2,3,6,7,8-HxCDF                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 60851-34-5                | 2,3,4,6,7,8-HxCDF                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 72918-21-9                | 1,2,3,7,8,9-HxCDF                 | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 67562-39-4                | 1,2,3,4,6,7,8-HpCDF               |                                   | 7.19                                 | pg/g  |                       | 4.91         |      |
| 55673-89-7                | 1,2,3,4,7,8,9-HpCDF               | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 39001-02-0                | 1,2,3,4,6,7,8,9-OCDF              |                                   | 15.7                                 | pg/g  |                       | 9.81         |      |
| 41903-57-5                | Total Tetrachlorodibenzo-p-dioxin | U                                 | .981                                 | pg/g  |                       | 0.981        |      |
| 36088-22-9                | Total Pentachlorodibenzo-p-dioxin | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 34465-46-8                | Total Hexachlorodibenzo-p-dioxin  |                                   | 16.4                                 | pg/g  |                       | 4.91         |      |
| 37871-00-4                | Total Heptachlorodibenzo-p-dioxin |                                   | 81.6                                 | pg/g  |                       | 4.91         |      |
| 30402-14-3                | Total Tetrachlorodibenzofuran     | U                                 | .981                                 | pg/g  |                       | 0.981        |      |
| 30402-15-4                | Total Pentachlorodibenzofuran     | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 55684-94-1                | Total Hexachlorodibenzofuran      | U                                 | 4.91                                 | pg/g  |                       | 4.91         |      |
| 38998-75-3                | Total Heptachlorodibenzofuran     |                                   | 17.3                                 | pg/g  |                       | 4.91         |      |
| 3333-30-0                 | TEQ WHO2005 ND=0                  |                                   | 0.504                                | pg/g  |                       |              |      |
| 3333-30-1                 | TEQ WHO2005 ND=0.5                |                                   | 6.05                                 | pg/g  |                       |              |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 133    | 196     | pg/g  | 67.8      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 128    | 196     | pg/g  | 65.0      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 133    | 196     | pg/g  | 68.0      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 123    | 196     | pg/g  | 62.4      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 118    | 196     | pg/g  | 59.9      | (23%-140%)        |
| 13C-OCDD                  |      | 144    | 392     | pg/g  | 36.7      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 129    | 196     | pg/g  | 65.8      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 122    | 196     | pg/g  | 62.2      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 121    | 196     | pg/g  | 61.7      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 131    | 196     | pg/g  | 66.8      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 126    | 196     | pg/g  | 64.3      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 129    | 196     | pg/g  | 65.8      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 131    | 196     | pg/g  | 66.7      | (29%-147%)        |

|                                                    |                                                    |      | Certific                                                                                                                     | Dioxins/Fu<br>ate of Ana<br>ble Summa | alysis    |                                  |                                       | Page 2                    | of 2 |
|----------------------------------------------------|----------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------------------------------|---------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample:    | L1629727<br>9822016<br>1613B Soil                  | Date | Client:         ALPH001           Date Collected:         09/21/2016 08:44           Date Received:         09/27/2016 12:00 |                                       | Ν         | roject:<br>Iatrix:<br>6Moisture: | ALPH00416<br>SOIL<br>22.7             |                           |      |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File: | C-12<br>33023<br>10/18/2016 08:49<br>b17oct16a 2-7 |      | hod:<br>lyst:                                                                                                                | EPA Meth<br>CLP                       | nod 1613B | I                                | rep Basis:<br>nstrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Batch:<br>Prep Date:                          | 33021<br>16-OCT-16                                 | Prep | ) Method:<br>) Aliquot:                                                                                                      | SW846 35<br>13.18 g                   | 540C      |                                  | intron.                               |                           |      |
| CAS No.                                            | Parmname                                           |      | Qual<br>Result                                                                                                               | Result                                | Units     | Units<br>Recovery%               | Acceptab                              | PQL                       |      |
| 13C-1,2,3,4,6,7,8-H                                | · · ·                                              | Qual | 110                                                                                                                          | 196                                   | pg/g      | 56.1                             | (28%-)                                |                           |      |
| 13C-1,2,3,4,7,8,9-H <sub>I</sub>                   | oCDF                                               |      | 122                                                                                                                          | 196                                   | pg/g      | 62.0                             | (26%-1                                | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                                  |                                                    |      | 15.4                                                                                                                         | 19.6                                  | pg/g      | 78.3                             | (35%-1                                | 197%)                     |      |

Comments:

|                                                                  |                                                                    | Hi-Res I                                     | Dioxins/Furans                                  |       |                                         | Page 1                    | of 2 |
|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------------|---------------------------|------|
|                                                                  |                                                                    | Certific                                     | ate of Analysis                                 |       |                                         |                           |      |
|                                                                  |                                                                    | Samp                                         | le Summary                                      |       |                                         |                           |      |
| SDG Numbe<br>Lab Sample<br>Client Samp<br>Client ID:             | ID: 9822017<br>le: 1613B Soil                                      | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/21/2016 09:03<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>33.1 |      |
| Batch ID:<br>Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch: | C-11(48-89)<br>33023<br>10/18/2016 09:36<br>b17oct16a_2-8<br>33021 | Method:<br>Analyst:<br>Prep Method:          | EPA Method 1613B<br>CLP<br>SW846 3540C          |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Prep Date:                                                       | 16-OCT-16                                                          | Prep Aliquot:                                | 15.85 g                                         |       |                                         |                           |      |
| CAS No.                                                          | Parmname                                                           | Qual                                         | Result                                          | Units |                                         | PQL                       |      |
| 1746-01-6                                                        | 2,3,7,8-TCDD                                                       | U                                            | .943                                            | pg/g  |                                         | 0.943                     |      |
| 40321-76-4                                                       | 1,2,3,7,8-PeCDD                                                    | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 39227-28-6                                                       | 1,2,3,4,7,8-HxCDD                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 57653-85-7                                                       | 1,2,3,6,7,8-HxCDD                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 19408-74-3                                                       | 1,2,3,7,8,9-HxCDD                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 35822-46-9                                                       | 1,2,3,4,6,7,8-HpCDD                                                | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 3268-87-9                                                        | 1,2,3,4,6,7,8,9-OCDD                                               |                                              | 35.0                                            | pg/g  |                                         | 9.43                      |      |
| 51207-31-9                                                       | 2,3,7,8-TCDF                                                       | U                                            | .943                                            | pg/g  |                                         | 0.943                     |      |
| 57117-41-6                                                       | 1,2,3,7,8-PeCDF                                                    | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 57117-31-4                                                       | 2,3,4,7,8-PeCDF                                                    | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 70648-26-9                                                       | 1,2,3,4,7,8-HxCDF                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 57117-44-9                                                       | 1,2,3,6,7,8-HxCDF                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 60851-34-5                                                       | 2,3,4,6,7,8-HxCDF                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 72918-21-9                                                       | 1,2,3,7,8,9-HxCDF                                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 67562-39-4                                                       | 1,2,3,4,6,7,8-HpCDF                                                | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 55673-89-7                                                       | 1,2,3,4,7,8,9-HpCDF                                                | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 39001-02-0                                                       | 1,2,3,4,6,7,8,9-OCDF                                               | U                                            | 9.43                                            | pg/g  |                                         | 9.43                      |      |
| 41903-57-5                                                       | Total Tetrachlorodibenzo-p-dioxin                                  | U                                            | .943                                            | pg/g  |                                         | 0.943                     |      |
| 36088-22-9                                                       | Total Pentachlorodibenzo-p-dioxin                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 34465-46-8                                                       | Total Hexachlorodibenzo-p-dioxin                                   | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 37871-00-4                                                       | Total Heptachlorodibenzo-p-dioxin                                  | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 30402-14-3                                                       | Total Tetrachlorodibenzofuran                                      | U                                            | .943                                            | pg/g  |                                         | 0.943                     |      |
| 30402-15-4                                                       | Total Pentachlorodibenzofuran                                      | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 55684-94-1                                                       | Total Hexachlorodibenzofuran                                       | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 38998-75-3                                                       | Total Heptachlorodibenzofuran                                      | U                                            | 4.72                                            | pg/g  |                                         | 4.72                      |      |
| 3333-30-0                                                        | TEQ WHO2005 ND=0                                                   |                                              | 0.0105                                          | pg/g  |                                         |                           |      |
| 3333-30-1                                                        | TEQ WHO2005 ND=0.5                                                 |                                              | 5.39                                            | pg/g  |                                         |                           |      |
|                                                                  |                                                                    |                                              |                                                 |       |                                         |                           |      |

| urrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|--------------------------|------|--------|---------|-------|-----------|-------------------|
| 3C-2,3,7,8-TCDD          |      | 125    | 189     | pg/g  | 66.3      | (25%-164%)        |
| 3C-1,2,3,7,8-PeCDD       |      | 124    | 189     | pg/g  | 65.7      | (25%-181%)        |
| 3C-1,2,3,4,7,8-HxCDD     |      | 134    | 189     | pg/g  | 70.9      | (32%-141%)        |
| 3C-1,2,3,6,7,8-HxCDD     |      | 128    | 189     | pg/g  | 68.0      | (28%-130%)        |
| 3C-1,2,3,4,6,7,8-HpCDD   |      | 119    | 189     | pg/g  | 62.8      | (23%-140%)        |
| 3C-OCDD                  |      | 140    | 377     | pg/g  | 37.0      | (17%-157%)        |
| 3C-2,3,7,8-TCDF          |      | 123    | 189     | pg/g  | 65.2      | (24%-169%)        |
| 3C-1,2,3,7,8-PeCDF       |      | 119    | 189     | pg/g  | 63.3      | (24%-185%)        |
| 3C-2,3,4,7,8-PeCDF       |      | 119    | 189     | pg/g  | 63.1      | (21%-178%)        |
| 3C-1,2,3,4,7,8-HxCDF     |      | 132    | 189     | pg/g  | 70.1      | (26%-152%)        |
| 3C-1,2,3,6,7,8-HxCDF     |      | 135    | 189     | pg/g  | 71.5      | (26%-123%)        |
| 3C-2,3,4,6,7,8-HxCDF     |      | 136    | 189     | pg/g  | 72.1      | (28%-136%)        |
| 3C-1,2,3,7,8,9-HxCDF     |      | 129    | 189     | pg/g  | 68.2      | (29%-147%)        |

# $\mathsf{Serial}_{\mathbf{R}} \overset{\mathsf{No:1}}{\underset{\mathsf{Port}}{\mathsf{Pare}}} 1613: \overset{\mathsf{No:1}}{\underset{\mathsf{Coroler}}{\mathsf{19, 2016}}}$

|                                                 |                                          |      | Certific                                                                                                                     | Dioxins/Fu<br>ate of Ana<br>le Summa | alysis |                                   |                                         | Page 2                    | of 2 |
|-------------------------------------------------|------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-----------------------------------|-----------------------------------------|---------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample: | L1629727<br>9822017<br>1613B Soil        | Date | Client:         ALPH001           Date Collected:         09/21/2016 09:03           Date Received:         09/27/2016 12:00 |                                      | Ν      | Project:<br>Matrix:<br>%Moisture: | ALPH00416<br>SOIL<br>33.1               |                           |      |
| Client ID:<br>Batch ID:<br>Run Date:            | C-11(48-89)<br>33023<br>10/18/2016 09:36 |      | hod:<br>lyst:                                                                                                                | EPA Meth<br>CLP                      | 1613B  | I                                 | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |      |
| Data File:<br>Prep Batch:<br>Prep Date:         | b17oct16a_2-8<br>33021<br>16-OCT-16      | -    | o Method:<br>o Aliquot:                                                                                                      | SW846 35<br>15.85 g                  | 540C   | I                                 |                                         | 1                         |      |
| CAS No.                                         | Parmname                                 |      | Qual                                                                                                                         | Result                               |        | Units                             |                                         | PQL                       |      |
| Surrogate/Trace                                 | r recovery                               | Qual | Result                                                                                                                       | Nominal                              | Units  | Recovery%                         | Acceptab                                | le Limits                 |      |
| 13C-1,2,3,4,6,7,8-H                             | pCDF                                     |      | 111                                                                                                                          | 189                                  | pg/g   | 59.0                              | (28%-1                                  | (43%)                     |      |
| 13C-1,2,3,4,7,8,9-H                             | pCDF                                     |      | 124                                                                                                                          | 189                                  | pg/g   | 65.5                              | (26%-1                                  | 138%)                     |      |
| 37Cl-2,3,7,8-TCDD                               |                                          |      | 12.9                                                                                                                         | 18.9                                 | pg/g   | 68.6                              | (35%-1                                  | 197%)                     |      |

Comments:

# **Quality Control** Summary

### Report Da Hi-Res Dioxins/Furans

Serial\_No:10271613:37 Report Date: October 19, 2016

Page 1 of 7

### Surrogate Recovery Report

SDG Number: L1629727

| Sample ID | Client ID            | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits |
|-----------|----------------------|-------------------------|------|-----------------|----------------------|
| 2017086   | LCS for batch 33021  | 13C-2,3,7,8-TCDD        |      | 78.0            | (20%-175%)           |
|           |                      | 13C-1,2,3,7,8-PeCDD     |      | 72.5            | (21%-227%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDD   |      | 77.5            | (21%-193%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDD   |      | 71.7            | (25%-163%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDD |      | 67.3            | (22%-166%)           |
|           |                      | 13C-OCDD                |      | 41.1            | (13%-199%)           |
|           |                      | 13C-2,3,7,8-TCDF        |      | 74.2            | (22%-152%)           |
|           |                      | 13C-1,2,3,7,8-PeCDF     |      | 69.1            | (21%-192%)           |
|           |                      | 13C-2,3,4,7,8-PeCDF     |      | 66.8            | (13%-328%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDF   |      | 75.2            | (19%-202%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDF   |      | 74.8            | (21%-159%)           |
|           |                      | 13C-2,3,4,6,7,8-HxCDF   |      | 75.5            | (22%-176%)           |
|           |                      | 13C-1,2,3,7,8,9-HxCDF   |      | 75.2            | (17%-205%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDF |      | 63.3            | (21%-158%)           |
|           |                      | 13C-1,2,3,4,7,8,9-HpCDF |      | 68.4            | (20%-186%)           |
|           |                      | 37C1-2,3,7,8-TCDD       |      | 80.1            | (31%-191%)           |
| 017087    | LCSD for batch 33021 | 13C-2,3,7,8-TCDD        |      | 70.5            | (20%-175%)           |
|           |                      | 13C-1,2,3,7,8-PeCDD     |      | 67.1            | (21%-227%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDD   |      | 70.6            | (21%-193%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDD   |      | 63.8            | (25%-163%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDD |      | 60.3            | (22%-166%)           |
|           |                      | 13C-OCDD                |      | 35.9            | (13%-199%)           |
|           |                      | 13C-2,3,7,8-TCDF        |      | 68.2            | (22%-152%)           |
|           |                      | 13C-1,2,3,7,8-PeCDF     |      | 63.3            | (21%-192%)           |
|           |                      | 13C-2,3,4,7,8-PeCDF     |      | 63.1            | (13%-328%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDF   |      | 67.4            | (19%-202%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDF   |      | 67.4            | (21%-159%)           |
|           |                      | 13C-2,3,4,6,7,8-HxCDF   |      | 68.2            | (22%-176%)           |
|           |                      | 13C-1,2,3,7,8,9-HxCDF   |      | 68.5            | (17%-205%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDF |      | 56.0            | (21%-158%)           |
|           |                      | 13C-1,2,3,4,7,8,9-HpCDF |      | 61.2            | (20%-186%)           |
|           |                      | 37Cl-2,3,7,8-TCDD       |      | 74.3            | (31%-191%)           |
| 017085    | MB for batch 33021   | 13C-2,3,7,8-TCDD        |      | 78.1            | (25%-164%)           |
|           |                      | 13C-1,2,3,7,8-PeCDD     |      | 73.7            | (25%-181%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDD   |      | 73.7            | (32%-141%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDD   |      | 71.7            | (28%-130%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDD |      | 68.4            | (23%-140%)           |
|           |                      | 13C-OCDD                |      | 41.1            | (17%-157%)           |
|           |                      | 13C-2,3,7,8-TCDF        |      | 75.9            | (24%-169%)           |
|           |                      | 13C-1,2,3,7,8-PeCDF     |      | 69.8            | (24%-185%)           |
|           |                      | 13C-2,3,4,7,8-PeCDF     |      | 69.1            | (21%-178%)           |
|           |                      | 13C-1,2,3,4,7,8-HxCDF   |      | 74.9            | (26%-152%)           |
|           |                      | 13C-1,2,3,6,7,8-HxCDF   |      | 72.9            | (26%-123%)           |
|           |                      | 13C-2,3,4,6,7,8-HxCDF   |      | 75.2            | (28%-136%)           |
|           |                      | 13C-1,2,3,7,8,9-HxCDF   |      | 76.7            | (29%-147%)           |
|           |                      | 13C-1,2,3,4,6,7,8-HpCDF |      | 62.8            | (28%-143%)           |
|           |                      | 13C-1,2,3,4,7,8,9-HpCDF |      | 69.2            | (26%-138%)           |
|           |                      | 37Cl-2,3,7,8-TCDD       |      | 82.5            | (35%-197%)           |
| 22001     | C-6 (0-48)           | 13C-2,3,7,8-TCDD        |      | 69.2            | (25%-164%)           |

### Hi-Res Dioxins/Furans Surrogate Recovery Report

Page 2 of 7

### SDG Number: L1629727

| 822001 | C-6 (0-48)     | 13C-1,2,3,7,8-PeCDD     |      |            |
|--------|----------------|-------------------------|------|------------|
|        |                | 13C-1,2,3,7,8-PECDD     | 65.9 | (25%-181%) |
|        |                | 13C-1,2,3,4,7,8-HxCDD   | 66.5 | (32%-141%) |
|        |                | 13C-1,2,3,6,7,8-HxCDD   | 67.4 | (28%-130%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDD | 61.5 | (23%-140%) |
|        |                | 13C-OCDD                | 35.7 | (17%-157%) |
|        |                | 13C-2,3,7,8-TCDF        | 68.1 | (24%-169%) |
|        |                | 13C-1,2,3,7,8-PeCDF     | 62.9 | (24%-185%) |
|        |                | 13C-2,3,4,7,8-PeCDF     | 61.1 | (21%-178%) |
|        |                | 13C-1,2,3,4,7,8-HxCDF   | 67.3 | (26%-152%) |
|        |                | 13C-1,2,3,6,7,8-HxCDF   | 67.8 | (26%-123%) |
|        |                | 13C-2,3,4,6,7,8-HxCDF   | 69.2 | (28%-136%) |
|        |                | 13C-1,2,3,7,8,9-HxCDF   | 68.2 | (29%-147%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDF | 56.1 | (28%-143%) |
|        |                | 13C-1,2,3,4,7,8,9-HpCDF | 62.8 | (26%-138%) |
|        |                | 37Cl-2,3,7,8-TCDD       | 75.5 | (35%-197%) |
| 822002 | C-6 (0-48) MS  | 13C-2,3,7,8-TCDD        | 72.8 | (25%-164%) |
|        |                | 13C-1,2,3,7,8-PeCDD     | 69.9 | (25%-181%) |
|        |                | 13C-1,2,3,4,7,8-HxCDD   | 73.2 | (32%-141%) |
|        |                | 13C-1,2,3,6,7,8-HxCDD   | 66.6 | (28%-130%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDD | 63.4 | (23%-140%) |
|        |                | 13C-OCDD                | 40.3 | (17%-157%) |
|        |                | 13C-2,3,7,8-TCDF        | 72.0 | (24%-169%) |
|        |                | 13C-1,2,3,7,8-PeCDF     | 66.9 | (24%-185%) |
|        |                | 13C-2,3,4,7,8-PeCDF     | 65.1 | (21%-178%) |
|        |                | 13C-1,2,3,4,7,8-HxCDF   | 72.0 | (26%-152%) |
|        |                | 13C-1,2,3,6,7,8-HxCDF   | 68.9 | (26%-123%) |
|        |                | 13C-2,3,4,6,7,8-HxCDF   | 70.7 | (28%-136%) |
|        |                | 13C-1,2,3,7,8,9-HxCDF   | 70.4 | (29%-147%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDF | 59.6 | (28%-143%) |
|        |                | 13C-1,2,3,4,7,8,9-HpCDF | 67.4 | (26%-138%) |
|        |                | 37Cl-2,3,7,8-TCDD       | 66.1 | (35%-197%) |
| 322003 | C-6 (0-48) MSD | 13C-2,3,7,8-TCDD        | 76.5 | (25%-164%) |
|        |                | 13C-1,2,3,7,8-PeCDD     | 72.3 | (25%-181%) |
|        |                | 13C-1,2,3,4,7,8-HxCDD   | 75.7 | (32%-141%) |
|        |                | 13C-1,2,3,6,7,8-HxCDD   | 75.3 | (28%-130%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDD | 70.0 | (23%-140%) |
|        |                | 13C-OCDD                | 44.3 | (17%-157%) |
|        |                | 13C-2,3,7,8-TCDF        | 75.7 | (24%-169%) |
|        |                | 13C-1,2,3,7,8-PeCDF     | 69.7 | (24%-185%) |
|        |                | 13C-2,3,4,7,8-PeCDF     | 67.9 | (21%-178%) |
|        |                | 13C-1,2,3,4,7,8-HxCDF   | 76.0 | (26%-152%) |
|        |                | 13C-1,2,3,6,7,8-HxCDF   | 75.1 | (26%-123%) |
|        |                | 13C-2,3,4,6,7,8-HxCDF   | 76.2 | (28%-136%) |
|        |                | 13C-1,2,3,7,8,9-HxCDF   | 77.2 | (29%-147%) |
|        |                | 13C-1,2,3,4,6,7,8-HpCDF | 65.4 | (28%-143%) |
|        |                | 13C-1,2,3,4,7,8,9-HpCDF | 71.9 | (26%-138%) |
|        |                | 37Cl-2,3,7,8-TCDD       | 76.4 | (35%-197%) |
| 322004 | C-7 (0-48)     | 13C-2,3,7,8-TCDD        | 78.3 | (25%-164%) |
|        | (0 .0)         | 13C-1,2,3,7,8-PeCDD     | 74.2 | (25%-181%) |

### Page 3 of 7

### Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727

| Sample ID | Client ID  | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits |
|-----------|------------|-------------------------|------|-----------------|----------------------|
| 822004    | C-7 (0-48) | 13C-1,2,3,4,7,8-HxCDD   |      | 75.6            | (32%-141%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 69.7            | (28%-130%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 67.1            | (23%-140%)           |
|           |            | 13C-OCDD                |      | 38.4            | (17%-157%)           |
|           |            | 13C-2,3,7,8-TCDF        |      | 74.4            | (24%-169%)           |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 72.0            | (24%-185%)           |
|           |            | 13C-2,3,4,7,8-PeCDF     |      | 70.2            | (21%-178%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 74.8            | (26%-152%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 70.3            | (26%-123%)           |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 73.9            | (28%-136%)           |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 74.0            | (29%-147%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 60.7            | (28%-143%)           |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 68.8            | (26%-138%)           |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 80.9            | (35%-197%)           |
| 22005     | C-1        | 13C-2,3,7,8-TCDD        |      | 56.8            | (25%-164%)           |
|           |            | 13C-1,2,3,7,8-PeCDD     |      | 56.2            | (25%-181%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 57.3            | (32%-141%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 59.1            | (28%-130%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 56.1            | (23%-140%)           |
|           |            | 13C-OCDD                |      | 34.6            | (17%-157%)           |
|           |            | 13C-2,3,7,8-TCDF        |      | 57.3            | (24%-169%)           |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 55.7            | (24%-185%)           |
|           |            | 13C-2,3,4,7,8-PeCDF     |      | 53.7            | (21%-178%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 59.5            | (26%-152%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 59.5            | (26%-123%)           |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 60.8            | (28%-136%)           |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 60.6            | (29%-147%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 52.7            | (28%-143%)           |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 58.6            | (26%-138%)           |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 70.0            | (35%-197%)           |
| 22006     | C-2        | 13C-2,3,7,8-TCDD        |      | 52.0            | (25%-164%)           |
|           |            | 13C-1,2,3,7,8-PeCDD     |      | 54.9            | (25%-181%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 61.1            | (32%-141%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 56.3            | (28%-130%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 57.5            | (23%-140%)           |
|           |            | 13C-OCDD                |      | 35.9            | (17%-157%)           |
|           |            | 13C-2,3,7,8-TCDF        |      | 51.6            | (24%-169%)           |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 53.7            | (24%-185%)           |
|           |            | 13C-2,3,4,7,8-PeCDF     |      | 51.9            | (21%-178%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 60.1            | (26%-152%)           |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 56.8            | (26%-123%)           |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 59.3            | (28%-136%)           |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 59.6            | (29%-147%)           |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 52.2            | (28%-143%)           |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 60.1            | (26%-138%)           |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 73.3            | (35%-197%)           |
| 322007    | C-3        | 13C-2,3,7,8-TCDD        |      | 62.0            | (25%-164%)           |
|           |            | 13C-1,2,3,7,8-PeCDD     |      | 62.0            | (25%-181%)           |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 66.0            | (32%-141%)           |

Page 4

of 7

### Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727

| Sample ID | Client ID   | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits |
|-----------|-------------|-------------------------|------|-----------------|----------------------|
| 822007    | C-3         | 13C-1,2,3,6,7,8-HxCDD   |      | 62.2            | (28%-130%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 60.1            | (23%-140%)           |
|           |             | 13C-OCDD                |      | 36.8            | (17%-157%)           |
|           |             | 13C-2,3,7,8-TCDF        |      | 60.2            | (24%-169%)           |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 58.9            | (24%-185%)           |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 57.6            | (21%-178%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 64.8            | (26%-152%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 63.1            | (26%-123%)           |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 64.5            | (28%-136%)           |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 64.5            | (29%-147%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 54.2            | (28%-143%)           |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 60.4            | (26%-138%)           |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 78.9            | (35%-197%)           |
| 22008     | C-4         | 13C-2,3,7,8-TCDD        |      | 70.5            | (25%-164%)           |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 66.2            | (25%-181%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 69.0            | (32%-141%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 68.7            | (28%-130%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 62.6            | (23%-140%)           |
|           |             | 13C-OCDD                |      | 41.2            | (17%-157%)           |
|           |             | 13C-2,3,7,8-TCDF        |      | 68.4            | (24%-169%)           |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 62.3            | (24%-185%)           |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 61.8            | (21%-178%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 69.3            | (26%-152%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 67.9            | (26%-123%)           |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 69.8            | (28%-136%)           |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 69.2            | (29%-147%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 56.5            | (28%-143%)           |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 65.5            | (26%-138%)           |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 76.7            | (35%-197%)           |
| 22009     | C-6 (48-61) | 13C-2,3,7,8-TCDD        |      | 71.9            | (25%-164%)           |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 68.9            | (25%-181%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 69.9            | (32%-141%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 71.0            | (28%-130%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 63.6            | (23%-140%)           |
|           |             | 13C-OCDD                |      | 38.2            | (17%-157%)           |
|           |             | 13C-2,3,7,8-TCDF        |      | 69.8            | (24%-169%)           |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 65.4            | (24%-185%)           |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 64.5            | (21%-178%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 71.0            | (26%-152%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 69.7            | (26%-123%)           |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 71.6            | (28%-136%)           |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 70.8            | (29%-147%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 59.2            | (28%-143%)           |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 65.6            | (26%-138%)           |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 77.4            | (35%-197%)           |
| 22010     | C-7 (48-54) | 13C-2,3,7,8-TCDD        |      | 73.2            | (25%-164%)           |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 70.1            | (25%-181%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 73.4            | (32%-141%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 69.9            | (28%-130%)           |

Page 5

of 7

### Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727

| Sample ID | Client ID   | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits                    |
|-----------|-------------|-------------------------|------|-----------------|-----------------------------------------|
| 822010    | C-7 (48-54) | 13C-1,2,3,4,6,7,8-HpCDD |      | 63.7            | (23%-140%)                              |
|           |             | 13C-OCDD                |      | 38.0            | (17%-157%)                              |
|           |             | 13C-2,3,7,8-TCDF        |      | 71.8            | (24%-169%)                              |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 66.7            | (24%-185%)                              |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 65.4            | (21%-178%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 73.4            | (26%-152%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 71.4            | (26%-123%)                              |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 72.7            | (28%-136%)                              |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 73.0            | (29%-147%)                              |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 60.0            | (28%-143%)                              |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 67.4            | (26%-138%)                              |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 68.9            | (35%-197%)                              |
| 822011    | C-5         | 13C-2,3,7,8-TCDD        |      | 66.9            | (25%-164%)                              |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 62.2            | (25%-181%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 62.7            | (32%-141%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 63.1            | (28%-130%)                              |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 57.2            | (23%-140%)                              |
|           |             | 13C-OCDD                |      | 32.9            | (17%-157%)                              |
|           |             | 13C-2,3,7,8-TCDF        |      | 65.4            | (24%-169%)                              |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 62.1            | (24%-185%)                              |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 59.2            | (21%-178%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 63.9            | (26%-152%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 64.4            | (26%-123%)                              |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 63.3            | (28%-136%)                              |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 64.0            | (29%-147%)                              |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 53.3            | (28%-143%)                              |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 59.2            | (26%-138%)                              |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 72.2            | (35%-197%)                              |
| 822012    | C-8         | 13C-2,3,7,8-TCDD        |      | 70.7            | (25%-164%)                              |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 66.8            | (25%-181%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 67.9            | (32%-141%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 66.0            | (28%-130%)                              |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 61.5            | (23%-140%)                              |
|           |             | 13C-OCDD                |      | 38.9            | (17%-157%)                              |
|           |             | 13C-2,3,7,8-TCDF        |      | 69.0            | (24%-169%)                              |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 66.0            | (24%-185%)                              |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 62.9            | (21%-178%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 70.4            | (26%-152%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 70.0            | (26%-123%)                              |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 70.4            | (28%-136%)                              |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 71.4            | (29%-147%)                              |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 60.7            | (28%-143%)                              |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 66.1            | (26%-138%)                              |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 74.9            | (35%-197%)                              |
| 822013    | C-9         | 13C-2,3,7,8-TCDD        |      | 71.5            | (25%-164%)                              |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 68.2            | (25%-181%)                              |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 72.2            | (32%-141%)                              |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 67.3            | (28%-130%)                              |
|           |             |                         |      |                 | (==:::::::::::::::::::::::::::::::::::: |

### Serial\_No:10271613:37 Report Date: October 19, 2016

Page 6 of 7

### Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727

| Sample ID | Client ID  | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits     |
|-----------|------------|-------------------------|------|-----------------|--------------------------|
| 9822013   | C-9        | 13C-OCDD                |      | 36.7            | (17%-157%)               |
|           |            | 13C-2,3,7,8-TCDF        |      | 71.0            | (24%-169%)               |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 65.2            | (24%-185%)               |
|           |            | 13C-2,3,4,7,8-PeCDF     |      | 64.8            | (21%-178%)               |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 71.4            | (26%-152%)               |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 68.9            | (26%-123%)               |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 69.6            | (28%-136%)               |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 70.7            | (29%-147%)               |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 57.1            | (28%-143%)               |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 66.2            | (26%-138%)               |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 72.4            | (35%-197%)               |
| 9822014   | C-10       | 13C-2,3,7,8-TCDD        |      | 74.2            | (25%-164%)               |
|           |            | 13C-1,2,3,7,8-PeCDD     |      | 72.3            | (25%-181%)               |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 76.2            | (32%-141%)               |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 70.0            | (28%-130%)               |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 65.4            | (23%-140%)               |
|           |            | 13C-OCDD                |      | 38.1            | (17%-157%)               |
|           |            | 13C-2,3,7,8-TCDF        |      | 74.2            | (24%-169%)               |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 68.2            | (24%-185%)               |
|           |            | 13C-2.3,4,7,8-PeCDF     |      | 68.2            | (21%-178%)               |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 75.5            | (26%-152%)               |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 70.7            | (26%-123%)               |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 73.7            | (28%-136%)               |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 73.6            | (29%-147%)               |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 60.9            | (28%-143%)               |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 67.7            | (26%-138%)               |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 73.2            | (35%-197%)               |
| 9822015   | C-11(0-48) | 13C-2,3,7,8-TCDD        |      | 73.6            | (25%-164%)               |
|           | 0 11(0 10) | 13C-1,2,3,7,8-PeCDD     |      | 70.6            | (25%-181%)               |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 75.3            | (32%-141%)               |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 71.5            | (28%-130%)               |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 65.4            | (23%-140%)               |
|           |            | 13C-OCDD                |      | 37.7            | (23%-140%)<br>(17%-157%) |
|           |            | 13C-2,3,7,8-TCDF        |      | 72.7            | (17%-137%)<br>(24%-169%) |
|           |            | 13C-1,2,3,7,8-PeCDF     |      | 69.2            | (24%-185%)               |
|           |            | 13C-2,3,4,7,8-PeCDF     |      | 67.0            | (24%-185%)<br>(21%-178%) |
|           |            | 13C-1,2,3,4,7,8-HxCDF   |      | 74.7            | (26%-178%)<br>(26%-152%) |
|           |            | 13C-1,2,3,6,7,8-HxCDF   |      | 71.9            | (26%-123%)               |
|           |            | 13C-2,3,4,6,7,8-HxCDF   |      | 74.0            | (28%-136%)               |
|           |            | 13C-1,2,3,7,8,9-HxCDF   |      | 74.0<br>74.1    | (28%-130%)<br>(29%-147%) |
|           |            | 13C-1,2,3,4,6,7,8-HpCDF |      | 58.8            | (29%-147%)<br>(28%-143%) |
|           |            | 13C-1,2,3,4,7,8,9-HpCDF |      | 58.8<br>67.5    | (26%-145%)<br>(26%-138%) |
|           |            | 37Cl-2,3,7,8-TCDD       |      | 62.6            | (35%-197%)               |
| 9822016   | C-12       | 13C-2,3,7,8-TCDD        |      | 67.8            | (25%-164%)               |
|           | C-12       |                         |      |                 |                          |
|           |            | 13C-1,2,3,7,8-PeCDD     |      | 65.0            | (25%-181%)               |
|           |            | 13C-1,2,3,4,7,8-HxCDD   |      | 68.0            | (32%-141%)               |
|           |            | 13C-1,2,3,6,7,8-HxCDD   |      | 62.4            | (28% - 130%)             |
|           |            | 13C-1,2,3,4,6,7,8-HpCDD |      | 59.9<br>26.7    | (23%-140%)               |
|           |            | 13C-OCDD                |      | 36.7            | (17% - 157%)             |

#### Serial\_No:10271613:37 Report Date: October 19, 2016

Page 7 of 7

#### Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: L1629727

Matrix Type: SOLID

| Sample ID | Client ID   | Surrogate               | QUAL | Recovery<br>(%) | Acceptance<br>Limits |
|-----------|-------------|-------------------------|------|-----------------|----------------------|
| 9822016   | C-12        | 13C-2,3,7,8-TCDF        |      | 65.8            | (24%-169%)           |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 62.2            | (24%-185%)           |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 61.7            | (21%-178%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 66.8            | (26%-152%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 64.3            | (26%-123%)           |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 65.8            | (28%-136%)           |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 66.7            | (29%-147%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 56.1            | (28%-143%)           |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 62.0            | (26%-138%)           |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 78.3            | (35%-197%)           |
| 9822017   | C-11(48-89) | 13C-2,3,7,8-TCDD        |      | 66.3            | (25%-164%)           |
|           |             | 13C-1,2,3,7,8-PeCDD     |      | 65.7            | (25%-181%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDD   |      | 70.9            | (32%-141%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDD   |      | 68.0            | (28%-130%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDD |      | 62.8            | (23%-140%)           |
|           |             | 13C-OCDD                |      | 37.0            | (17%-157%)           |
|           |             | 13C-2,3,7,8-TCDF        |      | 65.2            | (24%-169%)           |
|           |             | 13C-1,2,3,7,8-PeCDF     |      | 63.3            | (24%-185%)           |
|           |             | 13C-2,3,4,7,8-PeCDF     |      | 63.1            | (21%-178%)           |
|           |             | 13C-1,2,3,4,7,8-HxCDF   |      | 70.1            | (26%-152%)           |
|           |             | 13C-1,2,3,6,7,8-HxCDF   |      | 71.5            | (26%-123%)           |
|           |             | 13C-2,3,4,6,7,8-HxCDF   |      | 72.1            | (28%-136%)           |
|           |             | 13C-1,2,3,7,8,9-HxCDF   |      | 68.2            | (29%-147%)           |
|           |             | 13C-1,2,3,4,6,7,8-HpCDF |      | 59.0            | (28%-143%)           |
|           |             | 13C-1,2,3,4,7,8,9-HpCDF |      | 65.5            | (26%-138%)           |
|           |             | 37Cl-2,3,7,8-TCDD       |      | 68.6            | (35%-197%)           |

\* Recovery outside Acceptance Limits

# Column to be used to flag recovery values

D Sample Diluted

Page 1 of 2

### Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

| SDG Number:    | L1629727            |
|----------------|---------------------|
| Client ID:     | LCS for batch 33021 |
| Lab Sample ID: | 12017086            |
| Instrument:    | HRP763              |
| Analyst:       | CLP                 |

Sample Type:Laboratory Control SampleMatrix:SOIL

Analysis Date: 10/17/2016 17:01 Prep Batch ID:33021

Dilution: 1

| Batch ID: | 33023 |
|-----------|-------|
|           |       |

| 33023 |  |  |
|-------|--|--|
| ce    |  |  |

|            |     |                      | Amount | Spike | D    | •          |  |
|------------|-----|----------------------|--------|-------|------|------------|--|
| ~ . ~      |     |                      | Added  | Conc. | ·    | Acceptance |  |
| CAS No.    |     | Parmname             | pg/g   | pg/g  | %    | Limits     |  |
| 1746-01-6  | LCS | 2,3,7,8-TCDD         | 20.0   | 20.9  | 105  | 67-158     |  |
| 40321-76-4 | LCS | 1,2,3,7,8-PeCDD      | 100    | 96.9  | 96.9 | 70-142     |  |
| 39227-28-6 | LCS | 1,2,3,4,7,8-HxCDD    | 100    | 99.6  | 99.6 | 70-164     |  |
| 57653-85-7 | LCS | 1,2,3,6,7,8-HxCDD    | 100    | 96.4  | 96.4 | 76-134     |  |
| 19408-74-3 | LCS | 1,2,3,7,8,9-HxCDD    | 100    | 100   | 100  | 64-162     |  |
| 35822-46-9 | LCS | 1,2,3,4,6,7,8-HpCDD  | 100    | 106   | 106  | 70-140     |  |
| 3268-87-9  | LCS | 1,2,3,4,6,7,8,9-OCDD | 200    | 200   | 100  | 78-144     |  |
| 51207-31-9 | LCS | 2,3,7,8-TCDF         | 20.0   | 20.1  | 100  | 75-158     |  |
| 57117-41-6 | LCS | 1,2,3,7,8-PeCDF      | 100    | 110   | 110  | 80-134     |  |
| 57117-31-4 | LCS | 2,3,4,7,8-PeCDF      | 100    | 100   | 100  | 68-160     |  |
| 70648-26-9 | LCS | 1,2,3,4,7,8-HxCDF    | 100    | 101   | 101  | 72-134     |  |
| 57117-44-9 | LCS | 1,2,3,6,7,8-HxCDF    | 100    | 99.0  | 99   | 84-130     |  |
| 60851-34-5 | LCS | 2,3,4,6,7,8-HxCDF    | 100    | 101   | 101  | 70-156     |  |
| 72918-21-9 | LCS | 1,2,3,7,8,9-HxCDF    | 100    | 105   | 105  | 78-130     |  |
| 67562-39-4 | LCS | 1,2,3,4,6,7,8-HpCDF  | 100    | 110   | 110  | 82-122     |  |
| 55673-89-7 | LCS | 1,2,3,4,7,8,9-HpCDF  | 100    | 110   | 110  | 78-138     |  |
| 39001-02-0 | LCS | 1,2,3,4,6,7,8,9-OCDF | 200    | 235   | 117  | 63-170     |  |

Page 2 of 2

### Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

| L1629727             |
|----------------------|
| LCSD for batch 33021 |
| 12017087             |
| HRP763               |
| CLP                  |
|                      |

Sample Type:Laboratory Control Sample DuplicateMatrix:SOIL

Analysis Date: 10/17/2016 17:48Dilution: 1Prep Batch ID: 33021Batch ID: 33023

| CAS No.    |      | Parmname             | Amount<br>Added<br>pg/g | Spike<br>Conc.<br>pg/g | Recovery<br>% | Acceptance<br>Limits | RPD<br>% | Acceptance<br>Limits |
|------------|------|----------------------|-------------------------|------------------------|---------------|----------------------|----------|----------------------|
| 1746-01-6  | LCSD | 2,3,7,8-TCDD         | 20.0                    | 20.5                   | 102           | 67-158               | 2.05     | 0-20                 |
| 40321-76-4 | LCSD | 1,2,3,7,8-PeCDD      | 100                     | 97.8                   | 97.8          | 70-142               | 0.974    | 0-20                 |
| 39227-28-6 | LCSD | 1,2,3,4,7,8-HxCDD    | 100                     | 99.9                   | 99.9          | 70-164               | 0.279    | 0-20                 |
| 57653-85-7 | LCSD | 1,2,3,6,7,8-HxCDD    | 100                     | 97.1                   | 97.1          | 76-134               | 0.649    | 0-20                 |
| 19408-74-3 | LCSD | 1,2,3,7,8,9-HxCDD    | 100                     | 97.8                   | 97.8          | 64-162               | 2.21     | 0-20                 |
| 35822-46-9 | LCSD | 1,2,3,4,6,7,8-HpCDD  | 100                     | 105                    | 105           | 70-140               | 1.36     | 0-20                 |
| 3268-87-9  | LCSD | 1,2,3,4,6,7,8,9-OCDD | 200                     | 195                    | 97.3          | 78-144               | 2.85     | 0-20                 |
| 51207-31-9 | LCSD | 2,3,7,8-TCDF         | 20.0                    | 19.8                   | 99            | 75-158               | 1.40     | 0-20                 |
| 57117-41-6 | LCSD | 1,2,3,7,8-PeCDF      | 100                     | 111                    | 111           | 80-134               | 1.14     | 0-20                 |
| 57117-31-4 | LCSD | 2,3,4,7,8-PeCDF      | 100                     | 100                    | 100           | 68-160               | 0.0359   | 0-20                 |
| 70648-26-9 | LCSD | 1,2,3,4,7,8-HxCDF    | 100                     | 102                    | 102           | 72-134               | 0.721    | 0-20                 |
| 57117-44-9 | LCSD | 1,2,3,6,7,8-HxCDF    | 100                     | 98.2                   | 98.2          | 84-130               | 0.880    | 0-20                 |
| 60851-34-5 | LCSD | 2,3,4,6,7,8-HxCDF    | 100                     | 100                    | 100           | 70-156               | 0.368    | 0-20                 |
| 72918-21-9 | LCSD | 1,2,3,7,8,9-HxCDF    | 100                     | 103                    | 103           | 78-130               | 1.75     | 0-20                 |
| 67562-39-4 | LCSD | 1,2,3,4,6,7,8-HpCDF  | 100                     | 108                    | 108           | 82-122               | 2.50     | 0-20                 |
| 55673-89-7 | LCSD | 1,2,3,4,7,8,9-HpCDF  | 100                     | 107                    | 107           | 78-138               | 2.52     | 0-20                 |
| 39001-02-0 | LCSD | 1,2,3,4,6,7,8,9-OCDF | 200                     | 236                    | 118           | 63-170               | 0.400    | 0-20                 |

Page 1 of 2

### Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

| SDG Number:    | L1629727      |
|----------------|---------------|
| Client ID:     | C-6 (0-48) MS |
| Lab Sample ID: | 9822002       |
| Instrument:    | HRP763        |
| Analyst:       | CLP           |

| very Report    |                  |             |
|----------------|------------------|-------------|
| Sample Type:   | Matrix Spike     |             |
| Matrix:        | SOIL             |             |
| %Moisture:     | 34.7             |             |
| Analysis Date: | 10/17/2016 20:09 | Dilution: 1 |
| Prep Batch ID  | :33021           |             |
| Batch ID:      | 33023            |             |
|                |                  |             |

|            |    |                      | Amoun<br>Added | t | Spike<br>Conc. | Recovery | Acceptance |
|------------|----|----------------------|----------------|---|----------------|----------|------------|
| CAS No.    |    | Parmname             | pg/g           |   |                | %        | Limits     |
| 1746-01-6  | MS | 2,3,7,8-TCDD         | 19.0           | U | 18.6           | 98       | 70-130     |
| 0321-76-4  | MS | 1,2,3,7,8-PeCDD      | 95.0           | U | 87.4           | 92       | 70-130     |
| 89227-28-6 | MS | 1,2,3,4,7,8-HxCDD    | 95.0           | U | 90.1           | 94.8     | 70-130     |
| 57653-85-7 | MS | 1,2,3,6,7,8-HxCDD    | 95.0           | U | 87.7           | 92.3     | 70-130     |
| 19408-74-3 | MS | 1,2,3,7,8,9-HxCDD    | 95.0           | U | 89.9           | 94.6     | 70-130     |
| 5822-46-9  | MS | 1,2,3,4,6,7,8-HpCDD  | 95.0           | U | 98.4           | 104      | 70-130     |
| 268-87-9   | MS | 1,2,3,4,6,7,8,9-OCDD | 190            |   | 263            | 86.5     | 70-130     |
| 1207-31-9  | MS | 2,3,7,8-TCDF         | 19.0           | U | 17.9           | 94       | 70-130     |
| 7117-41-6  | MS | 1,2,3,7,8-PeCDF      | 95.0           | U | 98.3           | 103      | 70-130     |
| 7117-31-4  | MS | 2,3,4,7,8-PeCDF      | 95.0           | U | 89.3           | 94       | 70-130     |
| 70648-26-9 | MS | 1,2,3,4,7,8-HxCDF    | 95.0           | U | 89.2           | 93.8     | 70-130     |
| 57117-44-9 | MS | 1,2,3,6,7,8-HxCDF    | 95.0           | U | 90.3           | 95       | 70-130     |
| 50851-34-5 | MS | 2,3,4,6,7,8-HxCDF    | 95.0           | U | 89.1           | 93.8     | 70-130     |
| 2918-21-9  | MS | 1,2,3,7,8,9-HxCDF    | 95.0           | U | 94.8           | 99.7     | 70-130     |
| 7562-39-4  | MS | 1,2,3,4,6,7,8-HpCDF  | 95.0           | U | 98.8           | 104      | 70-130     |
| 5673-89-7  | MS | 1,2,3,4,7,8,9-HpCDF  | 95.0           | U | 97.3           | 102      | 70-130     |
| 9001-02-0  | MS | 1,2,3,4,6,7,8,9-OCDF | 190            | U | 218            | 114      | 70-130     |

Page 2 of 2

#### Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

| SDG Number:    | L1629727       |
|----------------|----------------|
| Client ID:     | C-6 (0-48) MSD |
| Lab Sample ID: | 9822003        |
| Instrument:    | HRP763         |
| Analyst:       | CLP            |

| Sample Type:   | Matrix Spike Duplicate |
|----------------|------------------------|
| Matrix:        | SOIL                   |
| %Moisture:     | 34.7                   |
| Analysis Date: | 10/17/2016 20:56       |
| Prep Batch ID: | :33021                 |
| Batch ID:      | 33023                  |

Dilution: 1

|            |     |                      | Amour         |               | Spike<br>Conc. | D             | •                    |          |                      |
|------------|-----|----------------------|---------------|---------------|----------------|---------------|----------------------|----------|----------------------|
| CAS No.    |     | Parmname             | Addec<br>pg/g | Added<br>pg/g |                | Recovery<br>% | Acceptance<br>Limits | RPD<br>% | Acceptance<br>Limits |
| 1746-01-6  | MSD | 2,3,7,8-TCDD         | 18.9          | U             | 19.8           | 105           | 70-130               | 5.92     | 0-20                 |
| 40321-76-4 | MSD | 1,2,3,7,8-PeCDD      | 94.5          | U             | 89.4           | 94.6          | 70-130               | 2.27     | 0-20                 |
| 39227-28-6 | MSD | 1,2,3,4,7,8-HxCDD    | 94.5          | U             | 94.4           | 99.9          | 70-130               | 4.72     | 0-20                 |
| 57653-85-7 | MSD | 1,2,3,6,7,8-HxCDD    | 94.5          | U             | 85.5           | 90.4          | 70-130               | 2.57     | 0-20                 |
| 19408-74-3 | MSD | 1,2,3,7,8,9-HxCDD    | 94.5          | U             | 90.8           | 96.1          | 70-130               | 0.985    | 0-20                 |
| 35822-46-9 | MSD | 1,2,3,4,6,7,8-HpCDD  | 94.5          | U             | 117            | 124           | 70-130               | 17.6     | 0-20                 |
| 3268-87-9  | MSD | 1,2,3,4,6,7,8,9-OCDD | 189           |               | 1060           | 510 *         | 70-130               | 121 *    | 0-20                 |
| 51207-31-9 | MSD | 2,3,7,8-TCDF         | 18.9          | U             | 18.4           | 97.2          | 70-130               | 2.77     | 0-20                 |
| 57117-41-6 | MSD | 1,2,3,7,8-PeCDF      | 94.5          | U             | 100            | 106           | 70-130               | 2.00     | 0-20                 |
| 57117-31-4 | MSD | 2,3,4,7,8-PeCDF      | 94.5          | U             | 90.3           | 95.6          | 70-130               | 1.13     | 0-20                 |
| 70648-26-9 | MSD | 1,2,3,4,7,8-HxCDF    | 94.5          | U             | 93.8           | 99.3          | 70-130               | 5.07     | 0-20                 |
| 57117-44-9 | MSD | 1,2,3,6,7,8-HxCDF    | 94.5          | U             | 91.4           | 96.7          | 70-130               | 1.14     | 0-20                 |
| 60851-34-5 | MSD | 2,3,4,6,7,8-HxCDF    | 94.5          | U             | 91.7           | 97            | 70-130               | 2.79     | 0-20                 |
| 72918-21-9 | MSD | 1,2,3,7,8,9-HxCDF    | 94.5          | U             | 94.7           | 100           | 70-130               | 0.0987   | 0-20                 |
| 67562-39-4 | MSD | 1,2,3,4,6,7,8-HpCDF  | 94.5          | U             | 99.8           | 106           | 70-130               | 1.05     | 0-20                 |
| 55673-89-7 | MSD | 1,2,3,4,7,8,9-HpCDF  | 94.5          | U             | 99.6           | 105           | 70-130               | 2.29     | 0-20                 |
| 39001-02-0 | MSD | 1,2,3,4,6,7,8,9-OCDF | 189           | U             | 215            | 114           | 70-130               | 1.17     | 0-20                 |

#### Method Blank Summary

# Serial No:10271613:37 19, 2016

| Page | 1 | of $1$ |  |
|------|---|--------|--|

| SDG Number:    | L1629727           | Client:        | ALPH001   | Matrix:    | SOIL           |
|----------------|--------------------|----------------|-----------|------------|----------------|
| Client ID:     | MB for batch 33021 | Instrument ID: | HRP763    | Data File: | b17oct16a-4    |
| Lab Sample ID: | 12017085           | Prep Date:     | 16-OCT-16 | Analyzed:  | 10/17/16 18:35 |
| Column:        |                    | -              |           |            |                |

#### This method blank applies to the following samples and quality control samples:

| Client Sample ID        | Lab Sample ID | File ID       | Date Analyzed | Time Analyzed |  |
|-------------------------|---------------|---------------|---------------|---------------|--|
| 01 LCS for batch 33021  | 12017086      | b17oct16a-2   | 10/17/16      | 1701          |  |
| 02 LCSD for batch 33021 | 12017087      | b17oct16a-3   | 10/17/16      | 1748          |  |
| 03 C-6 (0-48)           | 9822001       | b17oct16a-5   | 10/17/16      | 1922          |  |
| 04 C-6 (0-48) MS        | 9822002       | b17oct16a-6   | 10/17/16      | 2009          |  |
| 05 C-6 (0-48) MSD       | 9822003       | b17oct16a-7   | 10/17/16      | 2056          |  |
| 06 C-7 (0-48)           | 9822004       | b17oct16a-8   | 10/17/16      | 2143          |  |
| 07 C-1                  | 9822005       | b17oct16a-9   | 10/17/16      | 2230          |  |
| 08 C-2                  | 9822006       | b17oct16a-10  | 10/17/16      | 2317          |  |
| 09 C-3                  | 9822007       | b17oct16a-11  | 10/18/16      | 0004          |  |
| 10 C-4                  | 9822008       | b17oct16a-12  | 10/18/16      | 0051          |  |
| 11 C-6 (48-61)          | 9822009       | b17oct16a-13  | 10/18/16      | 0138          |  |
| 12 C-7 (48-54)          | 9822010       | b17oct16a-14  | 10/18/16      | 0225          |  |
| 13 C-5                  | 9822011       | b17oct16a_2-2 | 10/18/16      | 0454          |  |
| 14 C-8                  | 9822012       | b17oct16a_2-3 | 10/18/16      | 0540          |  |
| 15 C-9                  | 9822013       | b17oct16a_2-4 | 10/18/16      | 0627          |  |
| 16 C-10                 | 9822014       | b17oct16a_2-5 | 10/18/16      | 0715          |  |
| 17 C-11(0-48)           | 9822015       | b17oct16a_2-6 | 10/18/16      | 0802          |  |
| 18 C-12                 | 9822016       | b17oct16a_2-7 | 10/18/16      | 0849          |  |
| 19 C-11(48-89)          | 9822017       | b17oct16a_2-8 | 10/18/16      | 0936          |  |

|                         |                                   | Hi-Res        | Dioxins/Furans   |       |             | Page 1 of 2 |  |
|-------------------------|-----------------------------------|---------------|------------------|-------|-------------|-------------|--|
|                         |                                   | Certifi       | cate of Analysis |       |             |             |  |
|                         |                                   | Sam           | ple Summary      |       |             |             |  |
| SDG Numbe               | er: L1629727                      | Client:       | ALPH001          |       | Project:    | ALPH00416   |  |
| Lab Sample              |                                   |               |                  |       | Matrix:     | SOIL        |  |
| Client Samp             |                                   |               |                  |       |             |             |  |
| Client ID:<br>Batch ID: | MB for batch 33021<br>33023       | Method:       | EPA Method 1613B |       | Prep Basis: | As Received |  |
| Run Date:               | 55025<br>10/17/2016 18:35         | Analyst:      | CLP              |       | Instrument: | HRP763      |  |
| Data File:              | b17oct16a-4                       | ·             |                  |       | Dilution:   | 1           |  |
| Prep Batch:             |                                   | Prep Method:  | SW846 3540C      |       |             |             |  |
| Prep Date:              | 16-OCT-16                         | Prep Aliquot: | 10 g             |       |             |             |  |
| CAS No.                 | Parmname                          | Qual          | Result           | Units |             | PQL         |  |
| 1746-01-6               | 2,3,7,8-TCDD                      | U             | 1                | pg/g  |             | 1.00        |  |
| 40321-76-4              | 1,2,3,7,8-PeCDD                   | U             | 5                | pg/g  |             | 5.00        |  |
| 39227-28-6              | 1,2,3,4,7,8-HxCDD                 | U             | 5                | pg/g  |             | 5.00        |  |
| 57653-85-7              | 1,2,3,6,7,8-HxCDD                 | U             | 5                | pg/g  |             | 5.00        |  |
| 19408-74-3              | 1,2,3,7,8,9-HxCDD                 | U             | 5                | pg/g  |             | 5.00        |  |
| 35822-46-9              | 1,2,3,4,6,7,8-HpCDD               | U             | 5                | pg/g  |             | 5.00        |  |
| 3268-87-9               | 1,2,3,4,6,7,8,9-OCDD              | U             | 10               | pg/g  |             | 10.0        |  |
| 51207-31-9              | 2,3,7,8-TCDF                      | U             | 1                | pg/g  |             | 1.00        |  |
| 57117-41-6              | 1,2,3,7,8-PeCDF                   | U             | 5                | pg/g  |             | 5.00        |  |
| 57117-31-4              | 2,3,4,7,8-PeCDF                   | U             | 5                | pg/g  |             | 5.00        |  |
| 70648-26-9              | 1,2,3,4,7,8-HxCDF                 | U             | 5                | pg/g  |             | 5.00        |  |
| 57117-44-9              | 1,2,3,6,7,8-HxCDF                 | U             | 5                | pg/g  |             | 5.00        |  |
| 60851-34-5              | 2,3,4,6,7,8-HxCDF                 | U             | 5                | pg/g  |             | 5.00        |  |
| 72918-21-9              | 1,2,3,7,8,9-HxCDF                 | U             | 5                | pg/g  |             | 5.00        |  |
| 67562-39-4              | 1,2,3,4,6,7,8-HpCDF               | U             | 5                | pg/g  |             | 5.00        |  |
| 55673-89-7              | 1,2,3,4,7,8,9-HpCDF               | U             | 5                | pg/g  |             | 5.00        |  |
| 39001-02-0              | 1,2,3,4,6,7,8,9-OCDF              | U             | 10               | pg/g  |             | 10.0        |  |
| 41903-57-5              | Total Tetrachlorodibenzo-p-dioxin | U             | 1                | pg/g  |             | 1.00        |  |
| 36088-22-9              | Total Pentachlorodibenzo-p-dioxin | U             | 5                | pg/g  |             | 5.00        |  |
| 34465-46-8              | Total Hexachlorodibenzo-p-dioxin  | U             | 5                | pg/g  |             | 5.00        |  |
| 37871-00-4              | Total Heptachlorodibenzo-p-dioxin | U             | 5                | pg/g  |             | 5.00        |  |
| 30402-14-3              | Total Tetrachlorodibenzofuran     | U             | 1                | pg/g  |             | 1.00        |  |
| 30402-15-4              | Total Pentachlorodibenzofuran     | U             | 5                | pg/g  |             | 5.00        |  |
| 55684-94-1              | Total Hexachlorodibenzofuran      | U             | 5                | pg/g  |             | 5.00        |  |
| 38998-75-3              | Total Heptachlorodibenzofuran     | U             | 5                | pg/g  |             | 5.00        |  |
| 3333-30-0               | TEQ WHO2005 ND=0                  |               | 0.00             | pg/g  |             |             |  |
| 3333-30-1               | TEQ WHO2005 ND=0.5                |               | 5.70             | pg/g  |             |             |  |
|                         |                                   |               |                  |       |             |             |  |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 156    | 200     | pg/g  | 78.1      | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 147    | 200     | pg/g  | 73.7      | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 147    | 200     | pg/g  | 73.7      | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 143    | 200     | pg/g  | 71.7      | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 137    | 200     | pg/g  | 68.4      | (23%-140%)        |
| 13C-OCDD                  |      | 164    | 400     | pg/g  | 41.1      | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 152    | 200     | pg/g  | 75.9      | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 140    | 200     | pg/g  | 69.8      | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 138    | 200     | pg/g  | 69.1      | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 150    | 200     | pg/g  | 74.9      | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 146    | 200     | pg/g  | 72.9      | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 150    | 200     | pg/g  | 75.2      | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 153    | 200     | pg/g  | 76.7      | (29%-147%)        |

|                                                 |                                                 |      | Certifie                | Dioxins/Fu<br>cate of Ana<br>ple Summa | alysis    |           |                                        | Page 2                     | of 2 |
|-------------------------------------------------|-------------------------------------------------|------|-------------------------|----------------------------------------|-----------|-----------|----------------------------------------|----------------------------|------|
| SDG Number:<br>Lab Sample ID:<br>Client Sample: | L1629727<br>12017085<br>QC for batch 33021      | Clie | nt:                     | ALPH001                                |           |           | Project:<br>Aatrix:                    | ALPH00416<br>SOIL          |      |
| Client ID:<br>Batch ID:<br>Run Date:            | MB for batch 33021<br>33023<br>10/17/2016 18:35 |      | hod:<br>lyst:           | EPA Meth<br>CLP                        | 10d 1613E | 3<br>I    | Prep Basis:<br>nstrument:<br>Dilution: | As Received<br>HRP763<br>1 |      |
| Data File:<br>Prep Batch:<br>Prep Date:         | b17oct16a-4<br>33021<br>16-OCT-16               | -    | ) Method:<br>) Aliquot: | SW846 35<br>10 g                       | 540C      | I         | mution:                                | 1                          |      |
| CAS No.                                         | Parmname                                        |      | Qual                    | Result                                 |           | Units     |                                        | PQL                        |      |
| Surrogate/Trace                                 | r recovery                                      | Qual | Result                  | Nominal                                | Units     | Recovery% | Acceptab                               | le Limits                  |      |
| 13C-1,2,3,4,6,7,8-Hj                            | pCDF                                            |      | 126                     | 200                                    | pg/g      | 62.8      | (28%-1                                 | 143%)                      |      |
| 13C-1,2,3,4,7,8,9-H                             | pCDF                                            |      | 138                     | 200                                    | pg/g      | 69.2      | (26%-1                                 | 138%)                      |      |
| 37Cl-2,3,7,8-TCDD                               |                                                 |      | 16.5                    | 20.0                                   | pg/g      | 82.5      | (35%-1                                 | 197%)                      |      |

**Comments:** 

U Analyte was analyzed for, but not detected above the specified detection limit.

|                                         |                                 | Certifie                      | Dioxins/Furans<br>cate of Analysis<br>ple Summary |       |                          | Page 1            | of 1 |
|-----------------------------------------|---------------------------------|-------------------------------|---------------------------------------------------|-------|--------------------------|-------------------|------|
| SDG Numbe<br>Lab Sample<br>Client Samp  | ID: 12017086                    | Client:                       | ALPH001                                           |       | Project:<br>Matrix:      | ALPH00416<br>SOIL |      |
| Client ID:<br>Batch ID:                 | LCS for batch 33021<br>33023    | Method:                       | EPA Method 1613B                                  |       | Prep Basis:              | As Received       |      |
| Run Date:                               | 10/17/2016 17:01<br>b17oct16a-2 | Analyst:                      | CLP                                               |       | Instrument:<br>Dilution: | HRP763<br>1       |      |
| Data File:<br>Prep Batch:<br>Prep Date: |                                 | Prep Method:<br>Prep Aliquot: | SW846 3540C<br>10 g                               |       | Dilution.                | 1                 |      |
| CAS No.                                 | Parmname                        | Qual                          | Result                                            | Units |                          | PQL               |      |
| 1746-01-6                               | 2,3,7,8-TCDD                    |                               | 20.9                                              | pg/g  |                          | 1.00              |      |
| 40321-76-4                              | 1,2,3,7,8-PeCDD                 |                               | 96.9                                              | pg/g  |                          | 5.00              |      |
| 39227-28-6                              | 1,2,3,4,7,8-HxCDD               |                               | 99.6                                              | pg/g  |                          | 5.00              |      |
| 57653-85-7                              | 1,2,3,6,7,8-HxCDD               |                               | 96.4                                              | pg/g  |                          | 5.00              |      |
| 19408-74-3                              | 1,2,3,7,8,9-HxCDD               |                               | 100                                               | pg/g  |                          | 5.00              |      |
| 35822-46-9                              | 1,2,3,4,6,7,8-HpCDD             |                               | 106                                               | pg/g  |                          | 5.00              |      |
| 3268-87-9                               | 1,2,3,4,6,7,8,9-OCDD            |                               | 200                                               | pg/g  |                          | 10.0              |      |
| 51207-31-9                              | 2,3,7,8-TCDF                    |                               | 20.1                                              | pg/g  |                          | 1.00              |      |
| 57117-41-6                              | 1,2,3,7,8-PeCDF                 |                               | 110                                               | pg/g  |                          | 5.00              |      |
| 57117-31-4                              | 2,3,4,7,8-PeCDF                 |                               | 100                                               | pg/g  |                          | 5.00              |      |
| 70648-26-9                              | 1,2,3,4,7,8-HxCDF               |                               | 101                                               | pg/g  |                          | 5.00              |      |
| 57117-44-9                              | 1,2,3,6,7,8-HxCDF               |                               | 99.0                                              | pg/g  |                          | 5.00              |      |
| 60851-34-5                              | 2,3,4,6,7,8-HxCDF               |                               | 101                                               | pg/g  |                          | 5.00              |      |
| 72918-21-9                              | 1,2,3,7,8,9-HxCDF               |                               | 105                                               | pg/g  |                          | 5.00              |      |
| 67562-39-4                              | 1,2,3,4,6,7,8-HpCDF             |                               | 110                                               | pg/g  |                          | 5.00              |      |
| 55673-89-7                              | 1,2,3,4,7,8,9-HpCDF             |                               | 110                                               | pg/g  |                          | 5.00              |      |
| 39001-02-0                              | 1,2,3,4,6,7,8,9-OCDF            |                               | 235                                               | pg/g  |                          | 10.0              |      |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 156    | 200     | pg/g  | 78.0      | (20%-175%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 145    | 200     | pg/g  | 72.5      | (21%-227%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 155    | 200     | pg/g  | 77.5      | (21%-193%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 143    | 200     | pg/g  | 71.7      | (25%-163%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 135    | 200     | pg/g  | 67.3      | (22%-166%)        |
| 13C-OCDD                  |      | 165    | 400     | pg/g  | 41.1      | (13%-199%)        |
| 13C-2,3,7,8-TCDF          |      | 148    | 200     | pg/g  | 74.2      | (22%-152%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 138    | 200     | pg/g  | 69.1      | (21%-192%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 134    | 200     | pg/g  | 66.8      | (13%-328%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 150    | 200     | pg/g  | 75.2      | (19%-202%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 150    | 200     | pg/g  | 74.8      | (21%-159%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 151    | 200     | pg/g  | 75.5      | (22%-176%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 150    | 200     | pg/g  | 75.2      | (17%-205%)        |
| 13C-1,2,3,4,6,7,8-HpCDF   |      | 127    | 200     | pg/g  | 63.3      | (21%-158%)        |
| 13C-1,2,3,4,7,8,9-HpCDF   |      | 137    | 200     | pg/g  | 68.4      | (20%-186%)        |
| 37Cl-2,3,7,8-TCDD         |      | 16.0   | 20.0    | pg/g  | 80.1      | (31%-191%)        |
| Comments:                 |      |        |         |       |           |                   |

|                                        | Hi-Res Dioxins/Furans Page 1 of 1<br>Certificate of Analysis<br>Sample Summary |                               |                     |       |                          |                   |  |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------|---------------------|-------|--------------------------|-------------------|--|--|--|--|--|--|
| SDG Numbe<br>Lab Sample<br>Client Samp | ID: 12017087                                                                   | Client:                       | ALPH001             |       | Project:<br>Matrix:      | ALPH00416<br>SOIL |  |  |  |  |  |  |
| Client ID:<br>Batch ID:                | LCSD for batch 33021<br>33023                                                  | Method:                       | EPA Method 1613B    |       | Prep Basis:              | As Received       |  |  |  |  |  |  |
| Run Date:<br>Data File:                | 10/17/2016 17:48<br>b17oct16a-3                                                | Analyst:                      | CLP                 |       | Instrument:<br>Dilution: | HRP763<br>1       |  |  |  |  |  |  |
| Prep Batch:<br>Prep Date:              | 33021<br>16-OCT-16                                                             | Prep Method:<br>Prep Aliquot: | SW846 3540C<br>10 g |       |                          |                   |  |  |  |  |  |  |
| CAS No.                                | Parmname                                                                       | Qual                          | Result              | Units |                          | PQL               |  |  |  |  |  |  |
| 1746-01-6                              | 2,3,7,8-TCDD                                                                   |                               | 20.5                | pg/g  |                          | 1.00              |  |  |  |  |  |  |
| 40321-76-4                             | 1,2,3,7,8-PeCDD                                                                |                               | 97.8                | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 39227-28-6                             | 1,2,3,4,7,8-HxCDD                                                              |                               | 99.9                | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 57653-85-7                             | 1,2,3,6,7,8-HxCDD                                                              |                               | 97.1                | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 19408-74-3                             | 1,2,3,7,8,9-HxCDD                                                              |                               | 97.8                | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 35822-46-9                             | 1,2,3,4,6,7,8-HpCDD                                                            |                               | 105                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 3268-87-9                              | 1,2,3,4,6,7,8,9-OCDD                                                           |                               | 195                 | pg/g  |                          | 10.0              |  |  |  |  |  |  |
| 51207-31-9                             | 2,3,7,8-TCDF                                                                   |                               | 19.8                | pg/g  |                          | 1.00              |  |  |  |  |  |  |
| 57117-41-6                             | 1,2,3,7,8-PeCDF                                                                |                               | 111                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 57117-31-4                             | 2,3,4,7,8-PeCDF                                                                |                               | 100                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 70648-26-9                             | 1,2,3,4,7,8-HxCDF                                                              |                               | 102                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 57117-44-9                             | 1,2,3,6,7,8-HxCDF                                                              |                               | 98.2                | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 60851-34-5                             | 2,3,4,6,7,8-HxCDF                                                              |                               | 100                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 72918-21-9                             | 1,2,3,7,8,9-HxCDF                                                              |                               | 103                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 67562-39-4                             | 1,2,3,4,6,7,8-HpCDF                                                            |                               | 108                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 55673-89-7                             | 1,2,3,4,7,8,9-HpCDF                                                            |                               | 107                 | pg/g  |                          | 5.00              |  |  |  |  |  |  |
| 39001-02-0                             | 1,2,3,4,6,7,8,9-OCDF                                                           |                               | 236                 | pg/g  |                          | 10.0              |  |  |  |  |  |  |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | Recovery% | Acceptable Limits |
|---------------------------|------|--------|---------|-------|-----------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 141    | 200     | pg/g  | 70.5      | (20%-175%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 134    | 200     | pg/g  | 67.1      | (21%-227%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 141    | 200     | pg/g  | 70.6      | (21%-193%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 128    | 200     | pg/g  | 63.8      | (25%-163%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 121    | 200     | pg/g  | 60.3      | (22%-166%)        |
| 13C-OCDD                  |      | 143    | 400     | pg/g  | 35.9      | (13%-199%)        |
| 13C-2,3,7,8-TCDF          |      | 136    | 200     | pg/g  | 68.2      | (22%-152%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 127    | 200     | pg/g  | 63.3      | (21%-192%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 126    | 200     | pg/g  | 63.1      | (13%-328%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 135    | 200     | pg/g  | 67.4      | (19%-202%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 135    | 200     | pg/g  | 67.4      | (21%-159%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 136    | 200     | pg/g  | 68.2      | (22%-176%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 137    | 200     | pg/g  | 68.5      | (17%-205%)        |
| 13C-1,2,3,4,6,7,8-HpCDF   |      | 112    | 200     | pg/g  | 56.0      | (21%-158%)        |
| 13C-1,2,3,4,7,8,9-HpCDF   |      | 122    | 200     | pg/g  | 61.2      | (20%-186%)        |
| 37Cl-2,3,7,8-TCDD         |      | 14.9   | 20.0    | pg/g  | 74.3      | (31%-191%)        |
| Comments:                 |      |        |         |       |           |                   |

# $\mathsf{Serial}_{\mathbf{R}} \overset{\mathsf{No:1027:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27:}1}{\overset{\mathsf{D27$

| Hi-Res Dioxins/Furans<br>Certificate of Analysis<br>Sample Summary |                                                           |                                              |                                                 |       |                                         |                           |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------|-----------------------------------------|---------------------------|--|--|--|--|--|
| SDG Numbe<br>Lab Sample<br>Client Samp                             | ID: 9822002                                               | Client:<br>Date Collected:<br>Date Received: | ALPH001<br>09/20/2016 10:10<br>09/27/2016 12:00 |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>34.7 |  |  |  |  |  |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File:                 | C-6 (0-48) MS<br>33023<br>10/17/2016 20:09<br>b17oct16a-6 | Method:<br>Analyst:                          | EPA Method 1613B<br>CLP                         |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |  |  |  |  |  |
| Prep Batch:<br>Prep Date:                                          | 33021<br>16-OCT-16                                        | Prep Method:<br>Prep Aliquot:                | SW846 3540C<br>16.11 g                          |       |                                         |                           |  |  |  |  |  |
| CAS No.                                                            | Parmname                                                  | Qual                                         | Result                                          | Units |                                         | PQL                       |  |  |  |  |  |
| 1746-01-6                                                          | 2,3,7,8-TCDD                                              |                                              | 18.6                                            | pg/g  |                                         | 0.950                     |  |  |  |  |  |
| 40321-76-4                                                         | 1,2,3,7,8-PeCDD                                           |                                              | 87.4                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 39227-28-6                                                         | 1,2,3,4,7,8-HxCDD                                         |                                              | 90.1                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 57653-85-7                                                         | 1,2,3,6,7,8-HxCDD                                         |                                              | 87.7                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 19408-74-3                                                         | 1,2,3,7,8,9-HxCDD                                         |                                              | 89.9                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 35822-46-9                                                         | 1,2,3,4,6,7,8-HpCDD                                       |                                              | 98.4                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 3268-87-9                                                          | 1,2,3,4,6,7,8,9-OCDD                                      |                                              | 263                                             | pg/g  |                                         | 9.50                      |  |  |  |  |  |
| 51207-31-9                                                         | 2,3,7,8-TCDF                                              |                                              | 17.9                                            | pg/g  |                                         | 0.950                     |  |  |  |  |  |
| 57117-41-6                                                         | 1,2,3,7,8-PeCDF                                           |                                              | 98.3                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 57117-31-4                                                         | 2,3,4,7,8-PeCDF                                           |                                              | 89.3                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 70648-26-9                                                         | 1,2,3,4,7,8-HxCDF                                         |                                              | 89.2                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 57117-44-9                                                         | 1,2,3,6,7,8-HxCDF                                         |                                              | 90.3                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 60851-34-5                                                         | 2,3,4,6,7,8-HxCDF                                         |                                              | 89.1                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 72918-21-9                                                         | 1,2,3,7,8,9-HxCDF                                         |                                              | 94.8                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 67562-39-4                                                         | 1,2,3,4,6,7,8-HpCDF                                       |                                              | 98.8                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 55673-89-7                                                         | 1,2,3,4,7,8,9-HpCDF                                       |                                              | 97.3                                            | pg/g  |                                         | 4.75                      |  |  |  |  |  |
| 39001-02-0                                                         | 1,2,3,4,6,7,8,9-OCDF                                      |                                              | 218                                             | pg/g  |                                         | 9.50                      |  |  |  |  |  |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | <b>Recovery%</b> | Acceptable Limits |
|---------------------------|------|--------|---------|-------|------------------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 138    | 190     | pg/g  | 72.8             | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 133    | 190     | pg/g  | 69.9             | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 139    | 190     | pg/g  | 73.2             | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 127    | 190     | pg/g  | 66.6             | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 121    | 190     | pg/g  | 63.4             | (23%-140%)        |
| 13C-OCDD                  |      | 153    | 380     | pg/g  | 40.3             | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 137    | 190     | pg/g  | 72.0             | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 127    | 190     | pg/g  | 66.9             | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 124    | 190     | pg/g  | 65.1             | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 137    | 190     | pg/g  | 72.0             | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 131    | 190     | pg/g  | 68.9             | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 134    | 190     | pg/g  | 70.7             | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 134    | 190     | pg/g  | 70.4             | (29%-147%)        |
| 13C-1,2,3,4,6,7,8-HpCDF   |      | 113    | 190     | pg/g  | 59.6             | (28%-143%)        |
| 13C-1,2,3,4,7,8,9-HpCDF   |      | 128    | 190     | pg/g  | 67.4             | (26%-138%)        |
| 37Cl-2,3,7,8-TCDD         |      | 12.6   | 19.0    | pg/g  | 66.1             | (35%-197%)        |
| Comments:                 |      |        |         |       |                  |                   |

| Hi-Res Dioxins/Furans Page 1 of 1<br>Certificate of Analysis<br>Sample Summary  |                                                                                  |                                                      |                                                  |       |                                         |                           |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-------|-----------------------------------------|---------------------------|--|
| SDG Number<br>Lab Sample I<br>Client Sampl                                      | ID: 9822003                                                                      | Client:<br>Date Collected:<br>Date Received:         | ALPH001<br>09/20/2016 10:10<br>09/27/2016 12:00  |       | Project:<br>Matrix:<br>%Moisture:       | ALPH00416<br>SOIL<br>34.7 |  |
| Client ID:<br>Batch ID:<br>Run Date:<br>Data File:<br>Prep Batch:<br>Prep Date: | C-6 (0-48) MSD<br>33023<br>10/17/2016 20:56<br>b17oct16a-7<br>33021<br>16-OCT-16 | Method:<br>Analyst:<br>Prep Method:<br>Prep Aliquot: | EPA Method 1613B<br>CLP<br>SW846 3540C<br>16.2 g |       | Prep Basis:<br>Instrument:<br>Dilution: | Dry Weight<br>HRP763<br>1 |  |
| CAS No.                                                                         | Parmname                                                                         | Qual                                                 | Result                                           | Units |                                         | PQL                       |  |
| 1746-01-6                                                                       | 2,3,7,8-TCDD                                                                     |                                                      | 19.8                                             | pg/g  |                                         | 0.945                     |  |
| 40321-76-4                                                                      | 1,2,3,7,8-PeCDD                                                                  |                                                      | 89.4                                             | pg/g  |                                         | 4.73                      |  |
| 39227-28-6                                                                      | 1,2,3,4,7,8-HxCDD                                                                |                                                      | 94.4                                             | pg/g  |                                         | 4.73                      |  |
| 57653-85-7                                                                      | 1,2,3,6,7,8-HxCDD                                                                |                                                      | 85.5                                             | pg/g  |                                         | 4.73                      |  |
| 19408-74-3                                                                      | 1,2,3,7,8,9-HxCDD                                                                |                                                      | 90.8                                             | pg/g  |                                         | 4.73                      |  |
| 35822-46-9                                                                      | 1,2,3,4,6,7,8-HpCDD                                                              |                                                      | 117                                              | pg/g  |                                         | 4.73                      |  |
| 3268-87-9                                                                       | 1,2,3,4,6,7,8,9-OCDD                                                             |                                                      | 1060                                             | pg/g  |                                         | 9.45                      |  |
| 51207-31-9                                                                      | 2,3,7,8-TCDF                                                                     |                                                      | 18.4                                             | pg/g  |                                         | 0.945                     |  |
| 57117-41-6                                                                      | 1,2,3,7,8-PeCDF                                                                  |                                                      | 100                                              | pg/g  |                                         | 4.73                      |  |
| 57117-31-4                                                                      | 2,3,4,7,8-PeCDF                                                                  |                                                      | 90.3                                             | pg/g  |                                         | 4.73                      |  |
| 70648-26-9                                                                      | 1,2,3,4,7,8-HxCDF                                                                |                                                      | 93.8                                             | pg/g  |                                         | 4.73                      |  |
| 57117-44-9                                                                      | 1,2,3,6,7,8-HxCDF                                                                |                                                      | 91.4                                             | pg/g  |                                         | 4.73                      |  |
| 60851-34-5                                                                      | 2,3,4,6,7,8-HxCDF                                                                |                                                      | 91.7                                             | pg/g  |                                         | 4.73                      |  |
| 72918-21-9                                                                      | 1,2,3,7,8,9-HxCDF                                                                |                                                      | 94.7                                             | pg/g  |                                         | 4.73                      |  |
| 67562-39-4                                                                      | 1,2,3,4,6,7,8-HpCDF                                                              |                                                      | 99.8                                             | pg/g  |                                         | 4.73                      |  |
| 55673-89-7                                                                      | 1,2,3,4,7,8,9-HpCDF                                                              |                                                      | 99.6                                             | pg/g  |                                         | 4.73                      |  |
| 39001-02-0                                                                      | 1,2,3,4,6,7,8,9-OCDF                                                             |                                                      | 215                                              | pg/g  |                                         | 9.45                      |  |

| Surrogate/Tracer recovery | Qual | Result | Nominal | Units | <b>Recovery%</b> | Acceptable Limits |
|---------------------------|------|--------|---------|-------|------------------|-------------------|
| 13C-2,3,7,8-TCDD          |      | 145    | 189     | pg/g  | 76.5             | (25%-164%)        |
| 13C-1,2,3,7,8-PeCDD       |      | 137    | 189     | pg/g  | 72.3             | (25%-181%)        |
| 13C-1,2,3,4,7,8-HxCDD     |      | 143    | 189     | pg/g  | 75.7             | (32%-141%)        |
| 13C-1,2,3,6,7,8-HxCDD     |      | 142    | 189     | pg/g  | 75.3             | (28%-130%)        |
| 13C-1,2,3,4,6,7,8-HpCDD   |      | 132    | 189     | pg/g  | 70.0             | (23%-140%)        |
| 13C-OCDD                  |      | 167    | 378     | pg/g  | 44.3             | (17%-157%)        |
| 13C-2,3,7,8-TCDF          |      | 143    | 189     | pg/g  | 75.7             | (24%-169%)        |
| 13C-1,2,3,7,8-PeCDF       |      | 132    | 189     | pg/g  | 69.7             | (24%-185%)        |
| 13C-2,3,4,7,8-PeCDF       |      | 128    | 189     | pg/g  | 67.9             | (21%-178%)        |
| 13C-1,2,3,4,7,8-HxCDF     |      | 144    | 189     | pg/g  | 76.0             | (26%-152%)        |
| 13C-1,2,3,6,7,8-HxCDF     |      | 142    | 189     | pg/g  | 75.1             | (26%-123%)        |
| 13C-2,3,4,6,7,8-HxCDF     |      | 144    | 189     | pg/g  | 76.2             | (28%-136%)        |
| 13C-1,2,3,7,8,9-HxCDF     |      | 146    | 189     | pg/g  | 77.2             | (29%-147%)        |
| 13C-1,2,3,4,6,7,8-HpCDF   |      | 124    | 189     | pg/g  | 65.4             | (28%-143%)        |
| 13C-1,2,3,4,7,8,9-HpCDF   |      | 136    | 189     | pg/g  | 71.9             | (26%-138%)        |
| 37Cl-2,3,7,8-TCDD         |      | 14.4   | 18.9    | pg/g  | 76.4             | (35%-197%)        |
| Comments:                 |      |        |         |       |                  |                   |