List of Appendices

Appendix A – NHDES Dam Safety Correspondence

- Appendix A.1 NHDES Letter of Deficiency (December 10, 2002)
- Appendix A.2 NHDES Follow-Up Letter (October 11, 2010)
- Appendix A.3 NHDES Letter of Deficiency (February 12, 2018)
- Appendix A.4 NHDES Letter of Closure for Letter of Deficiency (February 12, 2018)
- Appendix A.5 NHDES Hazard Classification Assessment (September 20, 2018)
- Appendix A.6 Mill Pond Dam Hazard Reclassification Analysis (March 02, 2020)
- Appendix A.7 NHDES Dam Determination Letter (April 17, 2020)
- Appendix B Dam Inspection Report

Appendix C – Cost Estimates

Appendix D – Sediment Evaluation Supporting Documents

- Appendix D.1 June 2020 Sediment Sampling and Analysis Plan
- Appendix D.2 Field Sampling Documentation
- Appendix D.3 Sediment Sample Analytical Results and Screening Analyses
- Appendix D.4 Laboratory Analytical Reports

Appendix E – Natural Resource Agency Coordination

Appendix A: NHDES Dam Safety Correspondence

State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

6 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-3406 FAX (603) 271-7894

December 10, 2002 Letter of Deficiency DAM #071.03

Mr. Michael Lynch Public Works Dept. Town of Durham 100 Stone Quarry Drive Durham, NH 03824

RE: Oyster River Dam, Durham

Dear Mr. Lynch:

The Department of Environmental Services, Dam Bureau (DES) consistently strives to enhance the safety of dams in New Hampshire through its dam safety program. One of the many instruments that play a part in reaching this goal is our inspection program. DES is forwarding this correspondence to you to advise you that in accordance with RSA 482:12 and Env-Wr 502.02, an inspection of the subject dam was conducted on October 9, 2002. During this visual inspection and/or file review, the following deficiencies were observed:

- 1. Deteriorated concrete was noted in the following locations (refer to enclosed sketch);
 - a. The upper and lower portions of the eight concrete piers supporting the spillway slab;
 - b. Along the base of the left abutment wall of the gate structure/right spillway training wall. Rebar was also exposed in this area;
 - c. To the right of the low level gate at the base of the downstream face;
 - d. On the interior ceiling of bay 8 (counting from right end). Rebar was also exposed;
- 2. Minor seepage was evident at the corner of the right masonry abutment wall. This wet area has been noted during past inspections;
- 3. The dam cannot pass the routed design storm with one foot of freeboard remaining on the dam;
- 4. The Emergency Action Plan (EAP) needs updating and testing; and
- 5. The Operation and Maintenance Plan (O&M) needs finalizing.

DES believes that the above deficiencies can be corrected by performing the following items by the indicated schedule:

January 30, 2003:

- 1. Finalize the O&M plan;
- 2. Update and test the EAP;

Letter of Deficiency Dam #071.03 December 10, 2002 pg. 2

November 1, 2003:

- 3. Repair the deteriorated concrete noted in the following locations:
 - a. The upper and lower portions of the eight concrete piers supporting the spillway slab;
 - b. Along the base of the left abutment wall of the gate structure/right spillway training wall. Rebar was also exposed in this area;
 - c. To the right of the low level gate at the base of the downstream face;
 - d. On the interior ceiling of bay 8 (counting from right end). Rebar was also exposed;
- 4. Conduct a stability analysis to verify that the dam is stable under the design storm conditions (100-year storm with one foot overtopping dam);

On a Continuing Basis:

5. Monitor the minor seepage, which is evident at the corner of the right masonry abutment wall.

Due to the time that has lapsed as well as additional deficiencies observed as a result of the October 9, 2002 inspection, DES will be officially closing out the 1999 LOD. Enclosed is a copy for your reference. It is our hope that the additional deficiencies as well as the outstanding deficiency will be addressed within the schedule indicated above.

DES is requesting that you complete and submit the attached "Intent to Complete Repairs" form, within 30 days of receipt of this letter, that will provide for correction of the identified deficiencies by the date(s) indicated above. If you believe changes to the items of work or dates are necessary, please make the changes directly on the form and provide a brief explanation. We have enclosed a self addressed stamped envelope for you to return this form.

Our intent in sending you this correspondence is to make you aware of items that DES believes warrant your attention to insure the continued safe operation of your dam. It is our hope that, through the submittal of the attached form and a commitment to keeping a well-maintained dam, you will voluntarily comply with the requested items of work. If we do not receive the intent form or a similarly adequate written reply, we will assume that you are in agreement with our findings and recommendations and DES will carry out follow-up inspections accordingly.

If you have any questions or comments regarding this Letter of Deficiency or would like to be present at future inspections, please contact me at 271-3406, or write to the Water Division at the address listed on the top of the previous page.

have hereyoud

Grace E. Levergood, P.E. Dam Safety Engineer

Attachments Guideline for an O&M plan, Copy of 1999 LOD, DB13 cc: Gretchen Rule Certified #<u>1000 1670 000</u> 0566 1100 GEL/was/h:/safety/wendy/lod/071-03lod.doc

The State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

Thomas S. Burack, Commissioner

October 11, 2010

Mr. Michael Lynch Public Works Department Town of Durham 100 Stone Quarry Drive Durham, NH 03824

RE: Mill Pond Dam NH Dam # 071.03, Durham, NH

Dear Dam Owner:

The Department of Environmental Services (DES) is writing to formally follow-up on verbal discussions with Mr. David Cedarholm regarding the Oyster River Dam (Mill Pond Dam) this past spring. In the flooding events of the spring of 2010, the dam sustained damage to the right abutment due to overtopping flows resultant from the limited discharge capacity of the dam. The dam was modified by the owner of the right abutment in the recent past, without permit, and it is that construction, at the block granite wall, which sustained the bulk of the damage.

It was requested, verbally, in the spring, that Mr. Cedarholm meet with the Town's consultant, Stevens Associates, relative to designing a temporary repair to the structure until the Town makes a decision as to whether the dam will be reconstructed or removed. To date, it appears that no action has occurred in regard to designing or implementing a repair to the structure.

In speaking with Mr. Cedarholm on October 6, 2010, it appears that there is a legal question relative to the extent of ownership of the dam, and that the Town cannot work on the private property at the right end of the dam.

As the dam does not meet appropriate discharge capacity requirements, and because overtopping of the right abutment continues to occur with relative frequency, the erosion damage that exists in that area can be expected to worsen significantly with each occurrence. Ultimately, dam failure at the right abutment will occur. As such, it is suggested that you design and construct, in the next few months, a repair that withstands the rigors of the expected overtopping or implement some other solution that reduces the risk of overtopping and further damage while the fate of the dam is determined. This latter option will likely have to be accompanied by a full and indefinite drawdown of the impoundment to provide the greatest amount of storage available. In either case, this issue should be addressed as soon as possible, and certainly before temperatures prevent competent earthwork from occurring. Please note that neither of these options are viable long-term solutions, but only interim measures to reduce potential damage to and failure of the dam until the Town can formally decide what it will do with the dam.

Mr. Cedarholm has been coordinating long-term concrete testing with Dr. Gress, of UNH, and DES has allowed the timetable to be extended so that his results can be quantified and processed by all involved. DES expects that these results can be quantified, and the Town can make a decision relative to the fate of the dam, by October 15, 2011.

DES Web site: www.des.nh.gov P.O. Box 95, 29 Hazen Drive, Concord, New Hampshire 03302-0095 Telephone: (603) 271-3406 • Fax: (603) 271-7894 • TDD Access: Relay NH 1-800-735-2964 Mill Pond Dam #071.03 October 11, 2010 pg. 2

Steve Doyon and I are looking forward to our meeting with you, Mr. Cedarholm and Jae Whitelaw on Friday here at DES. It is our hope that an appropriate interim solution can be found at this meeting. If you have any questions you may contact me at 271-3406 or write to the Water Division at the address listed at the bottom of the previous page.

Sincerely,

Brian A. Desfosses, P.E. Dam Safety Engineer, Dam Bureau

ec: Mr. James W. Gallagher, Jr., P.E., Chief Engineer, Dam Bureau Mr. Steve N. Doyon, P.E., Administrator, Dam Safety and Inspections Section, Dam Bureau Mrs. Deb Loiselle, River Restoration Coordinator, Dam Bureau

cc: Town Council, Town of Durham, NH, Town Hall, 15 Newmarket Road, Durham, NH 03824 Todd Selig, Town Administrator, Town Hall, 15 Newmarket Road, Durham, NH 03824 Mr. Steve Burns & Mrs. Andrea Bodo, 20 Newmarket Road, Durham, NH 03824

BAD/h:/damfiles/07103/letter/20101011 07103 followup.doc

The State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

Robert R. Scott, Commissioner

Ms. April Talon Town Engineer Town of Durham 100 Stone Quarry Drive Durham, NH 03824 February 12, 2018 Letter of Deficiency DSP #18-010

RE: Mill Pond Dam #D071003, Durham

Dear Ms. Talon:

The New Hampshire Department of Environmental Services, Dam Bureau (NHDES) is responsible for ensuring the safety of dams in New Hampshire through its dam safety program. In accordance with RSA 482:12 and Env-Wr 302.02, an inspection of the subject dam was conducted on December 8, 2017. Based upon the results of that inspection, NHDES is issuing this Letter of Deficiency (LOD) to advise you that it believes the following deficiencies can be remedied in accordance with the deadlines indicated:

By May 1, 2018:

- Perform a baseline inspection of the entire structure, including the interior of all cells below the spillway and the exterior of the right abutment and gate structure. The inspection should include detailed descriptions and measurements of all cracks, spalls, deteriorated concrete, exposed rebar, etc. to fully characterize the dam's current condition. Representative photos should be taken. NHDES's most recent inspection revealed many visual deficiencies that are, or may be, indicators of more significant issues related to structure integrity and overall dam stability. Such things as widespread and significant concrete deterioration, multiple cracks/voids and leakage are some of the indicators in the cells below the spillway (see photos A, B, C, D, E, F, and G for typical examples) and on the right abutment wall housing the gates (see photos I, J, and K for typical examples). Several areas of deterioration have visibly increased since the 2008 inspection performed by Stephens Associates Consulting Engineers. Submit to NHDES the findings of the baseline inspection along with photos of items inspected.
- 2. Update NHDES with intentions on proceeding with reconstruction of the dam. The 2008 Stephens Associates Consulting Engineers Dam Evaluation Report and the 2011 Dr. David Gress report on concrete expansion at the dam, both indicate that due to continued concrete deterioration the dam will need to be repaired in the near future. Also previous hydraulic and hydrologic analyses, as supported by several overtopping events, indicate that the dam lacks adequate discharge capacity during the 50 year event. Current regulations require that a minimum of 1 foot of freeboard is required for Low hazard structures as outlined in Env-Wr 303.11.
- 3. Update the 2008 Operation, Maintenance and Response form (OMR) to include current emergency contact information and any other updated information. Further,

Letter of Deficiency Dam #D071003/DSP #18-010 February 12, 2018 pg. 2

> the OMR should include provisions for a detailed biannual inspection to review and update the findings of the baseline inspection conducted as part of item #1, above. A link to the current OMR template may be found on DES's website on the Dam Bureau page.

By December 1, 2018:

- 4. Remove the trees and brush in the following locations. All trees and brush should be removed from the footprint of the dam and for a distance of 15 feet beyond the footprint of the dam and establish a hardy grass cover on all portions of the embankment that are not protected by other erosion resistant materials (i.e. rip rap, gravel road on crest, etc.).
 - a. Within 15 feet of the fish ladder and the left abutment. (See photos L, M and N); and
 - b. Within 15 feet of the downstream side of the right abutment and along the downstream right training/retaining wall. (See photos O and P). The large mature tree should also be removed to limit further deterioration of the wall.
- 5. Reseal the vertical joints at the following locations to limit water infiltration into the joints.
 - a. Along the fish ladder. (See photo Q for a typical example); and
 - b. Along the joint between the right end of the spillway and the adjacent right concrete abutment/gate structure. (See photos C and R).

By December 1, 2019:

6. Submit all necessary environmental permit applications (dam reconstruction and dredge and fill) for reconstruction of the dam. This application should be prepared by a qualified consultant familiar with dams and include a design of the dam that allows for the passage of the required design storm as well as all other applicable provisions of Env-Wr 400.

By December 1, 2020:

7. Complete the reconstruction of the dam and downstream areas as necessary in accordance with any permits issued as part of item# 6.

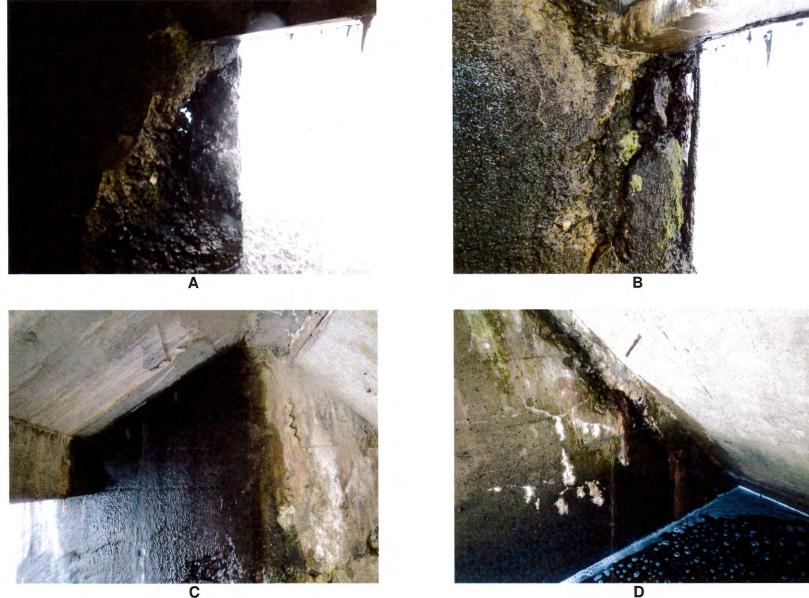
NHDES did not complete an assessment of either the hydrology of the contributing watershed or the hydraulic capacity of your dam as part of the most recent inspection. Further, no effort was made to review the areas downstream of the dam in order to reassess the dam's current hazard classification. These analyses are performed less frequently, but will be conducted as part of a future inspection of your dam. The findings related to these more detailed analyses could result in the need to complete additional and/or more extensive repairs than those identified above. Should you consider performing modifications to spillways or other outlet works, or work that otherwise meets the definition of "reconstruction" (see below), then a more in-depth analysis of the dam related to its watershed, structural characteristics and hazard classification must be completed to assure that modifications are made that meet the design requirements consistent with an up to date hazard assessment. Letter of Deficiency Dam #D071003/DSP #18-010 February 12, 2018 pg. 3

- RSA 482:2X. "Reconstruction" means:
- (a) A change in the height, length, or discharge capacity of the structure;
- (b) Restoring a breached dam or one in ruins;
- (c) Modification of flashboards which either increases their height or increases the headwater elevation at which the flashboards will fail; or
- (d) A change in the structural configuration of a dam

Please note that under New Hampshire's state statute RSA 482:89, NHDES may commence proceedings to levy fines of up to \$2,000 per violation per day against a dam owner who does not respond within 45 days of receipt of a written order, directive, or any notice of needed maintenance, repair, or reconstruction issued by NHDES. To avoid proceedings under this provision, you **must respond** to this LOD. If you fail to return this form within 45 days or fail to otherwise respond in writing within 45 days indicating your intent to remedy the identified deficiencies, you will not have the benefit of the compliance deadlines indicated on the form and NHDES will commence a proceeding under RSA 482:89 to seek administrative fines for the identified deficiencies. Please note that responding as required does not preclude NHDES from pursuing other appropriate action for the identified deficiencies, in accordance with NHDES Compliance Assurance Response Policy, available on-line at http://des.nh.gov/organization/commissioner/legal/carp/index.htm.

We believe the easiest way to respond is to sign and return the attached "Intent to Complete Repairs" form, either agreeing to correct the identified deficiencies by the dates indicated OR by proposing amendments to the listed work items or dates, which you may do by writing directly on the form. NHDES will evaluate and respond to any reasonable requests for proposed amendments in a timely manner. We have enclosed a self-addressed stamped envelope for you to return this form. You may also scan and e-mail the completed form to <u>damsafety@des.nh.gov</u> or fax it to (603) 271-6120.

Our intent in issuing this LOD is to make you aware of items that require your attention to ensure the continued safe operation of your dam. It is our hope that, through the return of the attached form and correction of the identified deficiencies, you will develop and maintain a commitment to keeping a safe and well-maintained dam.


If you have any questions or comments regarding this LOD or would like to be present at future inspections, please contact Corey Clark, P.E. at 271-7507 or me at 271-3406 or write to the address for the Water Division listed on the bottom of the cover page.

Sincerely,

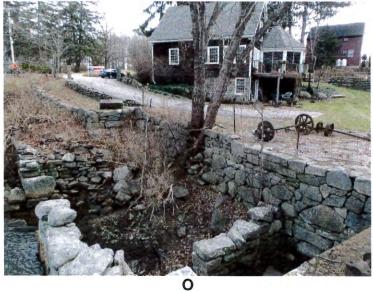

Steve N. Doyon, PE Administrator Dam Safety & Inspection Section

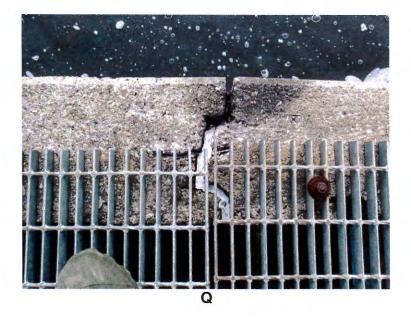
Attachments: Photos, Copy of 2008 OMR, Blank OMR form, DB8, DB13 cc: NHDES Legal Unit Certified #7016 1970 0000 4865 7645

SND\CJC\was\s:\WD-Dam\damfiles\D071003\LOD\20180212 D071003 LOD.docx

G

Η





The State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

Robert R. Scott, Commissioner

February 12, 2018 Letter of Closure For Letter of Deficiency

Ms. April Talon Town Engineer Town of Durham 100 Stone Quarry Drive Durham, NH 03824

RE: Mill Pond Dam #D071003 in Durham Letter of Deficiency (LOD) DAM #D071003 Issued on December 10, 2002

Dear Ms. Talon:

Based on a file review and a scheduled inspection conducted on December 8, 2017, of the above referenced dam, the New Hampshire Department of Environmental Services, Dam Bureau (NHDES) has determined that full compliance has not been achieved for the above referenced LOD. The December 2002 LOD has been officially closed. Please refer to the new LOD #18-010 enclosed that incorporates any outstanding deficiencies as they relate to the December 2010 LOD, as well as any new deficiencies that were found as the result of this most recent file review and site assessment.

If you have any questions or comments, please contact Corey Clark, P.E. at 271-7507 or me at 271-3406, or write to the Water Division at the address listed below.

Sincerely,

Steve N. Doyon, P.E. Administrator Dam Safety & Inspection Section

Enclosure: Copy of December 10, 2002 LOD cc: NHDES Legal Unit

SND\CJC\was\s:\WD-Dam\damfiles\D071003\LOD\20180212 D071003 2002LODCLOSURE.docs

The State of New Hampshire DEPARTMENT OF ENVIRONMENTAL SERVICES

Robert R. Scott, Commissioner

September 20, 2018

Ms. April Talon, Town Engineer Durham Public Works 100 Stone Quarry Drive Durham, NH 03824

RE: Mill Pond Dam - D071003, Hazard Classification Assessment

Dear Ms. Talon;

In response to our meeting held at your office on August 6th to discuss the above referenced dam, the New Hampshire Department of Environmental Services, Dam Bureau (NHDES), is providing the following recommendations for assessing the potential effects associated with the failure of the dam so that the appropriate design requirements for the dam can be established.

NHDES assigns hazard classifications, primarily, based upon the potential impacts that dam failure may have on adjacent or downstream properties. In addition, any dam whose height and maximum storage exceed both 6 feet and 50 acre-feet, respectively, is assigned a minimum classification of "Low". For these 6/50 cases, if dam failure is not expected to result in damages to property, lives or structures, then NHDES treats them as Non-Menace dams from an inspection and maintenance standpoint. That is, we still inspect them on a 6-year schedule and require that annual dam registration fees be paid, but no requirements related to performing repairs or maintenance are imposed. There are other factors related to the impoundment of water supply sources or liquid waste that could affect hazard classification, but these do not apply in the case of the Mill Pond Dam.

In the case of the Mill Pond Dam, the current hazard classification of "Low" relates to not only to the 6/50 criteria noted above, but also because of the potential for damages to occur to the property at the dam's right (as looking downstream) abutment. It is obvious that failure of the right abutment area will cause significant erosion damage to this property, as evidenced by previous dam overtopping events that have caused similar damage. Due to the height and configuration of the NH Route 108 crossing located immediately downstream, along with the ample storage provided in the tidal area further downstream, NHDES does not believe that the crossing or any properties downstream of it will be affected. Further, though damages to the wooden pedestrian bridge just downstream of the 108 crossing could occur, because it is municipally owned (like the dam) and its use is transient, NHDES has not considered it in assigning the hazard classification. Therefore, at least at the present time, the sole area of potential damage due to failure or misoperation of the dam relates to the property at the dam's right abutment. As noted, damage to the area immediately adjacent to the abutment as a consequence of dam failure is a given; however, we have not performed any detailed hydrologic and hydraulic modeling to determine what impacts, if any, may occur to the residence on the property.

Mill Pond Dam #D071003 Hazard Classification Assessment September 20, 2018 pg. 2

Previous assessment of the dam's discharge capacity indicates that it will be overtopped by the runoff resulting from storms producing less than the 50 year rainfall; and photos from the April 2007 event provide one example of overtopping. In addition, a photo taken after the May 2006 flood shows a short sandbag wall erected near the residence, but it is not known if the sandbags actually were called upon to divert water or were put in place solely as a precaution. As it is the town's intent to explore options related to retaining the dam, and because the design requirements related to discharge capacity are based upon a dam's hazard classification, it is imperative that the impacts associated with dam failure on the residence be more fully explored so that realistic alternatives and related costs for rehabilitation are better defined.

As we spoke about at or August 6^{th} meeting, the town anticipates engaging an engineering consultant familiar with dams to explore the ramifications and costs associated with both the removal and retention of the dam. As part of that work, the selected consultant should perform detailed hydrologic and hydraulic modeling for the following cases and determine the impact of each on the residence:

- Failure of the dam during the flood at which the water level reaches the top of the dam (water level at point of dam overtopping)
- The 50-year flood without dam failure
- The 50-year flood with dam failure
- · The 100-year flood without dam failure
- The 100-year flood with dam failure
- The Threshold flood (the flow rate that causes water to be at the elevation of the first floor sill of the house at the right abutment) with dam failure
- The 50-year flood assuming no dam in place
- The 100-year flood assuming no dam in place

NHDES assumes that the bridge opening beneath the NH Route 108 right of way may act as the flow control (which may cause backwater elevations to increase) for most, if not all, of the cases noted. Further, the last two cases may provide important information to assess the peak flood levels to compare with the other Q50 and Q100 scenarios. This modeling should define the expected incremental effects to the house, if any, both with the dam in place or removed. After assessing the extent of damage that could occur under each of these scenarios, NHDES will be able to determine, with you and your consultant, the appropriate design requirements associated with retaining the dam.

We hope this information is helpful in your discussions with prospective engineering consultants, and we encourage you to make us a part of those discussions to provide whatever information and assistance we can.

Sincerely,

Steve N. Doyon, P.E. Administrator Dam Safety & Inspection Section

cc: Mr. Todd Selig, Durham Town Administrator

Mr. Michael Lynch, Durham Public Works Director SND\was\s:\WD-Dam\damfiles\D071003\Letters\20180920 D071003 modeling suggestions.docx

MEMORANDUM

TO:	James Weber (NHDES Dam Bureau)
CC:	Steve Doyon (NHDES Dam Bureau); April Talon (Durham, Town Engineer); Peter Walker & Dave Cloutier (VHB); Allen Orsi (Pare Corporation)
FROM:	Andrew Walker, PH-SW, CFM (Weston & Sampson)
DATE:	March 2, 2020
SUBJECT:	Mill Pond Dam (D71.03) Hazard Reclassification Analysis

The Town of Durham has contracted a consulting team, led by Vanasse Hangen Brustlin (VHB) and including Weston & Sampson, Pare Corporation, and others, to evaluate the feasibility of several alternatives for reconstructing/rehabilitating/repairing/removing Mill Pond Dam, which is currently in Poor condition¹ and incapable of safely passing its design flood² in accordance with NHDES dam safety regulations (Env-Wr 303.11). As part of this current project, the project team has evaluated the previously proposed possibility³ of reducing the dam's hazard classification and therefore reducing its discharge capacity requirements. This technical memorandum summarizes those analyses.

Mill Pond Dam is currently registered as a Class A or Low Hazard structure with a corresponding requirement that it must pass the 50-year design event while maintaining 1.0 ft. of freeboard below the lowest top of dam elevation (gated outlet / right abutment). On August 6, 2018, the Town and Dam Bureau staff met to discuss the possibility of reducing the dam's hazard classification to Class AA or Non-Menace. The Dam Bureau summarized their response to that meeting in a letter³ to the Town Engineer on September 20, 2018. Based on that letter and on personnel communication⁴ between Weston & Sampson and Steve Doyon and James Weber of the Dam Bureau, we understand that while Mill Pond Dam shall remain a Class A or Low Hazard structure given its structural height and the size of its impoundment, if certain conditions are met, the Town may apply for and receive a waiver such that the dam would be regulated as a non-menace structure. Under this waiver, future dam rehabilitation

¹ Feb. 2020; Pare Corporation; "Mill Pond Dam Visual Inspection Report"

² Mar. 2018; Weston & Sampson; "Mill Pond Study Report"

³ Sep. 2018; NHDES Dam Bureau (Steve Doyon); "Mill Pond Dam – D071003, Hazard Classification Assessment

⁴ Jan. 21-22, 2020; Email correspondence between Andrew Walker (Weston & Sampson), Steve Doyon (Dam Bureau) and James Weber (Dam Bureau)

applications would only require the dam's discharge capacity requirement to meet its current discharge capacity, which is identified below in this memo.

The conditions required to obtain such a waiver are laid out in the Dam Bureau's September 2018 "Hazard Classification Assessment" letter. The Dam Bureau expects that any failure of the dam would likely damage the right abutment as indicated by observations from historical floods such as the May 2006 event, during which the abutment and right training wall were damaged when the dam was overtopped. As a result of that event, damage was also sustained to the side yard of the residence at 20 Newmarket Road, adjacent to the dam's right abutment (looking downstream). The Dam Bureau is concerned that if Mill Pond Dam were to fail, the restriction caused by the Rte. 108 bridge immediately downstream might cause additional backwatering that would cause the 20 Newmarket Road residence to become inundated when it would not otherwise have been or, if it was already inundated, to experience more than 1.0 foot of additional inundation as a direct result of the dam's failure. The Dam Bureau's "Hazard Classification Assessment" letter requires that this concern be assessed through the evaluation of flood levels under four different flow conditions:

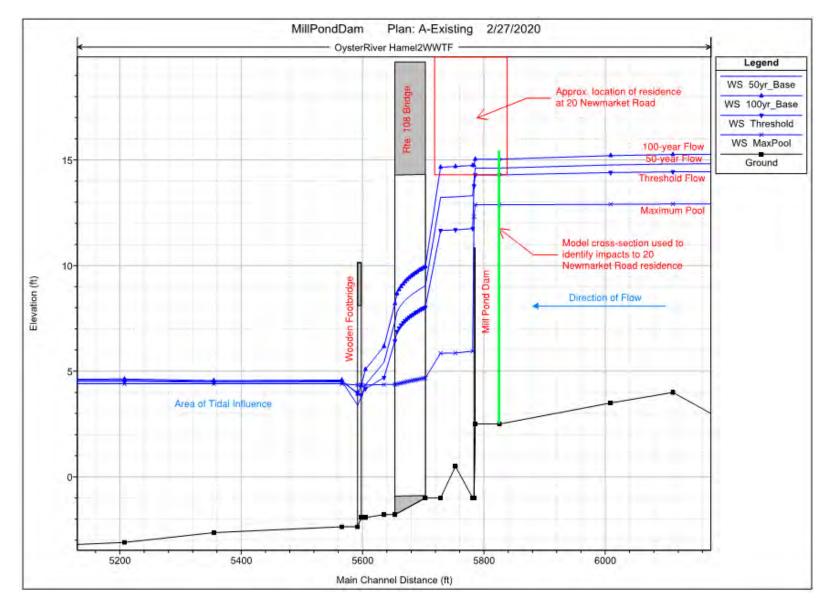
- 1. The 50-year flood;
- 2. The 100-year flood;
- 3. (Maximum Pool) The flood which causes the water level in Mill Pond/Oyster River to just reach the top of the dam (right abutment, El. 12.88); and
- 4. The Threshold Flood, which would cause the water level in Mill Pond/Oyster River to just reach the sill elevation of the walk-out basement of the 20 Newmarket Road residence (El. 14.30).

To assess the potential impacts of a dam failure on the 20 Newmarket Road residence, Weston & Sampson has developed a detailed hydraulic model and conducted steady-state simulations of each of these four flow conditions with the dam in its existing state, with various breach geometries near the right abutment, and with the dam removed. The detailed hydraulic model was developed using the Army Corps' of Engineers HEC-RAS software, v.5.0.3. This model was based on an earlier hydraulic model developed in support of Weston & Sampson's 2018 study of Mill Pond sediment and nutrient management options², which the Dam Bureau has previously reviewed and approved. Revisions made to the model in support of this project primarily include:

- Extending the model geometry's downstream limit approximately 1.2 miles downstream, from the wooden footbridge downstream of the Rte. 108 bridge to Johnson's Creek near the Town's Wastewater Treatment Facility;
- Incorporating the wooden footbridge;
- Adding three additional cross-sections between Mill Pond Dam and the wooden footbridge;
- Revising the geometry of Mill Pond Dam and the Rte. 108 bridge based on survey gathered in 2019-2020 in support of the current project;
- Adding additional resolution to the underwater portion of several cross-sections representative of the Mill Pond Dam impoundment based on bathymetric survey data gathered by a VHB-led team in 2009; and
- Adding an additional river reach to represent approximately 1.2 miles of Hamel Brook, which converges with the Oyster River within the Mill Pond Dam impoundment.

The HEC-RAS hydraulic model was also updated to include the four design flow conditions described above. Peak inflow rates to the Mill Pond Dam impoundment during 50- and 100-year design flood were estimated from a series of three hydrologic and hydraulic models described in detail in a February 2020 technical memorandum⁵ from the project team to the Dam Bureau. Those models were used to define flow conditions at five locations within the modeled Oyster River-Hamel Brook system:

- 1. Oyster River at the Oyster Reservoir Dam (071.007);
- 2. Oyster River at the upstream limit of the Mill Pond Dam impoundment;
- 3. Hamel Brook headwaters, including overflows from the Lamprey River;
- 4. Mill Pond Dam impoundment at the confluence of the Oyster River and Hamel Brook; and
- 5. Mill Pond Dam impoundment at the confluence of the Oyster River and College Brook (represents peak flow at the dam).


The peak inflows to the Mill Pond Dam impoundment (Location 5) during the 50- and 100-year design events are 3,352 and 3,877, respectively. Peak inflows at Mill Pond Dam for the Maximum Pool and Threshold Flow conditions were estimated by iteratively increasing the flow assigned to the Mill Pond impoundment (Location 5) until simulated peak water levels reached El. 12.88 (right abutment) and El. 14.30 (walk-out basement sill elevation), respectively. Maximum Pool and Threshold Flow inflows at Locations 1-4 were estimated based on the relative proportion of flows under the 50-year event conditions. Ultimately, the peak inflows to the Mill Pond impoundment (Location 5) during the Maximum Pool and Threshold Flow conditions were determined to be 1,015 and 2,810 cfs, respectively. The downstream boundary condition, which is important in this case as the dam is a head-of-tide-structure, was assumed to be Mean Higher High Water (MHHW). As no tidal gage data is publicly available for the Oyster River, MHHW was determined from long-term observations at the Fort Point NOAA gage in Portsmouth Harbor (ID 8423898).

Based on these input parameters, river and pond levels for all four flow conditions with the dam in its existing state, with various breach geometries near the right abutment, and with the dam removed. The simulated water levels for all four flow conditions, with the dam in its existing state, are shown in Figure 1 on the following page.

Based on survey data gathered in late 2019/early 2020, the upstream face of the residence is very nearly even with the dam, and it is clear that the residence could be inundated both by flows that overtop the dam and run along native ground in the right floodplain as well as, potentially, backwatering caused by the restriction of the Rte. 108 crossing downstream. To ensure that impacts to the house were adequately modeled, the residence straddles four model cross-sections, one upstream of the dam and three between the dam and Rte. 108. Because water elevations at the upstream face of the dam/residence will always be higher or equal to water levels in the area between the dam and Rte. 108, the water levels and impacts to the 20 Newmarket Road residence, described below, reference model simulation results for the cross-section immediately upstream of the dam/residence.

⁵ February 20, 2020; Weston & Sampson; "Durham Mill Pond Dam – Design Flow Analysis Methodology"

Figure 1. Simulated Peak Water Levels under Existing Conditions

The most significant takeaway from Figure 1 is that under 50- and 100-year flood conditions, the residence at 20 Newmarket Road is impacted with or without a failure of Mill Pond Dam. In contrast, under the Threshold Flow and Maximum Pool conditions, floodwaters are expected to remain at or below the sill elevation of the residence's walk-out basement (El. 14.3). The key question regarding the hazard classification issue, therefore, is whether a failure of Mill Pond Dam would cause the 20 Newmarket Road residence to become inundated during the Threshold Flow and Maximum Pool conditions or whether a dam failure would worsen the inundation of the residence by 1.0 feet or more under the 50-and 100-year flood conditions.

Weston & Sampson also evaluated predicted peak water levels under several potential breach geometries and a dam removal scenario. Since the dam's right abutment has already been shown to represent a point of weakness, it was assumed to fail under all failure scenarios. The right abutment has a maximum width of 26 feet or approximately 19% of the dam's length. New Hampshire's dam safety regulations regarding dam breach parameters (Env-Wr 502.06) for concrete dams, such as Mill Pond Dam, indicate that typical breach geometries range between the width of one monolith and half the dam's length. The Mill Pond Dam spillway consists of nine cells (defined as the void space between adjacent ribs)¹. We evaluated the failure of the right abutment as well as three additional scenarios that represent increasingly worse failures, where Cells 1, 1&2, and 1-3 also failed. These four failure scenarios comprise breach geometries of approximately 26, 34, and 42% of the dam's total length, consistent with the State's dam safety regulations. Note that because model simulations were conducting in "steady state," the failure scenario results approximate a post-failure condition where inflows/outflows at the dam are still at peak values. During a dam breach, water levels would begin at the Existing Condition values before dropping to the post-failure values reported in the tables below.

A dam removal scenario was also evaluated for each of the four flow conditions. Dam removal was represented by simply removing the Mill Pond Dam inline structure from the HEC-RAS model. Note that no modifications to the channel or riverbanks were represented as would likely occur as part of an actual removal. Simulated water levels at the Rte. 108 Bridge and 20 Newmarket Road residence are summarized in Tables 1A and 1B and Figures 2A through 2D.

Dam Scenario	Peak Water Level (ft. NAVD88) by Flow Condition*					
	50-year Flood	100-year Flood	Threshold Flow	Maximum Pool		
Existing	14.62	15.04	14.30	12.88		
Dam Failure**	14.29	14.90	13.96	12.52		
Right Abutment						
Dam Failure**	13.86	14.81	13.44	11.72		
Right Abutment and 1 Cell						
Dam Failure**	13.51	14.76	12.66	9.86		
Right Abutment and 2 Cells						
Dam Failure**	13.35	14.73	12.05	8.14		
Right Abutment and 3 Cells						
Dam Removed	13.24	14.69	11.67	5.55		

Table 1A: Predicted Peak Water Levels at 20 Newmarket Road Residence

*Peak water levels are reported for the cross-section immediately upstream of the dam/residence.

**Dam failure values approximate post-failure conditions. Peak water levels during dam failure would begin equal to Existing Conditions before dropping to the post-failure values presented in the table.

Page (6
--------	---

Dam Scenario	Freeboard*			Change from Existing**				
	50-yr	100-yr	Threshold	Max Pool	50-yr	100-yr	Threshold	Max Pool
Existing	-0.32	-0.74	0.00	1.42				
Dam Failure Right Abutment	0.01	-0.60	0.34	1.78	0.33	0.14	0.34	0.36
Dam Failure Right Abutment and 1 Cell	0.44	-0.51	0.86	2.58	0.76	0.23	0.86	1.16
Dam Failure Right Abutment and 2 Cells	0.79	-0.46	1.64	4.44	1.11	0.28	1.64	3.02
Dam Failure Right Abutment and 3 Cells	0.95	-0.43	2.25	6.16	1.27	0.31	2.25	4.74
Dam Removed	1.06	-0.39	2.63	8.75	1.38	0.35	2.63	7.33

Table 1B: Predicted Impacts to 20 Newmarket Road Residence

*Freeboard is measured down from the sill of the residence's walk-out basement (El. 14.30). Positive values indicate no inundation occurs.

** Positive values indicate reduced flooding.

The results summarized in Tables 1A and 1B are consistent: regardless of flow condition or dam breach geometry, a failure of Mill Pond Dam is not expected to increase flooding impacts at the location of the 20 Newmarket Road residence. Under no breach scenario or design flood event is the walk-out basement expected to flood when it would not have or experience an additional 1.0 feet or more of flooding due to a failure of the dam. Removal of the dam is expected to reduce flooding impacts at 20 Newmarket Road. Based on the Dam Bureau's "Hazard Classification Assessment" letter of September 2018, the results presented above are consistent with the criteria necessary for the discharge capacity requirement of Mill Pond Dam to be lowered from the 50-year design flow, 3,352 cfs, to its existing discharge capacity. At maximum pool, the dam's spillway currently discharges 1,015 cfs. However, based on the State's dam safety regulations, the dam can safely pass 352 cfs while maintaining 1.0 feet of freeboard.

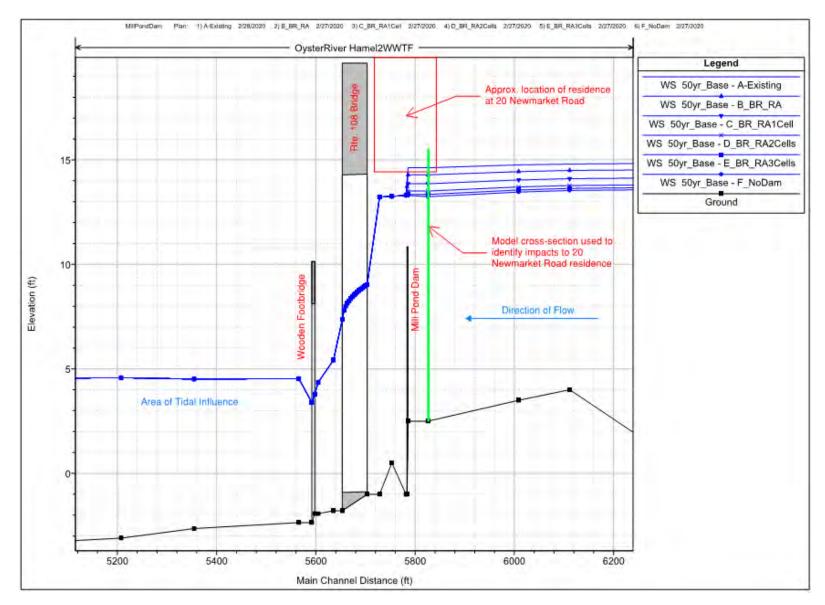


Figure 2A. Simulated Peak Water Levels During the 50-year Design Flood

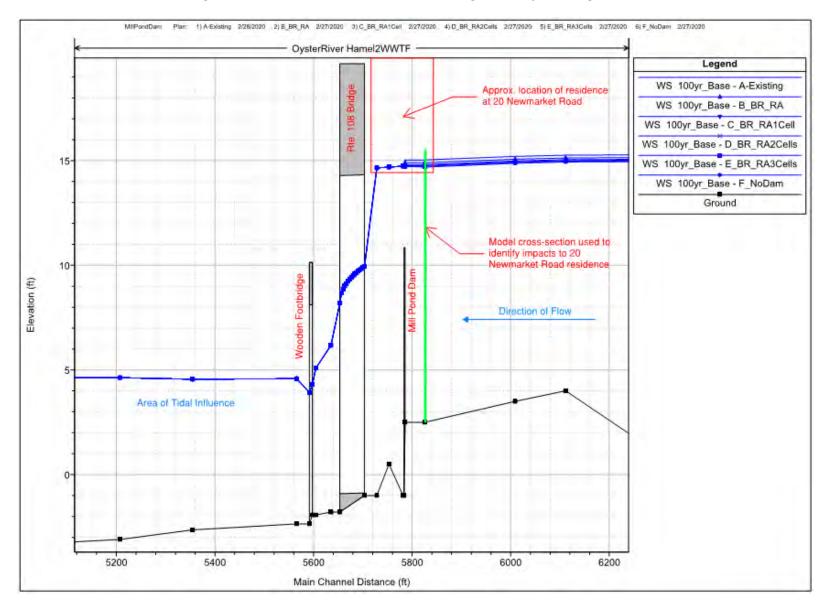


Figure 2B. Simulated Peak Water Levels During the 100-year Design Flood

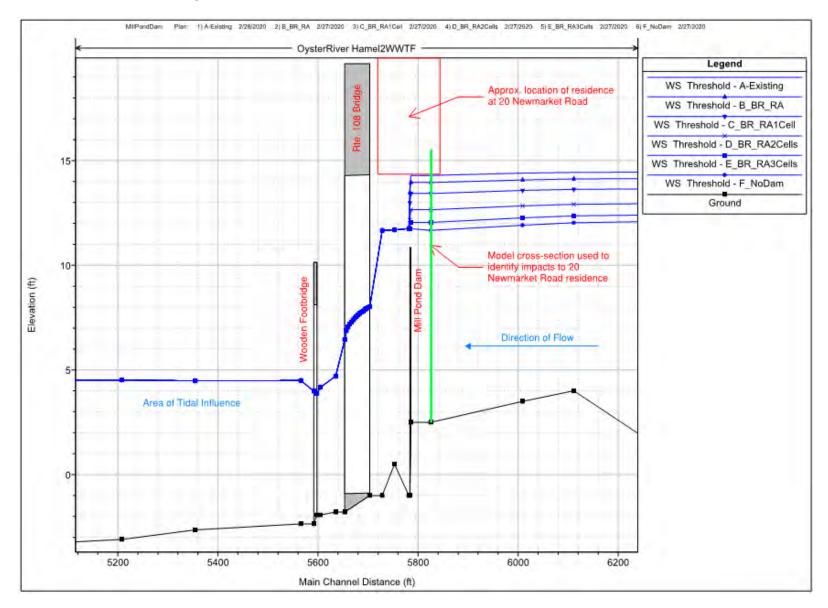


Figure 2C. Simulated Peak Water Levels Under the Threshold Flow Condition

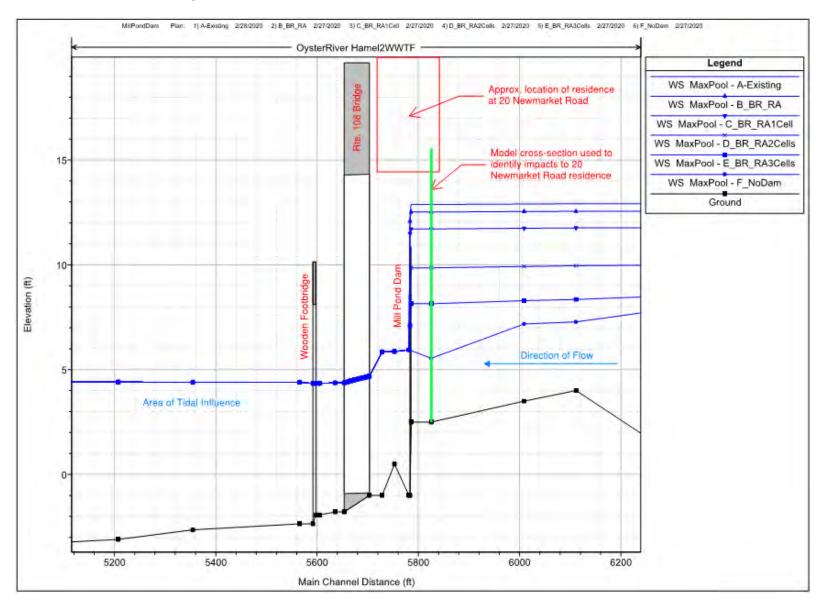


Figure 2D. Simulated Peak Water Levels Under the Maximum Pool Condition

The State of New Hampshire **Department of Environmental Services**

Robert R. Scott, Commissioner

Ms. April Talon, Town Engineer Department of Public Works Town of Durham 100 Stone Quarry Drive Durham, NH 03824 April 17, 2020

RE: Mill Pond Dam - D071003

Dear Ms. Talon;

The intent of this letter is to provide information and determinations on issues associated with the abovereferenced dam. Such issues include the dam's current hazard classification and how the New Hampshire Department of Environmental Services, Dam Bureau (NHDES) may regulate the dam moving forward. This latter issue includes both dam reconstruction permitting and ongoing dam safety regulation.

As noted in its September 20, 2018 letter NHDES, based upon information that was available at the time, considered the dam to be classified (at a minimum) as a Low hazard structure for two reasons. The first relates to anticipated dam failure impacts to property at the dam's right abutment (20 Newmarket Road). Specifically, a failure of the dam in this area would likely cause significant erosion damage to property other than the dam owner's and, in NHDES's opinion, result in "low economic loss" in accordance with Env-Wr 101.24. Specifically, meaning "reversible environmental loss to undeveloped land or minor damage to uninhabited structures, such as storage sheds, or to sites listed or tracked by the natural heritage inventory, as maintained by the department of resources and economic development". Second, in accordance with Env-Wr 101.28(a), since the dam has a height of greater than 6 feet and a storage capacity of greater than 50 acre-feet it cannot be considered a Non-Menace structure. Such dams are informally known as 6/50 dams.

Further, as suggested by the September 18th letter, a more detailed assessment of the potential impacts associated with dam failure was performed by Weston & Sampson. Both a summary memorandum (dated March 2nd) and associated electronic HEC-RAS files were provided to NHDES for review on March 4th of this year. NHDES concurs with the methods used to model the impacts of failure as well as the conclusion made. Findings indicate that, even though the adjacent residence receives flooding during the 50 and 100-year events by 3 and 9 inches, respectively, failure of the dam under those conditions does not result in any increase in flooding. Further, failure under the threshold (water about to enter the residence) and the full pool conditions actually causes a slight drop in water levels. Based on these results, the dam will remain classified as a Low hazard structure.

As you are aware, in accordance with current dam safety regulations, Low hazard dams must normally be equipped to pass the runoff resulting from the depth of rainfall associated with the 50-year/24-hour storm event. As the property at 20 Newmarket Road has been identified as the sole development to be impacted, NHDES has agreed that it would consider waiving the design requirements associated with Low hazard dams in lieu of those pertaining to Non-Menace dams if certain conditions could be met. These are a) the need to enter into a formal agreement with the owner of the 20 Newmarket Road property and b) the requirement that any reconstruction alternatives chosen be such that the current dam's unoperated discharge capacity is not reduced. For the former condition, the agreement, easement or right should reflect the town's (dam owner) responsibility for any maintenance, operation or reconstruction activities and access to accomplish such, along with assurances that any damages that might be incurred to the property on account of the dam will be the responsibility of the town to address. Ideally, any instrument crafted between parties should be tied to the property itself and be filed at the Strafford County Registry of Deeds.

www.des.nh.gov 29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3503 • TDD Access: Relay NH 1-800-735-2964 Besides the potential to be regulated as a Non-Menace dam for the purposes of reconstruction, NHDES will also change its practices associated with routine dam safety inspections. As a Low hazard dam, inspections will continue to occur on a 6-year schedule and the annual dam registration fee (currently \$400/yr.) will continue to be assessed; however, the results of the inspections will be communicated via Notices of Inspection rather than Letters of Deficiency. This is a current practice applicable to dams whose hazard classifications are based solely on their height and storage characteristics – or 6/50 dams. The benefit here is that our findings will be presented as recommendations for your consideration rather than requirements.

Finally, NHDES has reviewed the findings resulting from the detailed inspection that Pare Corporation performed in December of 2019. We agree with its assessment that the dam is in poor condition, and note that the conditions observed within the spillway cells (spillway piers and slab sections within the individual Ambursen sections) have, in several cases, worsened since NHDES's last observation of these areas in December 2017. The report summarizes the results of stability analyses completed by Stephens Associates in 2009. Certainly, should reconstruction be the selected alternative, the findings of the 2019 inspection should be used to update the assessment of the dam's stability and its related needs.

If you have additional questions as you move forward with plans to either reconstruct or remove the dam, please contact me.

Sincerely,

antes

Steve N. Doyon, P.E. Administrator Dam Safety & Inspection Section

Appendix B: Dam Inspection Report

PREPARED FOR: TOWN OF DURHAM, NH

MILL POND DAM VISUAL INSPECTION REPORT DURHAM, NEW HAMPSHIRE DAM #071.03

PREPARED BY:

PARE CORPORATION 10 LINCOLN ROAD SUITE 210 FOXBORO, MASSACHUSETTS 02035

PARE PROJECT NO. 19169.00

MARCH 2020

TABLE OF CONTENTS

1.0		DESCI	RIPTION OF PROJECT	1	
	1.1	Genera	1	. 1	
		1.1.1	Authority	1	
		1.1.2	Purpose of Work	1	
		1.1.3	Common Dam Safety Definitions	1	
	1.2	Descrip	otion of Project	. 1	
		1.2.1	Location	1	
		1.2.2	Owner/Caretaker	2	
		1.2.3	Purpose of the Dam	2	
		1.2.4	Description of the Dam and Appurtenances	2	
		1.2.5	Operations and Maintenance	2	
		1.2.6	Hazard Potential Classification	2	
	1.3	Engine	ering Data	. 3	
		1.3.1	Discharges at the Dam Site	3	
		1.3.2	•	3	
		1.3.3	Primary Spillway	3	
		1.3.4		3	
		1.3.5	Fish Ladder	3	
		1.3.6	Construction Records	4	
		1.3.7	Operations Records	4	
2.0		INSPE	CTION	5	
	2.1	Visual	Inspection	. 5	
		2.1.1	General Findings	5	
		2.1.2		5	
		2.1.3	Gated Outlet Structure	10	
		2.1.4	Fish Ladder	11	
		2.1.5	Downstream Area	12	
		2.1.6	Reservoir Area	12	
	2.2	Caretal	cer Interview	12	
	2.3	Operati	ion and Maintenance Procedures	12	
		2.3.1		12	
		2.3.2	*	12	
3.0		ASSES	SSMENTS	13	
	3.1	Assess	ments	13	
	3.2	.2 Current Hazard Potential Classification			
	3.3				
3.4 Structural and Seepage Stability					
		3.4.1		15	
		3.4.2	Seepage Stability	15	

i

ATTACHMENTS:

Figure 1: Locus Plan Figure 2: Aerial Plan Figure 3: Site Sketch Appendix A: Spillway Cell Inspection Figures Appendix B: Photographs Appendix C: Common Dam Safety Definitions Appendix D: References and Resources Appendix E: Visual Dam Inspection Limitations

1.0 DESCRIPTION OF PROJECT

1.1 General

1.1.1 Authority

The Town of Durham has retained Pare Corporation of Foxboro, Massachusetts, working under subcontract to VHB, Inc., to perform a visual inspection and develop a report of conditions for the dam at Mill Pond along the Oyster River in Durham, New Hampshire. This inspection and report were performed in general accordance with the New Hampshire Department of Environmental Services Env-Wr 100-700 Dam Rules.

1.1.2 Purpose of Work

The purpose of this investigation was to inspect and document the present condition of the dam and appurtenant structures in accordance with current dam safety regulations to provide information that will assist in both prioritizing dam repair needs and planning/conducting maintenance and operation. The scope of the inspection and report development is also intended to provide a baseline inspection of the entire structure as required per Condition #1 of the February 12, 2018 Letter of Deficiency issued by the New Hampshire Department of Environmental Services.

The investigation was divided into three parts: 1) obtain and review available files including reports, investigations, and data pertaining to the dam and appurtenant structures; 2) perform a visual inspection of the site; and; 3) prepare and submit a final report presenting the evaluation of the structure.

1.1.3 Common Dam Safety Definitions

To provide the reader with a better understanding of the report, definitions of commonly used terms associated with dams are provided in Appendix C. Many of these terms may be included in this report. The terms are presented under common categories associated with dams which include: 1) orientation; 2) dam components; 3) hazard classification; 4) general; and 5) condition rating.

1.2 Description of Project

1.2.1 Location

The Mill Pond Dam is located in the Town of Durham, approximately 600 feet southeast of the Durham Town Hall. The dam impounds water along the Oyster River to form Mill Pond. The dam is located at the eastern side of the impoundment near coordinates 43.1305°N/70.9194°W as shown on Figure 1: Locus Plan and Figure 2: Aerial Plan.

The dam is accessible from a vegetated area at the left abutment. There is no parking area at the dam. To reach from dam from I-95N, take exit 6N towards Dover and keep left at the fork to continue toward US-4 W. Follow US-4 W for 4.8 miles and turn left onto US-4W (Boston Harbor Road). Continue straight on US-4 W for 0.2 miles. At the traffic circle take the second exit to continue onto US-4W. Follow US-4 W for 3.4 miles. Take the exit for NH-108 towards Durham/Newmarket

and turn left onto NH-108 S/Dover Road. Follow Dover Road for 0.7 miles and turn left onto Newmarket Road. After 0.2 miles, the dam will be on the right.

1.2.2 Owner/Caretaker

The dam is currently owned and operated by the Town of Durham. Maintenance for the structure is primarily completed by the Town's Department of Public Works.

1.2.3 Purpose of the Dam

The dam currently impounds water for recreational purposes. The dam was originally constructed in 1913 to provide hydropower to the Jenkins Mill that previously existed at the right abutment.

1.2.4 Description of the Dam and Appurtenances

The Mill Pond Dam is an approximately 140-foot long concrete dam. The Mill Pond Dam has a maximum structural height of approximately 13 feet. The dam consists of three components: 1) Primary Spillway; 2) Gated Outlets; and 3) Fish Ladder.

The spillway structure for the dam is an approximately 100-foot wide reinforced concrete modified Ambursen type buttress dam. The spillway consists of a reinforced concrete shell supported by reinforced concrete ribs spaced approximately 12 feet on center beneath the crest. Flow over the spillway discharges into a bedrock plunge pool before discharging beneath the bridge carrying Newmarket Road/NH-108.

The gated outlets are located at the right end of the dam and consists of two 4-foot wide timber gate controlled bays. The gate operators consist of rack and pinion type operators with timber gate stems. The right-most gate structure was previously used to supply the mill downstream with hydropower and is currently not utilized; the left gate structure is presently used as the low level outlet. Flows from the low-level outlet enter the gate structure and outlet to the downstream channel where the masonry structure for the previous mill foundations are located.

A Denil (baffle) fishway is located at the left end of the dam.

1.2.5 Operations and Maintenance

The Town of Durham is responsible for operations and maintenance at the dam. Operations at the dam include the operation/exercising of the gate. Maintenance activities at the dam include cutting of vegetation along at the abutments.

1.2.6 Hazard Potential Classification

In accordance with current classification procedures under State of New Hampshire Dam Rules, Mill Pond Dam is currently classified as a **Low** hazard potential dam.

1.3 Engineering Data

1.3.1 Discharges at the Dam Site

No records of discharges at the dam site were made available during the preparation of this report.

1.3.2 General Elevations (feet)

Elevations are based upon a survey completed by VHB in December 2019 and January 2020. Elevations reference the NAVD88 vertical datum.

A. Top of Dam	
i. Left abutment:	15.5 ft ±
ii. Right Abutment:	12.9 ft ±
B. Normal Pool (Spillway Crest)	10.85 ft \pm
C. Maximum Pool	12.89 ft ±

1.3.3 Primary Spillway

А.	Туре	Broad Crested Weir (Ambursen type dam)
В.	Width	100 ft ±
C.	Spillway Crest Elevation	10.85 ft \pm

1.3.4 Low-Level Outlet

А. Туре	Gate Controlled Structure
B. Conduit	
i. Right	18-inch Steel Pipe (corroded)
ii. Left	48-inch Wide Concrete Opening
C. Right Gate Invert	
i. In	Unknown
ii. Out	0.8 ft \pm
iii. Outlet Diameter	18 inches \pm
D. Left Gate Invert	
i. In	Unknown
ii. Out	$1.7~{ m ft} \pm$
iii. Outlet Size	4 ft by 6 ft \pm
E. Outlet Control	Two Gates of unknown size

1.3.5 Fish Ladder

А.	Туре	Denil (Baffle)
B.	Width	4 feet
C.	Invert	
	i. In	12.2 ft \pm
	ii. Out	0.1 ft ±

1.3.6 Construction Records

The Mill Pond Dam was constructed in 1913 to replace the last of a series of timber dams that provided hydropower. The Mill Pond Dam provided hydropower to the Jenkins Mill when it was first built. No construction documents were available for review.

The Mill Pond Dam was repaired in 1974. No construction documents were available for review. Repairs to the dam in 1974 consisted of:

- Repairs to the concrete within the cells of the spillway.
- Construction of the fish ladder at the left abutment.
- Reconstruction of the downstream edge of the spillway crest

1.3.7 Operations Records

No operations records are available or known to exist for this structure.

2.0 INSPECTION

2.1 Visual Inspection

Mill Pond Dam was inspected on December 18, 2019. At the time of the inspection, temperatures were near 36°F with partly cloudy skies. Photographs to document the current condition of the dam were taken during the inspection and are attached at the end of this report.

To facilitate inspection of the spillway, the Durham DPW implemented a shallow drawdown of the impoundment through opening of the left gated outlet. The drawdown lowered the level of the impoundment approximately 4 to 5 inches with the pool level slowly rising as the inspection was completed.

Underwater areas were not inspected as part of the field activity.

2.1.1 General Findings

In general, the overall condition of the Mill Pond Dam was found to be **Poor** condition. The specific observations are identified in more detail in the sections below. Please note that snow cover throughout the right and left abutments limited inspection of these areas.

2.1.2 Primary Spillway

For the purposes of the report, inspection of the spillway was segmented between three distinct components of the spillway including the spillway slab, training walls, and spillway cells (defined as the void space between adjacent ribs).

Spillway Slab

- While observing the impoundment filling, flow over the spillway started within the left third section of the spillway, indicating the right portion of the spillway is slightly higher than that of the left portion of the spillway. It was not apparent if this was the result of differential settlement, uneven crest scour, or an as-built condition.
- Two construction joints were noted on the spillway approximately 30-feet apart. The condition of the construction joints could not be observed due to snow coverage during the drawdown.
- A full inspection of the spillway crest could not be completed due to snow coverage during the drawdown and water flow over the spillway when the pond refilled. Previous reports noted transverse cracks along the crest of the spillway.
- Scour was present along the spillway crest.

Training Walls

- Scour was present at the joint between the right training wall and spillway, measuring 9-inches deep, 12-inches tall, and 5-feet long.
- Minor scour (less than 1 inch deep) was noted along the water level at the left training near the spillway.

- A spall (approximately 3 feet long) is located at the bottom right side of the right training wall with debonded rebar at the downstream face of the right training wall at the water line.
- Two diagonal cracks are located along the right training wall with efflorescence along the crack. The lower diagonal crack is more significant with delamination within two feet of the crack.

Spillway Cells

For the purposes of inspection, individual cells were number consecutively from Cell No. 1 at the right end of the spillway to Cell No. 9 at the left end of the spillway adjacent to the fish ladder. The following conventions were applied:

- The right and left sides of the cells are defined by the face of the rib adjacent to each cell facing into the cell (i.e., the left wall of Cell No. 1 refers to the right side of the rib between Cell No. 1 and Cell No. 2).
- The underside of the spillway slab was subdivided into 5 sections from downstream to upstream with:
 - Section 1 being the bottom of the downstream lip of the slab,
 - Section 2 being the upstream face of the downstream lip of the slab
 - Section 3 being the underside of the downstream slope of the spillway slab crest.
 - Section 4 being the underside of the spillway slab crest
 - Section 5 being the underside of the upstream slope of the spillway slab.

The following deficiencies were noted within the cells of the spillway following the preceding naming convention. Major deficiencies are listed in the table below. Please reference the Spillway Cell Inspection Figures for minor deficiencies and more specific detail about the dimensions and locations of the deficiencies listed below. The Spillway Cell Inspection Figure are included in Appendix A.

- In general, the concrete within the cells had scour along the apparent normal tailwater waterline.
- Map cracking was noted throughout the cell walls.
- Efflorescent staining was typical within all of the cells and typically indicated more severe deterioration.
- The spillway and ribs appeared to be constructed of concrete with aggregate up to 4 inches in diameter.
- The following was noted within the individual spillway cells:

Cell No	Section	Observations
1	Right Wall	• The joint at Face No. 3 appeared to be leaking as indicated by ice buildup on the wall. The joint was open approximately 0.5 inches.
		• Spalling was present along the wall up to 1.5-inches deep on the upstream half of the wall and on the bottom downstream half of the wall.

	1		
	Left	• A 10-inch tall by 6-inch wide area of section loss was present through the	
	Wall	wall between cell 1 and cell 2. Spalling was present within this area.	
		Exposed aggregate around the hole was loose in areas and could be easily	
		broken away with limited effort.	
	1 No major deficiencies noted. See Appendix A for more detail.		
	2	No major deficiencies noted. See Appendix A for more detail.	
	3	• The downstream half of this face was repaired, with an 18-inch spall and	
		delamination up to 1.5 inches deep present at the joint between the repair	
		and original concrete.	
		• An open joint with efflorescent staining was present at the joint between the	
		left wall.	
	4	No major deficiencies noted. See Appendix A for more detail.	
	5	• A spall approximately 4-feet long with exposed rebar was present at the left	
		joint.	
		• A repair was present along the right side, that was up to 0.25-inches thick.	
		An approximate 0.5-inch separation was present between the existing and	
		repaired concrete.	
		 Orange staining was noted at the upstream most right corner. 	
		 Delamination with slight bulging was present along the center of the face. 	
	Misc	None	
2	Right	 A spall approximately 3-inches wide, 0.5-inches deep with iron oxide 	
2	Wall	staining was present along the full length of the upstream side of the wall.	
	vv all	 A large spall with a 10-inch by 6-inch section of 100 percent section loss 	
		was present along the downstream end. The spall measures approximately	
		44-inches by 24-inches.	
	Left	 A spall with a crack in the center was present along the downstream side of 	
	Wall	the wall and measured approximately 30-inches from the top to the bottom	
	vv all	of the spall, 12-inches wide, and 5-inches deep.	
	1	 A spall was present at the downstream left end measuring 12-inches long, 	
	1	4-inches wide, and up to 4-inches deep.	
	2	No major deficiencies noted. See Appendix A for more detail.	
	3		
		No major deficiencies noted. See Appendix A for more detail.	
	4	No major deficiencies noted. See Appendix A for more detail.	
	5	 Delamination was present along the right side of the wall face. The repaired area approach to be delaminating from the original congrete. Minor 	
		area appeared to be delaminating from the original concrete. Minor	
		bulging within this area was also noted. The dimensions of the area of	
		delamination vary and can be seen in more detail in Appendix A.	
	λ.	• Iron oxide staining was noted at the right upstream most corner.	
	Misc	• Ceiling face numbers 1, 2, and 3 were repaired or partially repaired. The	
		repair on Ceiling face No. 3 typically measured 2 feet from the downstream	
		joint with Ceiling Face No. 2. The repair was approximately 0.5-inches	
		joint with Ceiling Face No. 2. The repair was approximately 0.5-inches thick.	
3	Right	 joint with Ceiling Face No. 2. The repair was approximately 0.5-inches thick. A spall was present at the downstream end measuring 25-inches long, 18- 	
3	Right Wall Left	joint with Ceiling Face No. 2. The repair was approximately 0.5-inches thick.	

,		Г					
	Wall	25-inches long and 8-inches wide. A hand could be wrapped around the					
		piece of rebar.					
		• An open crack/spall with delamination was present, approximately 3 to 4-					
		inches wide. The crack within the spalled area is tight (near 1/8-inch wide).					
	1	 Areas of a past repair are apparent; the repair appears intact 					
	2	 Areas of a past repair are apparent, the repair appears intact Areas of a past repair are apparent; the repair appears intact 					
	3	 A partial repair was present along this face. The dimensions of the repair 					
	5	can be seen in more detail in Appendix A.					
		• At the joint between the repair and the original concrete was a spall that					
		measures up to 9-inches wide, 68-inches long, and up to 3.5-inches deep.					
	4	No major deficiencies noted. See Appendix A for more detail.					
	5	No major deficiencies noted. See Appendix A for more detail.					
	Misc	None					
4	Right	• A spall with a 4-inch long, 0.040-inch wide crack was present at the					
	Wall	downstream end. The spall measured 30-inches tall, 22-inches wide and up					
		to 4-inches deep. A 5-inch deep cored hole was present within the					
		approximate center of the spall.					
		• A crack with iron oxide staining was present along the upstream edge. The					
		crack was up to 6-inches wide and 2-inches deep. Seepage appeared to be					
		evident based upon ice along the wall below the crack.					
	Left	• A spall with debonded rebar was present along the downstream end					
	Wall	measuring 18-inches long, 18-inches wide, and up to 4-inches deep.					
	1	• Debonded rebar and spalling was present on the right end, measured to be					
		approximately 6-inches wide by 16-inches long.					
	2	• Areas of past repairs are apparent; the repairs appear to be intact.					
	3	• Areas of past repairs are apparent; the repairs appear to be intact.					
	4	No specific observations					
	5	• Three spalls were present along the upstream toe of this wall. Iron oxide					
		staining was present on either side of this wall within the spalls. An section					
	Misc	of debonded rebar was also present. None					
5	Right	• A spall with debonded rebar was present at the downstream end measuring					
5	Wall	3-feet long, 1-foot wide and approximately 3.5-inches deep.					
	Left	 No significant areas of deterioration were noted. 					
	Wall						
	1	• Areas of past repairs are apparent; the repairs appear to be intact.					
	2	• Areas of past repairs are apparent; the repairs appear to be intact.					
	3	No major deficiencies noted. See Appendix A for more detail.					
	4	No major deficiencies noted. See Appendix A for more detail.					
	5	No major deficiencies noted. See Appendix A for more detail.					
	Misc	None					
6	Right	• No significant areas of deterioration were noted.					
	Wall						
	Left	• A spall with delamination and efflorescent staining was present on the					

	XX7 11	
	Wall	upstream side measuring 18 inches long by 6 inches wide.
	1	• Spall with debonded rebar was present on the left portion of the ceiling face and measured 14-inches long and up to 2-inches deep.
	2	• A 2 to 6-inch wide repair was present along the downstream edge of the face.
	3	• An 8-inch diameter previously repaired spalled area was present on the right side of the ceiling face.
	4	No specific observations
	5	• Three spalls with delamination were present along the left edge of the wall.
	Misc	None
7	Right Wall	 A spall with exposed aggregate was present on the downstream end measuring 14-inches wide and up to 3-inches deep.
	,, an	 An open crack with exposed aggregate was present along the upstream perimeter of the wall approximately 1 to 6-inches from the ceiling. The spalling around the crack was approximately 6-inches wide and up to 2.5-inches deep. Seepage appeared to be evident based on ice on the wall below the crack.
		• The concrete above the crack was sounded for deterioration and appeared to be delaminated.
	Left Wall	• A spall up to 1.5-inches deep was present on the downstream end of the wall.
	1	• Areas of past repairs are apparent; the repairs appear to be intact.
	2	• Areas of past repairs are apparent; the repairs appear to be intact.
	3	• The face was sounded and appeared to be significantly delaminated. Significant efflorescent staining buildup was present.
	4	No major deficiencies noted. See Appendix A for more detail.
	5	No major deficiencies noted. See Appendix A for more detail.
	Misc	None
8	Right Wall	• A total of eight repairs appeared to be present on the wall; five of the apparent repairs were not visible due to timber falsework over the repairs.
	Left Wall	• Five apparent repairs were present on the wall, the repairs were not visible due to timber falsework over the repairs.
	1	• Areas of past repairs are apparent; the repairs appear to be intact.
	2	• Areas of past repairs are apparent; the repairs appear to be intact.
	3	 A 3-inch diameter, 0.5-inch deep spall with exposed rebar was present on the upstream edge of the ceiling face.
	4	No specific observations
	5	• A spall with exposed rebar was present on the downstream end of the face that measured 4-feet long and up to 8-inches wide.
	Misc	None
9	Right Wall	No major deficiencies noted. See Appendix A for more detail.
	Left Wall	No major deficiencies noted. See Appendix A for more detail.
	1	No major deficiencies noted. See Appendix A for more detail.
	-	

2	No major deficiencies noted. See Appendix A for more detail.
3	No major deficiencies noted. See Appendix A for more detail.
4	No major deficiencies noted. See Appendix A for more detail.
5	No major deficiencies noted. See Appendix A for more detail.
Misc	No major deficiencies or specific observations were noted in Cell No. 9.

- The following was noted on the downstream side of the ribs:
 - In general, spalling was present along either side of each rib.
 - The rib between Cell Nos. 3 and 4 was spalled with debonded rebar. A hand could be wrapped around the debonded rebar.
 - The rib between cells 4 and 5 had a 3-foot tall spall with debonded rebar.

2.1.3 Gated Outlet Structure

The following was noted at the outlet structure:

Upstream Face

- A spalled section, approximately 6 to 8-inches wide, was present on the right side of left gate invert at the waterline.
- The right gate invert was submerged at the time of the inspection.
- Moss/ice/snow cover was present on the upstream face of the concrete at the low level outlet structure, limiting inspection.

Crest

• Moss/ice/snow cover was present on the crest of the concrete at the low level outlet structure, limiting inspection.

Downstream Face

- Map cracking was present throughout the gate structure headwall.
- Concrete spalling with exposed rebar was present to the left of the left gate outlet. The spall measured approximately 2-feet wide by 2-feet tall and up to 3.5-inches deep.
- The concrete along the bottom portion of the wall (approximately 5 feet from mudline at the wall) was significantly deteriorated with efflorescence/iron oxide staining.
 - Significant delamination with exposed rebar was present on either side of the old pipe from the mill structure. The scour and spall were up to 4-inches deep.
- Seepage, approximately 0.5 gpm, was present through the downstream face of the gate structure at the concrete to the left of the right outlet.
- Seepage, approximately 1 to 2 gpm, was present through the downstream face of the gate structure between the two outlets approximately 2 feet above the top of the left gate opening.
- Signs of potential seepage appeared to be present due to the presence of ice along the downstream face of the concrete at the gate headwall.

- The right gate outlet pipe was fully corroded.
- Section loss and scour was present at the right end of the concrete cap surrounding the outlet pipe.
- The downstream masonry wall immediately right of the right outlet appears to bulge in the downstream direction approximately 6-inches between the gate section and the old mill foundation. Seepage was present at the base of this section of wall, flowing at approximately ten gallons per minute.
- No chinking stones or mortar were present within the downstream wall or the walls at the abutment.
- A crack/spall was present on the to the left of the left gate outlet extending from the right side of the right training wall to the gate outlet. The crack was approximately 3-inches wide and up to 2-inches deep

Gates/Conduits

- The left gate was operable, but the gate was reportedly limited to an opening of 8-inches.
- Leakage through the left gate is approximately 1 to 3 cfs.
- The left gate was operated during the inspection to lower the levels within the impoundment.
- The right gate was reportedly inoperable. The gate was historically used for the mill that was once downstream of this gate.

2.1.4 Fish Ladder

The following was noted at the fish ladder:

- The fish ladder structure consisted of timber baffles.
- The stop logs at the upstream side of the fish ladder exit pool were leaking approximately 5 gpm.
- Scour was present along the water line of the fish ladder pool structure.
- The grating over the fish ladder structure appeared to be in good condition.
- The footing for the training wall between the fish ladder and Cell No. 9 was undermined at the base of the wall. The void was probed up to 3 feet under the training wall. The undermined area was approximately 2-feet long and 1-foot in height.
- An open construction joint was present at the 180-degree turn in the fish ladder and was approximately 1-inch wide.
- A repair was present along the right side of the downstream training wall. The repair area showed indications of delamination.
- An open joint with vegetation growing was present at the concrete between the primary spillway and fish ladder structure. This area was previously reported to be leaking, but flow over the spillway limited the view of any leakage.

2.1.5 Downstream Area

The water immediately downstream of the Mill Pond Dam is tidal and is considered brackish. Immediately downstream of the spillway is a 10 to 15-foot wide plunge pool lined with boulders and bedrock. Water flows from the plunge pool and passes under Newmarket Road in a bedrock and boulder lined channel, approximately 100 feet downstream of the spillway. The bridge at Newmarket Road appeared to be founded on bedrock and in good condition with no signs of scour. Flows through the Newmarket Road Bridge then pass under a pedestrian bridge approximately 200 feet downstream before entering Little Bay and eventually the Piscataqua River.

2.1.6 Reservoir Area

The dam is located at the eastern end of the impoundment. Mill Pond extends approximately 1,000 feet upstream of the dam; however, the dam also impounds water upstream along the Oyster River and Hamel Brook with backwater influences from the dam extending 2,800 feet upstream of the pond along the Oyster River and approximately 1,900 feet upstream of the Oyster River along the Hamel Brook.

The perimeter of the impoundment is generally un-developed along the immediate shoreline with few residential properties around the impoundment. Mill Pond Road borders the impoundment to the north. Slopes are generally flat surrounding the impoundment area.

2.2 Caretaker Interview

Ms. April Talon was present during the inspection. Information provided by Ms. Talon has been incorporated into this report.

2.3 Operation and Maintenance Procedures

There was no formal operations and maintenance manual for the dam available at the time of the inspection.

2.3.1 Operational Procedures

Operable components include the two gates at the low-level outlet. The right most-gate is inoperable and was previously used as hydropower when the mill was operational. The left-most gate is operable though the range of operability is limited to approximately 8 inches. The fish ladder structure does not appear to have significant capacity to be considered as an operational outlet to the dam; stoplogs may be adjusted as necessary to support fish migration.

2.3.2 Maintenance of Dam and Operating Facilities

Maintenance activities at the dam include cutting of vegetation along the left abutment and clearing the spillway and discharge area of debris. The caretaker also routinely completes informal inspections and responses to public comments to check the condition of the dam. In general, the caretaker was knowledgeable of current conditions at the dam.

3.0 ASSESSMENTS

3.1 Assessments

In general, the overall condition of the Mill Pond Dam is **Poor** with the following deficiencies identified:

TABLE 3.1: Deficiency Summary				
Deficiency Number	Description			
1	Concrete deterioration of the spillway cells and ribs including:			
	• Cracks and spalls with evidence of seepage;			
	• Section loss of the rib between Cell Nos. 1 and 2;			
	• Delamination of the repaired concrete from the original concrete;			
	• Debonded rebar within multiple cells;			
2	Seepage at the downstream corner of the right stone masonry abutment wall;			
3	Seepage through the downstream face of the gate structure;			
4	Inoperable right gate outlet;			
5	Concrete deterioration at the gate outlet structure including delamination, cracking, and spalling;			
6	Insufficient capacity to pass the SDF;			

In general, the conditions observed during this inspection have continued to deteriorate since the previous inspections.

The following table provides a summary of previous recommendations and their status at the time of the inspection:

Previously Identified Deficiency	Resolution or Current Condition
Concrete deterioration and spalling on the downstream face of the outlet works, ribs, interior of the spillway cells	Deterioration has continued to progress. The area of section loss between Cell Nos. 1 and 2 has increased in size since the 2018 inspection by NHDES. Seepage through the outlet structure was not previously observed.
Minor seepage at the downstream corner of the right masonry abutment wall	Seepage continues
Insufficient ability to pass the design storm with one foot of freeboard at the dam	Same deficiency
Deterioration of the mid-1970's concrete repair work	Deterioration has continued to progress
EAP needs updating and testing	No apparent change
Update O&M manual	No apparent change
Area of section loss between cells 1 and 2	Section loss had continued

3.2 Current Hazard Potential Classification

The Mill Pond Dam is currently classified as a **Low** hazard potential dam due to the impacts dam failure may have on the adjacent and downstream properties and because the height exceeds 6 feet and the storage capacity exceeds 50 acre-feet.

According to an NHDES letter dated September 2018, Mill Pond Dam is classified as low not only because of the "6/50" case, but also the potential for damage to be done to the property to the right of

the dam if failure or overtopping occurs. Previous overtopping events have cased erosion damage to the said property. In order to properly assess the impacts of various storms to the residence at the right abutment, a detailed hydraulic/hydrologic study should be completed.

The project team is currently proceeding with a study to assess the hazard classification of Mill Pond Dam.

3.3 Hydraulic/Hydrologic Data

Mill Pond Dam is a **Low** hazard structure and in accordance with current state dam safety regulations, the spillway design flood (SDF) for the site is the 50-year storm event. No detailed hydraulic and hydrologic analysis has been completed for the dam. According to the 2009 Stephens Associates Dam Evaluation Report, NHDES performed an informal H&H analysis of the dam in 2008. The following table summarizes the results of the NHDES H&H analysis.

Table 3.2: NHDES H&H Analysis						
		Spillway Discharge		Discharge with		
Storm	Inflow	Peak El.	(cfs)		operations (cfs)	
Event	(cfs)	(ft)	With 1 ft	At top	With 1 ft	At top
			freeboard	of Dam	freeboard	of Dam
50-year	1,452	14.0	385	1.110	618	1 260
100-year	1,833	14.4	383	1,110	018	1,360

According to the NHDES analysis, with one foot of freeboard, the spillway can pass 385 cfs and, with operations, can pass 618 cfs. The inflow for the 50-year flood was 1452 cfs and for the 100-year flood was 1,833 cfs. Based on that information, the dam cannot pass the SDF with one-foot of freeboard. However, NHDES assumed a spillway length of 110 feet, instead of the shortened spillway length of approximately 100-feet due to the fish ladder installation in 1975.

Weston & Sampson, under contract with VHB, Inc., completed a draft analysis currently under review by NHDES. The following table summarizes the preliminary data.

Table 3.2: Draft W&S H&H Analysis						
Storm	Inflow	Spillway Discharge (cfs)				
Event	(cfs)	Peak El. (ft)	With 1 ft	At top of		
Event	(018)	(11)	freeboard	Dam		
50-year	3,352	14.62	352	1.015		
100-year	3,877	15.04	552	1,015		

Based on the updated results, the dam will be overtopped on the right abutment by 1.74 feet and cannot pass the 50-year storm with one-foot of freeboard.

3.4 Structural and Seepage Stability

A structural stability analysis was performed by Stephens Associates as part of the 2009 Inspection Report. No records of the original design computations were available for review at the time of the preparation of this report.

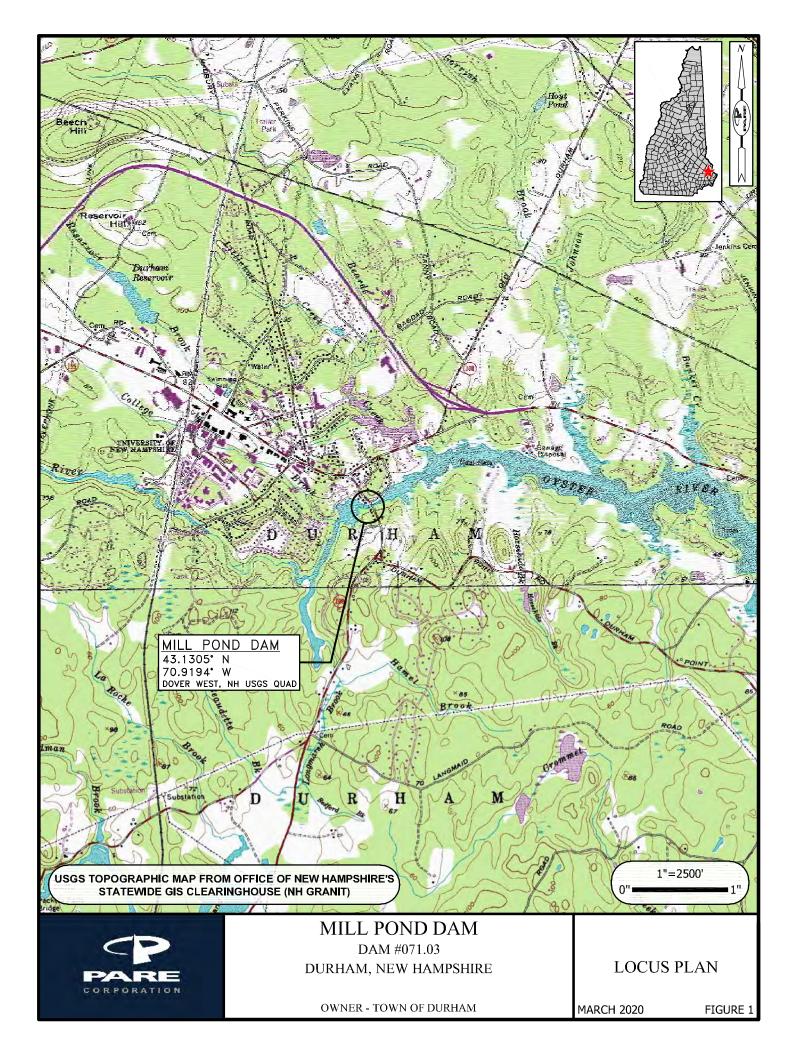
3.4.1 Structural Stability of Dam

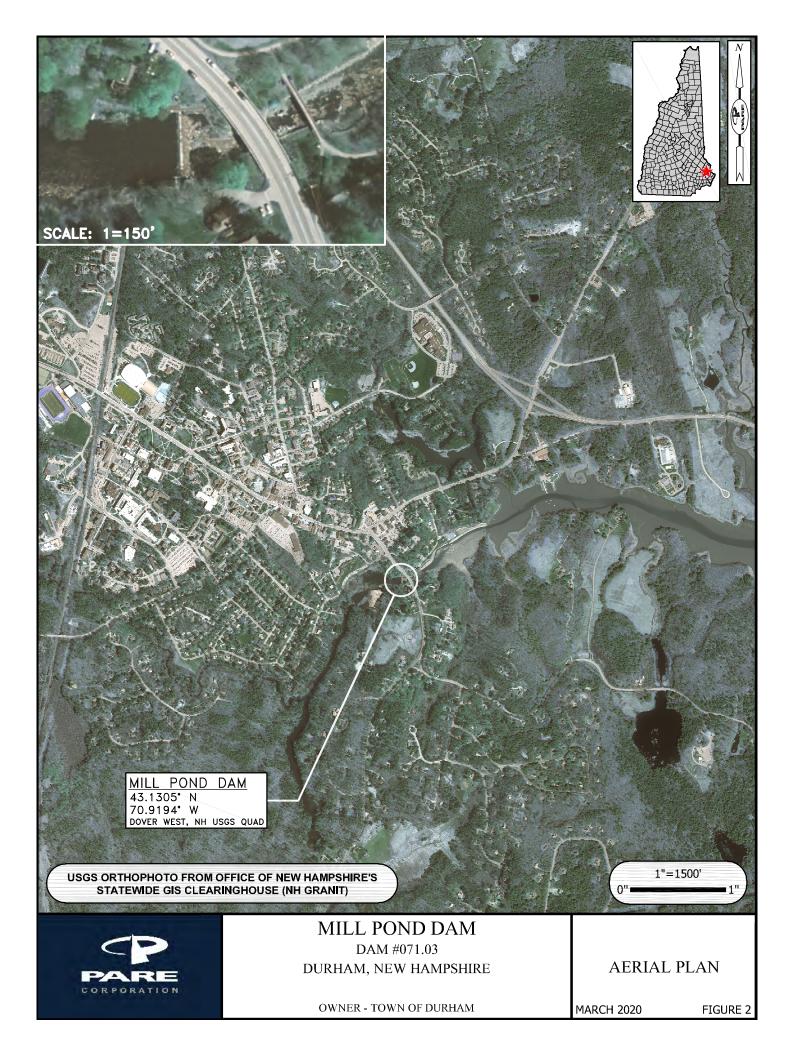
Stephens Associates completed a structural stability analysis as part of the 2009 Inspection report. The following table summarizes the results of that analysis:

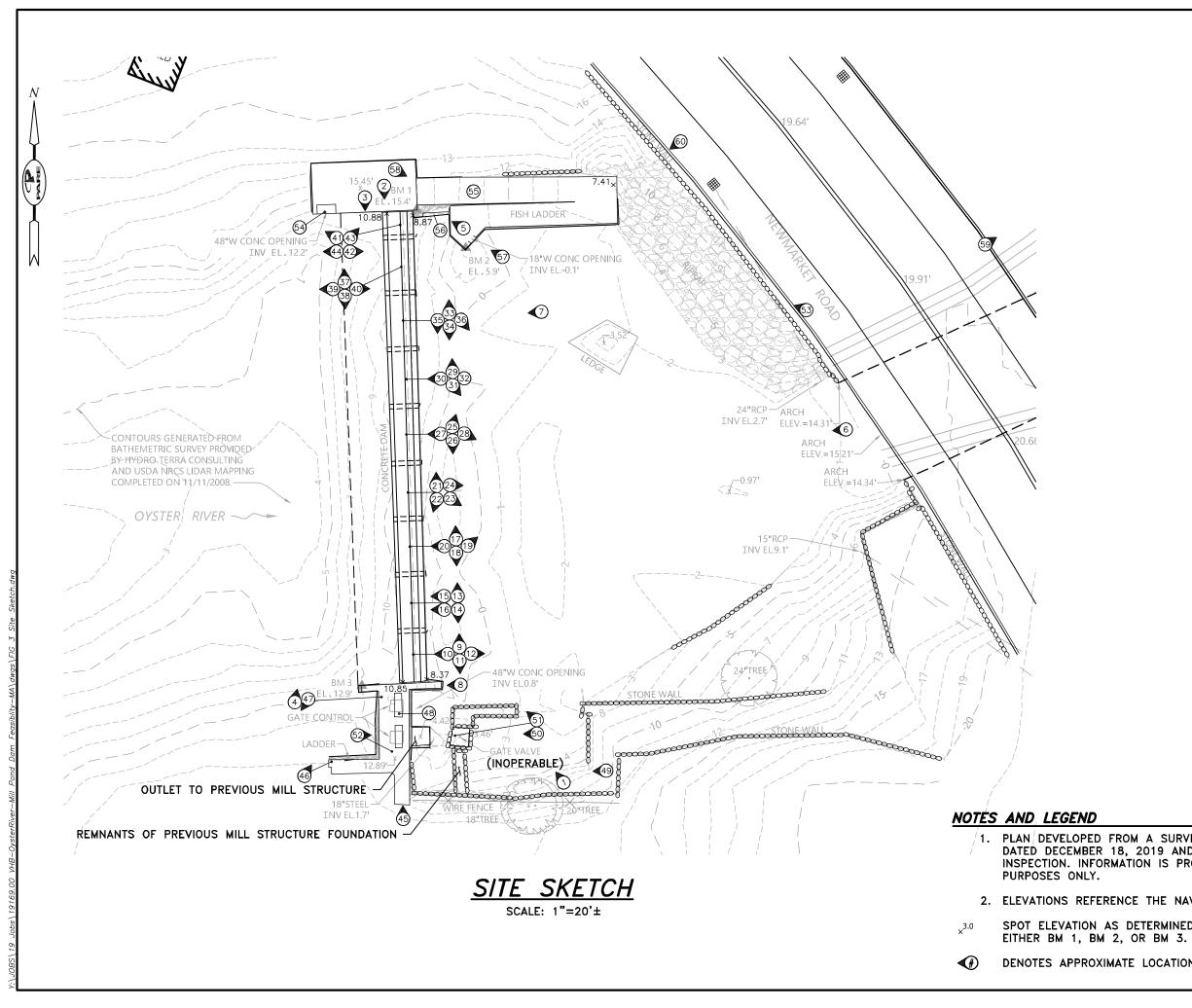
Table 3.3: Results of Stability Analysis						
Case	FS for	Eccentricity	Maximum Bearing			
Case	Sliding	(ft)	Pressure (psf)			
Spillway – Normal Flow	2.0	0.33	7,300			
Spillway – Flood	2.2	1.14	9,500			
Right Abutment – Normal Flow	1.7	1.3	1,030			
Right Abutment – Flood	1.4	2.3	840			
Right Abutment – Ice and Normal Flow	<1	6.4	1,040			

According to NHDES Env-Wr 303.12(c)(2), the stability analysis shall follow the methods outlined in "Engineering Guidelines for Evaluation of Hydropower Projects" published by the Federal Energy Regulatory Commission (FERC) Chapter 3 dated 2002 and Chapter 4 dated 1991. The guidelines mentioned state that a minimum factor of safety of 1.5 must be met for the worst static load case.

The results show that the spillway is stable against flood conditions and the spillway and right abutment (gated outlet structure) are stable against normal flow conditions. The right abutment does not meet the factor of safety of 1.5 for the flood and normal pool with ice conditions.


The downstream masonry wall and right abutment masonry wall are generally vertical. The right abutment masonry wall was reconstructed in 2009 after a storm event overtopped the right abutment and washed out the previous masonry wall. The right abutment masonry wall is slightly bulging, but appears to be stable. The spillway continues to deteriorate with section loss through the rib between cell 1 and 2. The section loss was not apparent during the inspection in 2009.


3.4.2 Seepage Stability

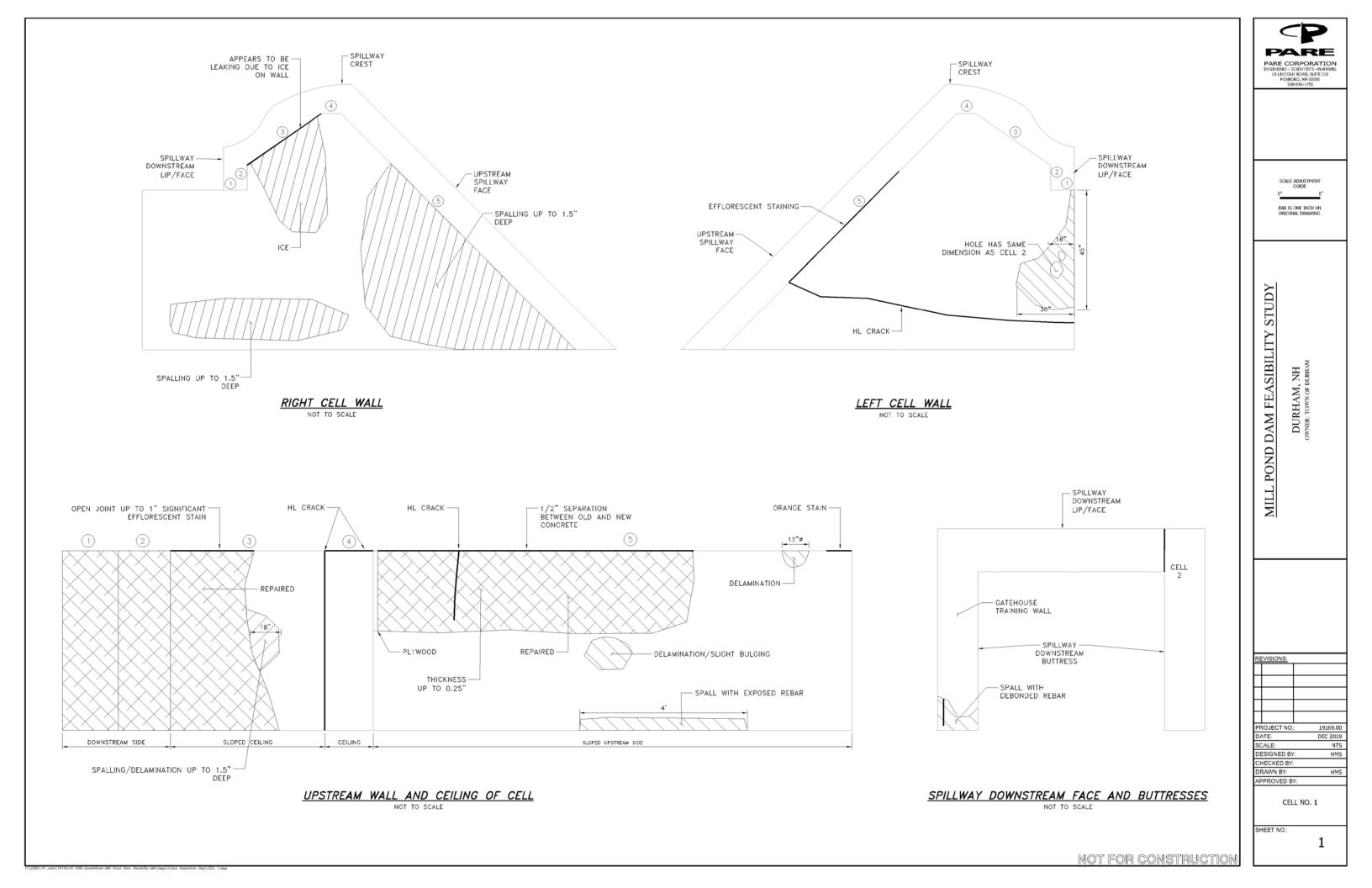

No formal seepage analyses have been completed for this structure. Seepage and orange staining were observed at the bottom of the masonry walls along the right abutment and through the downstream side of the outlet structure. It is unknown whether the seepage through the right abutment masonry wall is due to potentially high water table right of the dam or from the dam impoundment. Two areas of seepage were noted through the concrete of the outlet structure. Orange staining and ice buildup was also noted on the downstream side of the low level outlet structure, potentially indicating additional seepage through the structure.

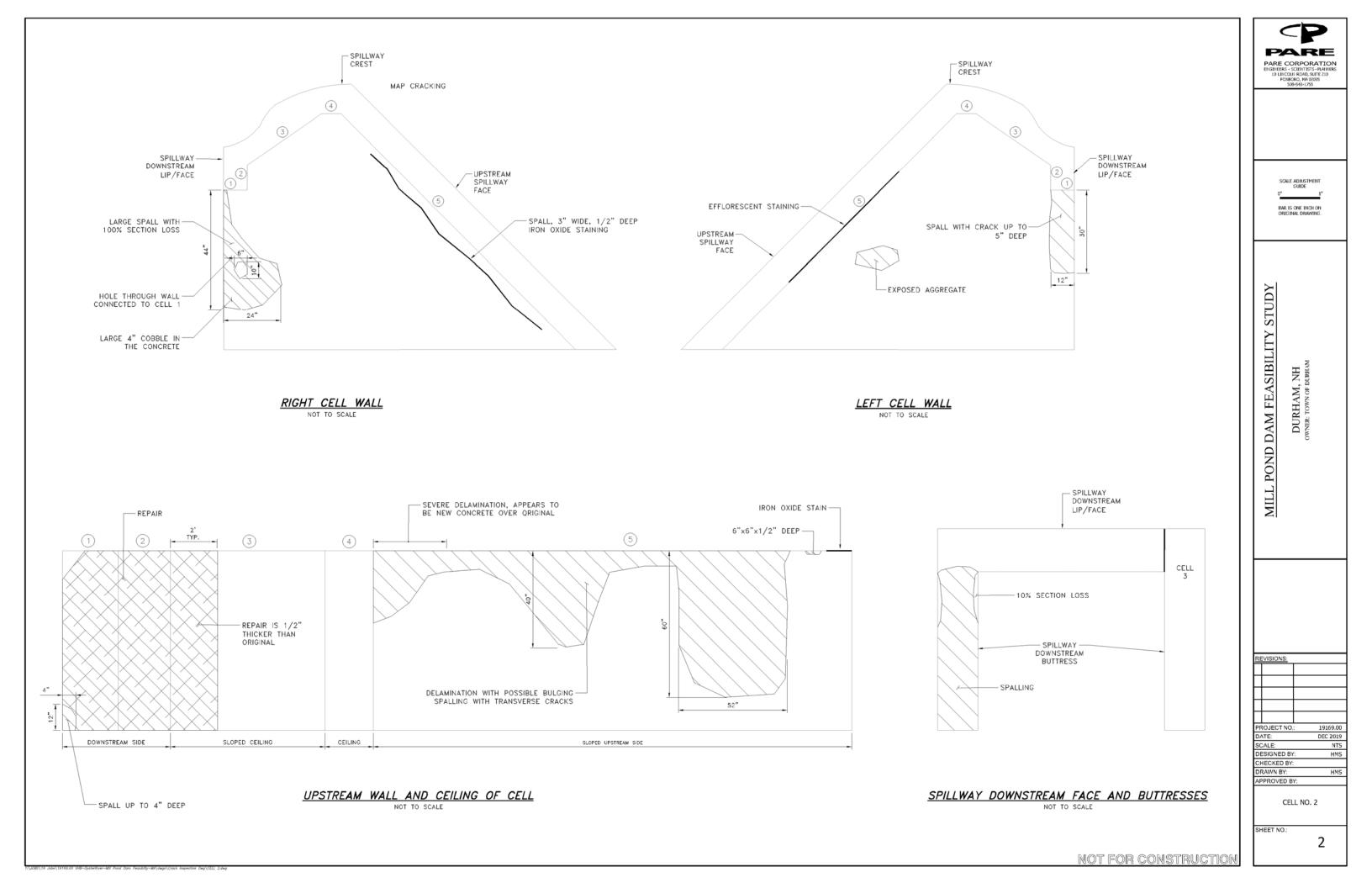
Orange staining and ice apparently from cracks were noted within some of the spillway cells. No active seepage was present during the time of the inspection; however, active seepage was previously noted within Cell No. 1 on the connecting low level outlet wall and within Cell No. 2 on the right wall as indicated within the inspection report by NHDES dated September 18, 2017.

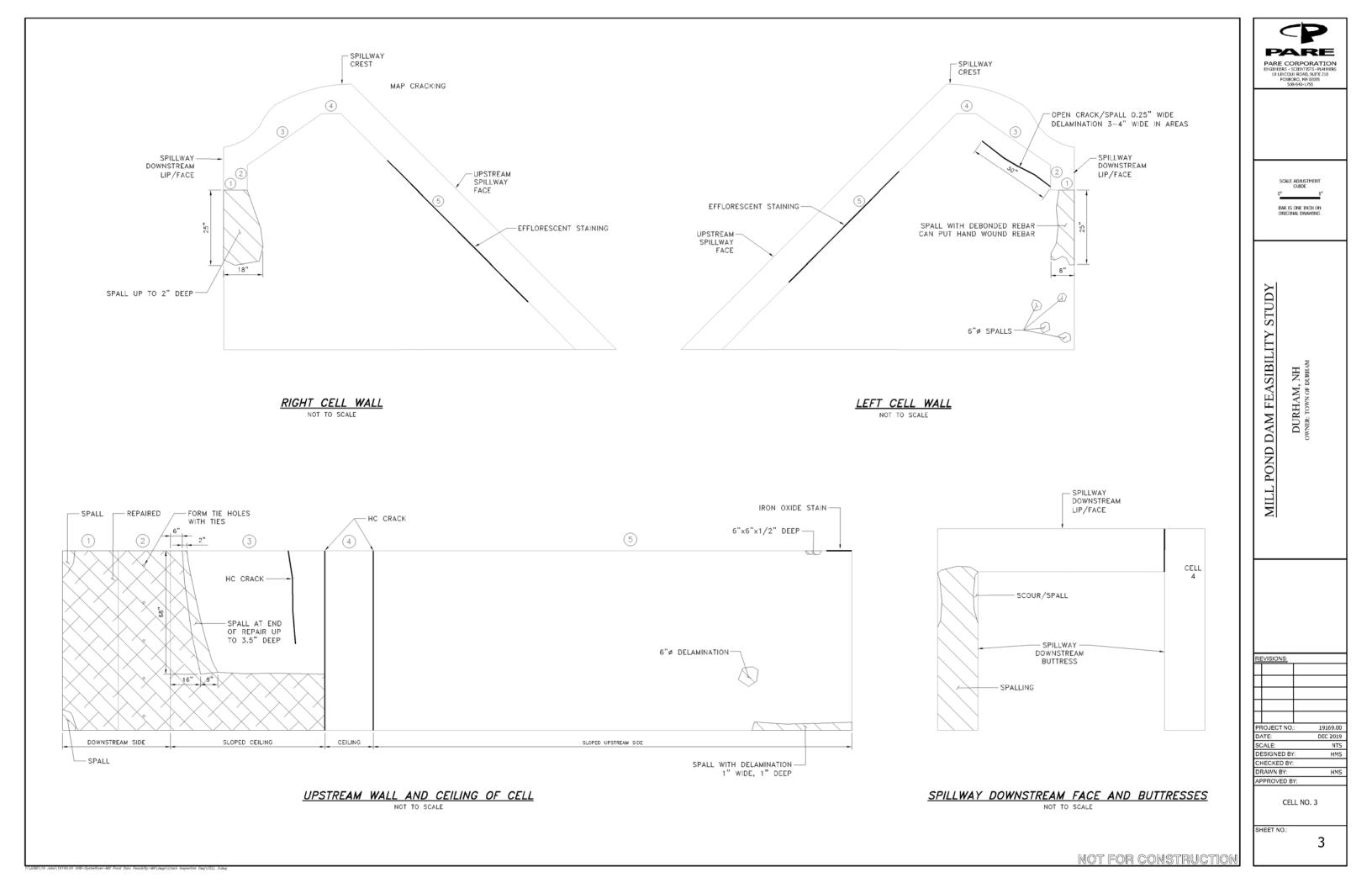
PARE CORPORATION EIGINEERS - SCIENTISTS - PANNERS 10 LINCKOR, MA 0203 598-543-125				
SCALE ADJUSTMENT GUIDE 0" 1"				
BAR IS ONE INCH ORIGINAL DRAWI	ON NG.			
MILL POND DAM DAM #071.03 DURHAM, NEW HAMPSHIRE	OWNER: TOWN OF DURHAM			
	19169.00 CH 2020			
SCALE: A DESIGNED BY: CHECKED BY: DRAWN BY: APPROVED BY:	AS NOTED HMS ARO LMC ARO			
SITE SKETC	эн З			

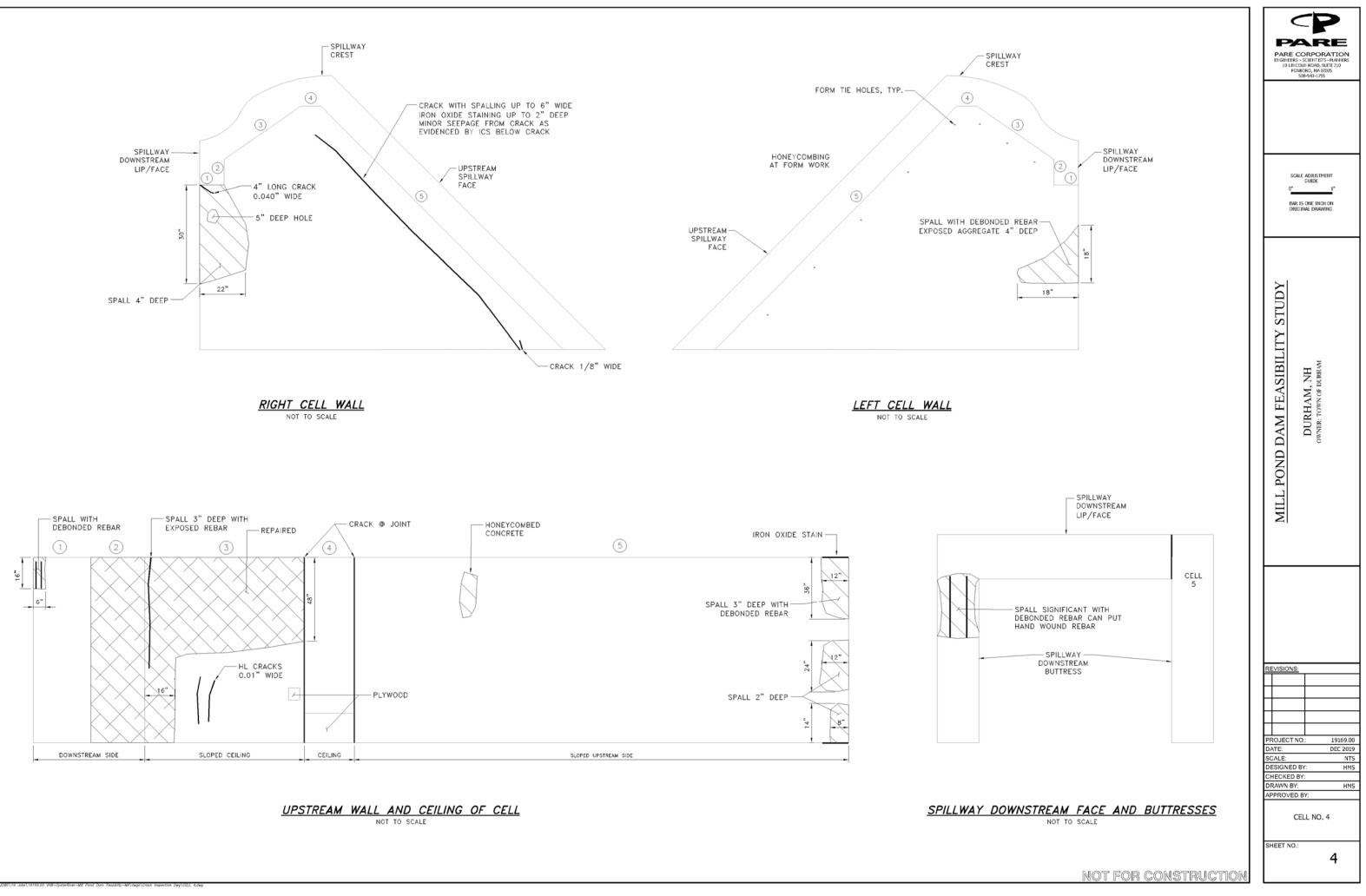
1. PLAN DEVELOPED FROM A SURVEY PLAN PREPARED BY VHB, INC. DATED DECEMBER 18, 2019 AND NOTES TAKEN DURING THE INSPECTION. INFORMATION IS PROVEDED FOR REFERENCE

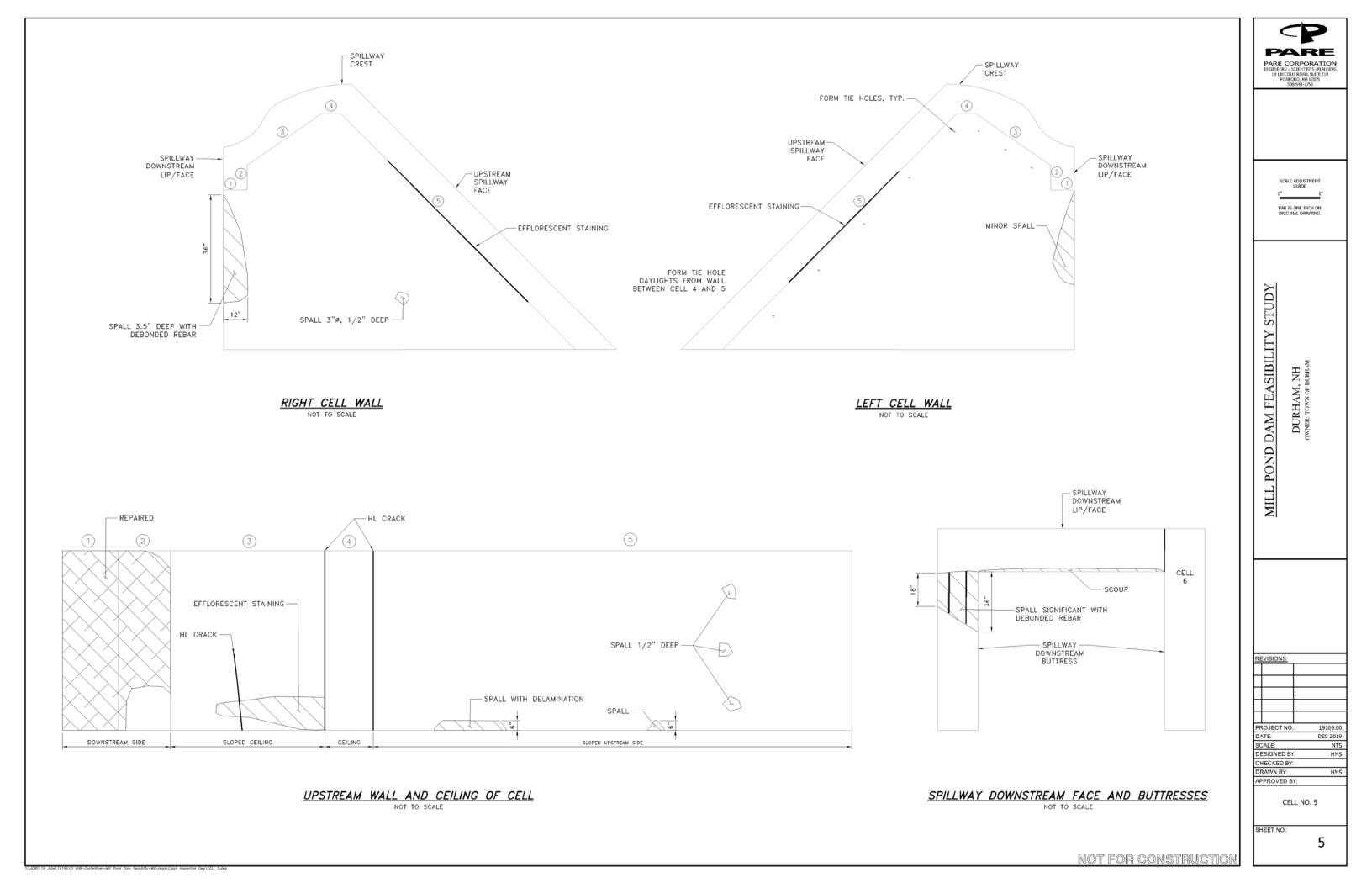
2. ELEVATIONS REFERENCE THE NAVD 88 VERTICAL DATUM.

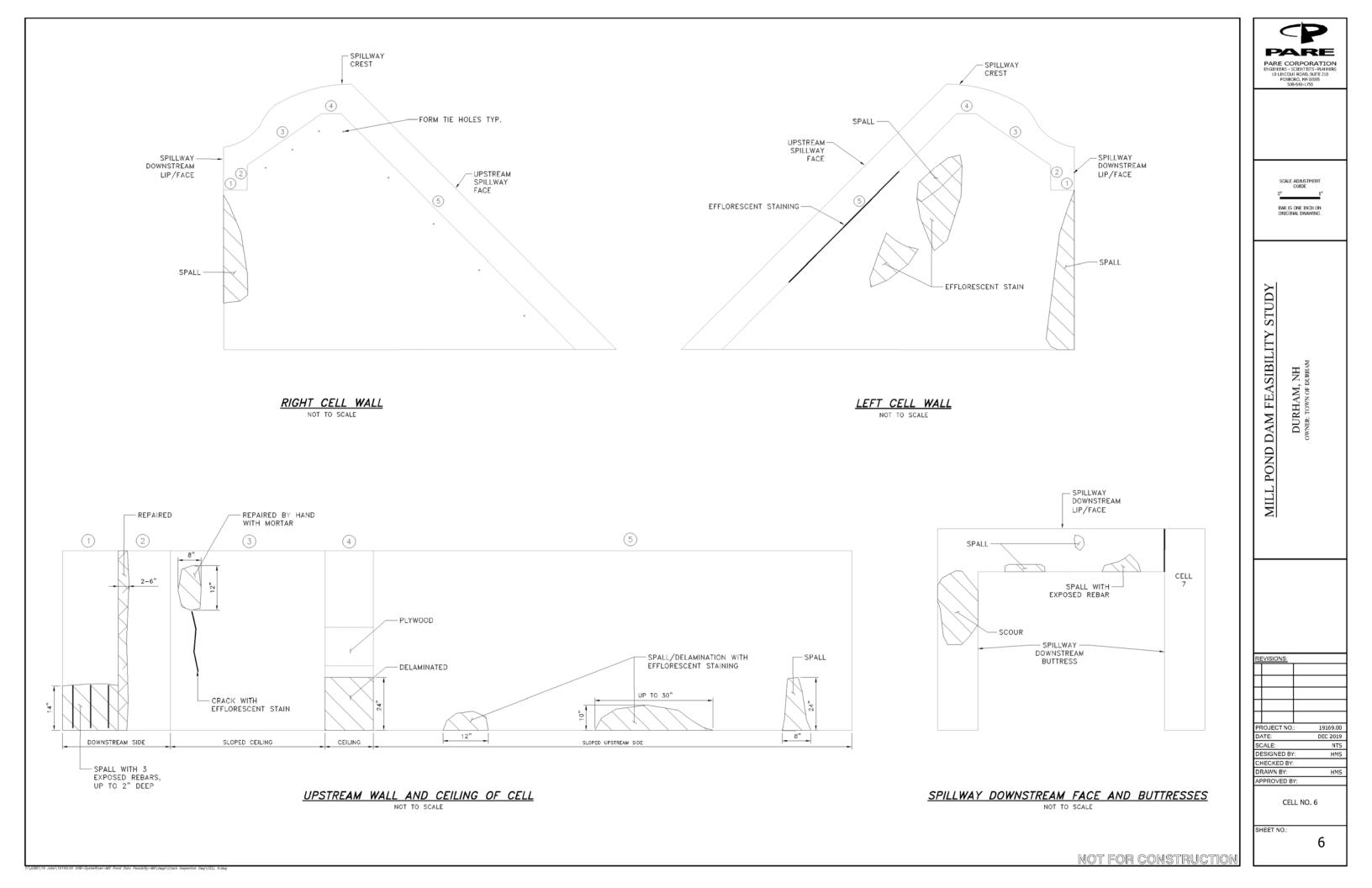

SPOT ELEVATION AS DETERMINED BY VHB, INC. REFERENCING

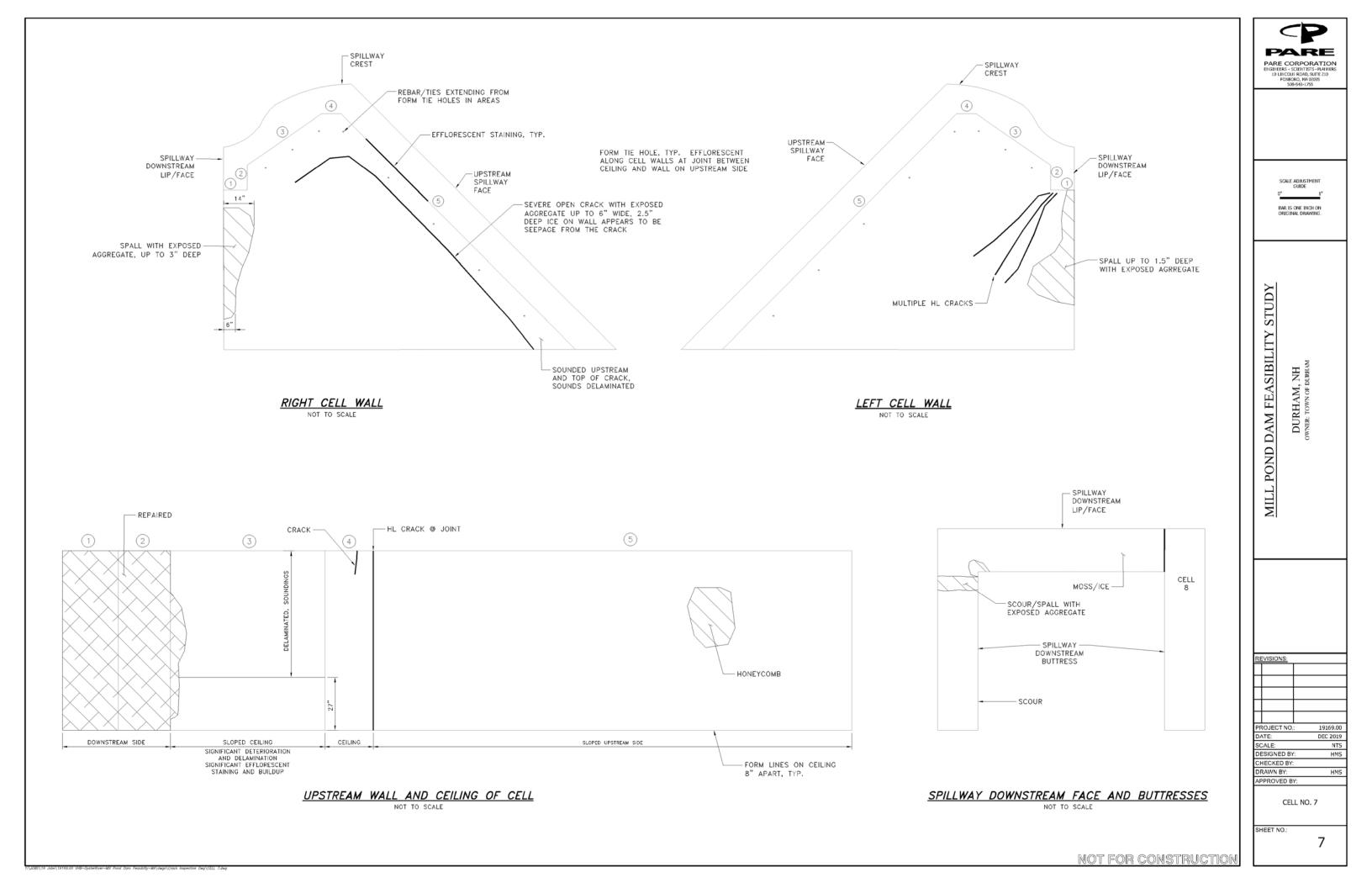

DENOTES APPROXIMATE LOCATION AND DIRECTION OF PHOTOGRAPH.

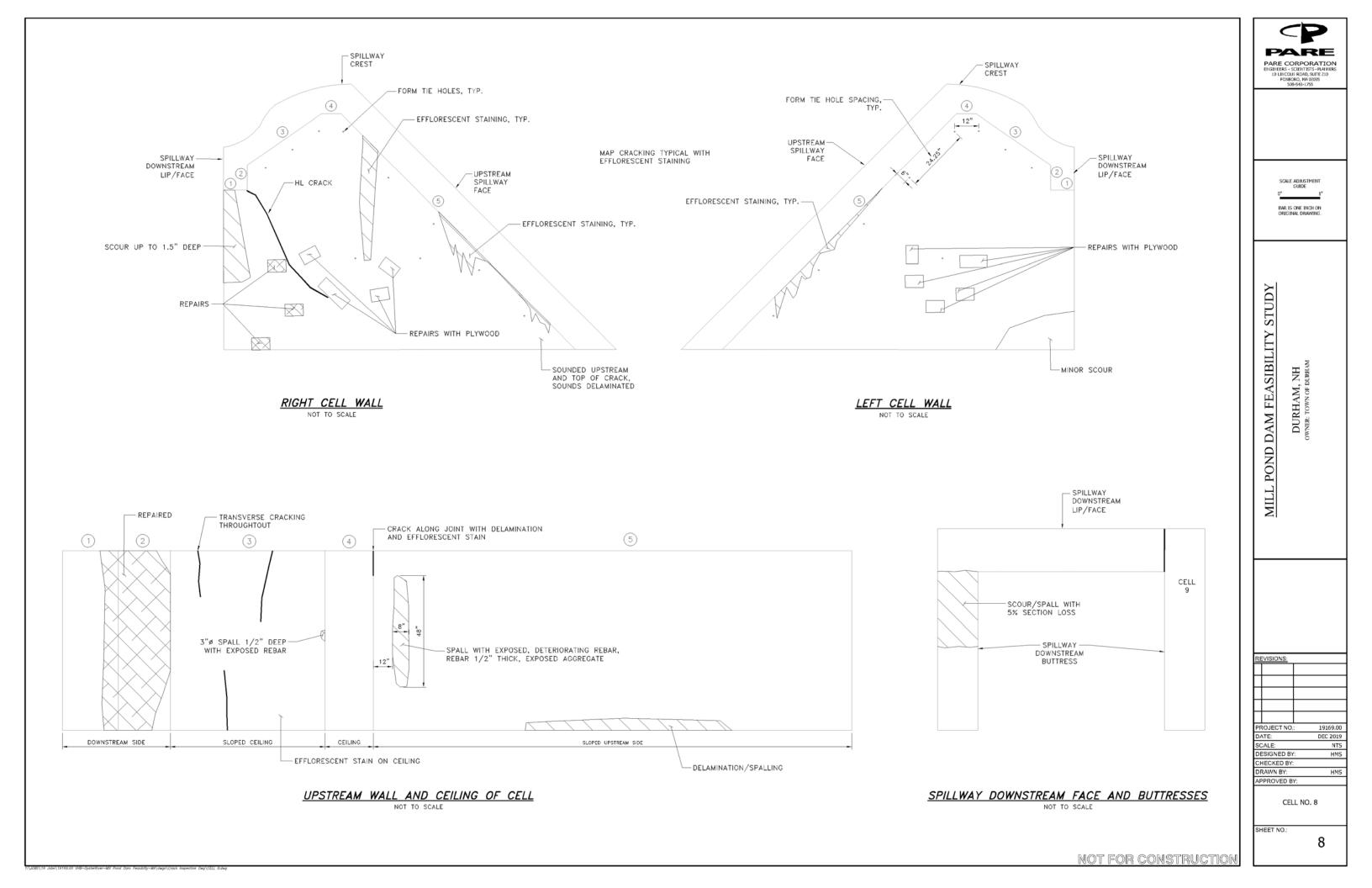

Mill Pond Dam

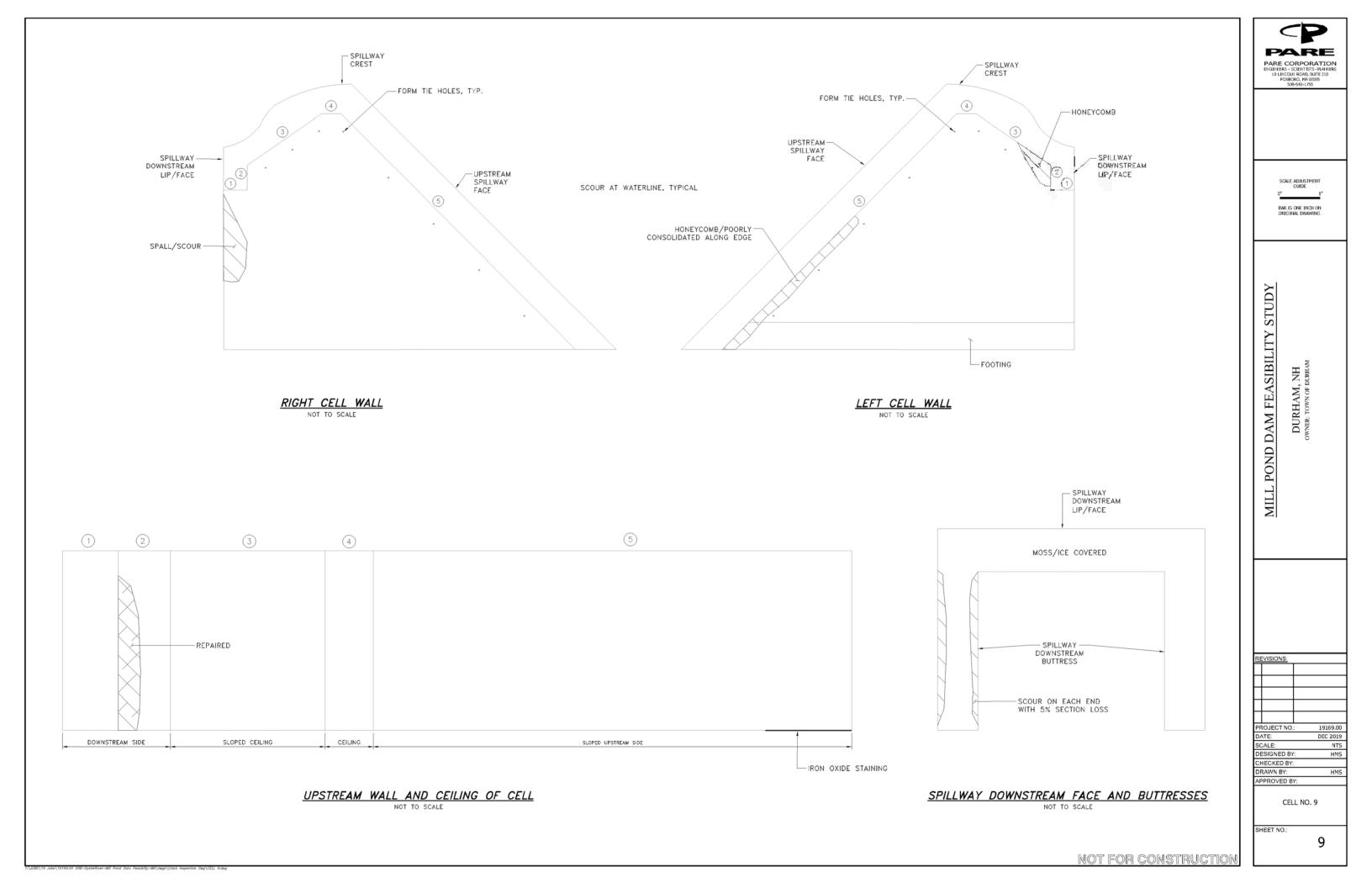

APPENDIX A Spillway Cell Inspection Figures Mill Pond Dam Durham, NH











Mill Pond Dam

APPENDIX B Photographs Mill Pond Dam Durham, NH

Photo No. 1: Dam from the right abutment looking left with flow over the spillway.

Photo No. 3: Scour on the left side of the right training wall upstream of the spillway crest.

Photo No. 2: View of the upstream side of the crest from the top of the fish ladder looking right.

Photo No. 4: View of the left end of the primary spillway and training wall.

Photo No. 5: Area of the previously reported leakage from the left training wall. Note vegetation within the joint and repair along the wall.

Photo No. 7: Close-up view of the typical interior of a cell.

Photo No. 6: View of the downstream side of the dam with no flow over the spillway from under the bridge at Newmarket Road looking upstream.

Photo No. 8: Scoured and severely deteriorated concrete with debonded rebar at the downstream side of the right training wall.

Inspection Date: December 18, 2019

Photo No. 9: Left wall. Note section loss with spalling and scour on the downstream end.

Photo No. 11: Right wall. Note spalling and delamination throughout the wall.

Photo No. 10: Right side of the upstream sloped ceiling. Note the delamination of the repairs.

Photo No. 12: Repair on the downstream sloped ceiling section (ceiling face no.3). Note delamination above the repair and efflorescence.

Photo No. 13: Left Wall. Note the scour and spalling on the downstream end.

Photo No. 15: Delamination on the lower part of the upstream sloped ceiling (ceiling face no. 5).

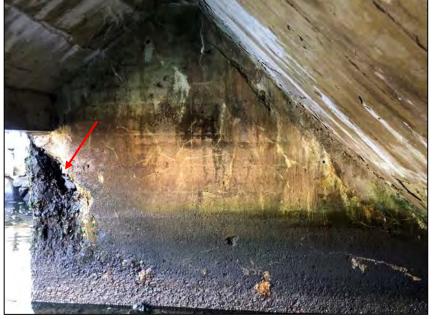


Photo No. 14: Right Wall. Note the section loss on the downstream end.

Photo No. 16: Delamination on the upper part of the upstream sloped ceiling (ceiling face no. 5).

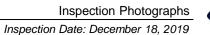


Photo No. 17: Left wall. Note scour and spalling on the downstream end and delamination on the upstream joint with the ceiling.

Photo No. 19: Delaminated rebar on the rib between Cell 3 and Cell

Photo No. 18: Right wall. Not scour and spalling on the downstream end.

Photo No. 20: Overview of the upstream sloped ceiling.

Photo No. 21: Left wall. Note debonded rebar and spalling on the downstream end.

Photo No. 23: Spall with debonded rebar and 5-inch deep hole on the downstream end of the right wall.

Photo No. 22: Large crack and spall along the right wall with iron oxide staining on the upstream end.

Photo No. 24: Downstream sloped ceiling with repair and exposed rebar.

Photo No. 25: Left wall. Note scour and spalling on the downstream end approximately 1 foot above the waterline.

Photo No. 27: Efflorescent staining and delamination on the right side of the upstream sloped ceiling

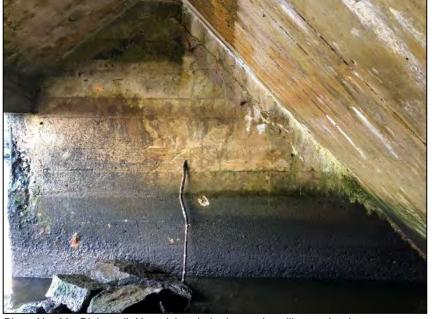


Photo No. 26: Right wall. Note debonded rebar and spalling on the downstream end.

Photo No. 28: Downstream sloped ceiling (ceiling face no. 3).

Inspection Date: December 18, 2019

Photo No. 29: Left Wall. Note efflorescent staining and cracks.

Photo No. 31: Repair on the right side of the downstream sloped ceiling,

Photo No. 30: Delamination and staining along the joint between the ceiling and the left wall.

Photo No. 32: Spalling with debonded rebar on the underside of the downstream most ceiling (ceiling face no. 1).

Photo No. 33: Left wall. Note efflorescent staining.

Photo No. 35: Delamination and crack with seepage below on the top of the right cell wall.

Photo No. 34: Right wall. Note crack and delamination extending along the upstream and upper side of the wall.

Photo No. 36: Delamination and efflorescence throughout the downstream sloped ceiling.

Photo No. 37: Left wall. Note repairs covered with timber falsework.

Photo No. 39: Exposed and deteriorated rebar on the upstream sloped ceiling.

Photo No. 38: Right wall. Note repairs covered with timber falsework and spalling on the downstream end.

Photo No. 40: Area of exposed and deteriorated rebar on the downstream sloped ceiling.

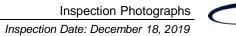


Photo No. 41: Upstream left corner of the cell with iron oxide staining.

Photo No. 43: Downstream sloped ceiling.

Photo No. 42: Repair on the downstream side of the cell (ceiling face no.2).

Photo No. 44: Overview of the cell.

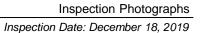


Photo No. 45: Overview of the top of the low-level outlet structure.

Photo No. 47: Right abutment upstream of the dam from the gate structure. Note snow cover.

Photo No. 46: Intake of the gate structure.

Photo No. 48: Inside of the top of the gate opening. Note irregular concrete typical in both gate openings.

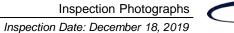


Photo No. 49: The gate structure and mill foundation from downstream of the dam looking upstream.

Photo No. 51: Right side of the right training wall and concrete downstream of the left gate. Note cracking with efflorescent staining and ice on the concrete. Additionally, note the leakage through the left gate.

Photo No. 50: Left and right low-level outlets. Note the severe concrete deterioration and ice buildup throughout the downstream face of the structure.

Photo No. 52: Remnants of the mill foundation downstream of the gate structure.

Photo No. 53: Overview of the fish ladder at the left end of the spillway..

Photo No. 54: Fish ladder inlet with stop logs in. Note leakage from the stop logs.

Photo No. 55: Inside of the fish ladder.

Photo No. 56: Scour and undermining underneath the right training wall of the fish ladder. Note void probed up to 3 feet.

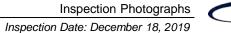


Photo No. 57: Outlet of the fish ladder.

Photo No. 59: Overview of Mill Oyster River downstream of Newmarket Road Bridge

Photo No. 58: Downstream area of the dam from the top of the fish ladder.

Photo No. 60: Mill Pond Dam and the impoundment from the top of the bridge at Newmarket Road.

APPENDIX C Previous Reports and References Mill Pond Dam Durham, NH

REFERENCES AND RESOURCES

The following reports were referenced during the preparation of this report:

- 1. "Mill Pond Dam D071003, Hazard Classification Assessment", New Hampshire Department of Environmental Services, dated September 10, 2018.
- 2. "Dam Evaluation Report Oyster River Dam", Stephens Associates Consulting Engineers, dated March 17, 2009.
- 3. "Letter to Andrea Bodo", New Hampshire Division of Historical Resources", dated February 4, 2009.
- 4. "Site Inspection Form", New Hampshire Department of Environmental Services, dated September 18, 2007.
- 5. "Dam Inspection Report", GZA GeoEnvironmental, Inc, dated October 3, 2000.

The following were referenced during the completion of the visual inspection and preparation of this report and the development of the recommendations presented herein:

- 1. "Design of Small Dams", United States Department of the Interior Bureau of Reclamation, 1987.
- 2. "ER 110-2-106 Recommended Guidelines for Safety Inspection of Dams", Department of the Army, September 26, 1979.
- 3. "Guidelines for Reporting the Performance of Dams" National Performance of Dams Program, August 1994.

The following provides an abbreviated list of resources for dam owners to locate additional information pertaining to dam safety, regulations, maintenance, operations, and other information relevant to the ownership responsibilities associated with their dam.

- 1. NHDES Dam Bureau Website: https://www.des.nh.gov/organization/divisions/water/dam/index.htm
- 2. "Dam Owner's Guide To Plant Impact On Earthen Dams" FEMA L-263, September 2005
- 3. "Technical Manual for Dam Owners: Impacts of Plants on Earthen Dams" *FEMA 534, September 2005*
- 4. "Dam Safety: An Owners Guidance Manual" FEMA 145, December 1986
- 5. Association of Dam Safety Officials Website: <u>www.asdso.org/</u>
- 6. "Dam Ownership Responsibility and Liability", ASDSO

Mill Pond Dam

APPENDIX D Common Dam Safety Definitions Mill Pond Dam Durham, NH

COMMON DAM SAFETY DEFINITIONS

For a comprehensive list of dam engineering terminology and definitions refer to State of New Hampshire Env-Wr 100-700 Dam Rules, or other reference published by FERC, Dept. of the Interior Bureau of Reclamation, or FEMA.

Orientation

Upstream - Shall mean the side of the dam that borders the impoundment.

Downstream - Shall mean the high side of the dam, the side opposite the upstream side.

<u>Right</u> – Shall mean the area to the right when looking in the downstream direction.

Left – Shall mean the area to the left when looking in the downstream direction.

Dam Components

Dam – Shall mean any artificial barrier, including appurtenant works, which impounds or diverts water.

<u>Embankment</u> – Shall mean the fill material, usually earth or rock, placed with sloping sides, such that it forms a permanent barrier that impounds water.

<u>Crest</u> – Shall mean the top of the dam, usually provides a road or path across the dam.

<u>Abutment</u> – Shall mean that part of a valley side against which a dam is constructed. An artificial abutment is sometimes constructed as a concrete gravity section, to take the thrust of an arch dam where there is no suitable natural abutment.

<u>Appurtenant Works</u> – Shall mean structures, either in dams or separate therefrom, including but not be limited to, spillways; reservoirs and their rims; low level outlet works; and water conduits including tunnels, pipelines, or penstocks, either through the dams or their abutments.

<u>Spillway</u> – Shall mean a structure over or through which water flows are discharged. If the flow is controlled by gates or boards, it is a controlled spillway; if the fixed elevation of the spillway crest controls the level of the impoundment, it is an uncontrolled spillway.

Hazard Classification

High Hazard – means a dam where failure or misoperation will result in probable loss of human life.

<u>Significant Hazard</u> – means a dam where failure or misoperation results in no probable loss of human life but can cause major economic loss to structures or property, structural damage to a class I or class II road which could render the road impassable or otherwise interrupt public safety services, or major environmental or public health losses.

<u>Low Hazard</u> – means a dam where failure or misoperation results in no probable loss of human life, low economic losses, structural damage to a town or city road or private road accessing property other than the dam owner's which could render the road impassable or otherwise interrupt public safety services, the release of liquid industrial, agricultural, or commercial wastes, septage, or contaminated sediment if the storage capacity is less than 2 acre-feet and is located more than 250 feet from a water body or water course, Reversible environmental losses to environmentally-sensitive sites.

General

<u>EAP – Emergency Action Plan</u> – Shall mean a predetermined (and properly documented) plan of action to be taken to reduce the potential for property damage and/or loss of life in an area affected by an impending dam failure.

<u>O&M Manual</u> – Operations and Maintenance Manual; Document identifying routine maintenance and operational procedures under normal and storm conditions.

Normal Pool - Shall mean the elevation of the impoundment during normal operating conditions.

<u>Acre-foot</u> – Shall mean a unit of volumetric measure that would cover one acre to a depth of one foot. It is equal to 43,560 cubic feet. One million U.S. gallons = 3.068 acre feet.

<u>Height of Dam</u>– means the vertical distance from the lowest point of natural ground on the downstream side of the dam to the highest part of the dam which would impound water.

<u>Hydraulic Height</u> – means the height to which water rises behind a dam and the difference between the lowest point in the original streambed at the axis of the dam and the maximum controllable water surface.

<u>Maximum Water Storage Elevation</u> – means the maximum elevation of water surface which can be contained by the dam without overtopping the embankment section.

<u>Spillway Design Flood (SDF)</u> – Shall mean the flood used in the design of a dam and its appurtenant works particularly for sizing the spillway and outlet works, and for determining maximum temporary storage and height of dam requirements.

<u>Maximum Storage Capacity</u> – The volume of water contained in the impoundment at maximum water storage elevation.

<u>Normal Storage Capacity</u> – The volume of water contained in the impoundment at normal water storage elevation.

Condition Rating

<u>Unsafe</u> – Means the condition of a regulated dam, as determined by the Director, is such that an unreasonable risk of failure exists that will result in a probable loss of human life or major economic loss. Among the conditions that would result in this determination are: excessive vegetation that does not allow the Director to perform a complete visual inspection of a dam, excessive seepage or piping, significant erosion problems, inadequate spillway capacity, inadequate capacity and/or condition of control structure(s) or serious structural deficiencies, including movement of the structure or major cracking.

<u>Poor</u> – A component that has deteriorated beyond a maintenance issue and requires repair.; the component no longer functions as it was originally intended.

Fair – Means a component that requires maintenance

<u>Good</u> – Meeting minimum guidelines where no irregularities are observed, and the component appears to be maintained properly.

Mill Pond Dam

APPENDIX E Visual Dam Inspection Limitations Mill Pond Dam Durham, NH

VISUAL DAM INSPECTION LIMITATIONS

Visual Inspection

- 1. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations are beyond the scope of this report.
- 2. In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection, along with data available to the inspection team.
- 3. In cases where an impoundment is lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions, which might otherwise be detectable if inspected under the normal operating environment of the structure.
- 4. It is critical to note that the condition of the dam is evolutionary in nature and depends on numerous and constantly changing internal and external conditions. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Use of Report

- 5. The applicability of environmental permits needs to be determined prior to undertaking maintenance activities that may occur within resource areas under the jurisdiction of any regulatory agency.
- 6. This report has been prepared for the exclusive use of the Town of Durham for specific application to the referenced dam site in accordance with generally accepted engineering practices. No other warranty, expressed or implied, is made.
- 7. This report has been prepared for this project by Pare. This report is for preliminary evaluation purposes only and is not necessarily sufficient to support design of repairs or recommendations or to prepare an accurate bid.

Appendix C: Cost Estimates

	Alt 2:	Alt 3:	Alt 4:	Alt 5:
	Repair	Stabilization	Redesign	Removal
Construction Components				
General Construction Items	\$ 112,000.00	\$ 77,000.00	\$ 136,000.00	\$ 98,000.00
Spillway Stabilization	\$ 217,000.00	\$ 327,000.00	N/A	N/A
Repair Scour and Undermining	\$ 3,000.00	\$ 3,000.00	N/A	N/A
Gated Outlet Structure	\$ 115,000.00	\$ 78,000.00	\$ 124,000.00	N/A
Spillway replacement	N/A	N/A	\$ 168,000.00	N/A
Raise Left abutment	N/A	N/A	\$ 4,000.00	N/A
Construct Auxiliary spillway	N/A	N/A	\$ 111,000.00	N/A
Construct Dike	N/A	N/A	\$ 8,000.00	N/A
Demolition of Dam	N/A	N/A	N/A	\$ 197,000.00
Environmental Components ¹				
Pond Restoration Dredge (Option 1)	\$ 3,150,000.00	\$ 3,150,000.00	\$ 3,150,000.00	N/A
Active Channel Restoration (Option 2)	N/A	N/A	N/A	\$ 711,000.00
General Items				
Bonds & Contingency	\$ 118,000.00	\$ 128,000.00	\$ 145,000.00	\$ 78,000.00
Engineering, Design, & Permitting	\$ 190,000.00	\$ 180,000.00	\$ 300,000.00	\$ 150,000.00
Construction Phase Services	\$ 120,000.00	\$ 120,000.00	\$ 150,000.00	\$ 80,000.00
Total Construction Phase Cost	\$ 4,025,000.00	\$ 4,063,000.00	\$ 4,296,000.00	\$ 1,314,000.00

1. Includes Engineering, Design, Permitting, and Construction Engineering Costs specific to environmental elements

Oyster River Dam at Mill Pond

Durham, NH

Table 2.9-2a - Life Cycle Cost Analysis (30 Year Analysis w/o Environmental Components)

· · ·	-		-	
	Alt 2:	Alt 3:	Alt 4:	Alt 5:
	Repair	Stabilization	Redesign	Removal
Initial Capital Investment				
Discount Factor	1	1	1	1
Initial Capital Cost	\$875,000	\$913,000	\$1,146,000	\$603,000
Capital Replacement Cost				
Assumed Design Life (yrs)	30	50	>50	N/A
Assumed CIP Cost Percentage	100%	60%	40%	0%
Discount Factor	0.412	0.412	0.412	0.412
Operations & Maintenance				
O&M Costs	\$2,400	\$2,400	\$2,400	\$1,000
Discount Factor	19.6	19.6	19.6	19.6
Total Present Cost	\$ 1,282,540	\$ 1,185,734	\$ 1,381,901	\$ 622,600

Table 2.9-2b - Life Cycle Cost Analysis (30 Year Analysis WITH Environmental Components)

		Alt 3:		Alt 5:
	Alt 2:	Stabilization	Alt 4:	Removal &
	Repair with	with Pond	Redesign with	Channel
	Pond Dredge	Dredge	Pond Dredge	Restoration
Initial Capital Investment				
Discount Factor	1	1	1	1
Initial Capital Cost	\$4,025,000	\$4,063,000	\$4,296,000	\$1,314,000
Capital Replacement Cost				
Assumed Design Life (yrs)	30	50	>50	N/A
Assumed CIP Cost Percentage	100%	60%	40%	0%
Discount Factor	0.412	0.412	0.412	0.412
Operations & Maintenance				
O&M Costs	\$2,400	\$2,400	\$2,400	\$1,000
Discount Factor	19.6	19.6	19.6	19.6
Total Present Cost	\$ 5,730,340	\$ 5,114,414	\$ 5,051,021	\$ 1,333,600

Notes:

1. Discount factors taken from 2019 supplement to NIST LCC Tables A-1 and A-2

2. Alt 5: Does not include sediment management and/or stream restoration costs

3. Alt 5: No infrastructure remains; no capital replacement cost required

PROJECT : Oyster River Dam at Mill Pond - Durham, NH	PROJECT NUMBER: 19169.00									
SUBJECT: Conceptual Opinion of Probable Cost - Repair										
COMPUTATIONS BY: HMS	DATE: OCT 2020									
CHECK BY: ARO	DATE: OCT 2020									

CONCEPTUAL OPINION OF PROBABLE COST - Alt. 2 Repairs

Item	Quantity	Unit		Unit Price		Total	Source
General Bid Items							
Project Superintendent	2	MON	\$	8,200.00	\$	16,400.00	Engineers Judgment
QC Plans	1	LS	\$	3,000.00	\$	3,000.00	Engineers Judgment
Submittals	1	EA	\$	3,000.00	\$	3,000.00	Engineers Judgment
Schedules	1	EA	\$	150.00	\$	150.00	Engineers Judgment
Meetings	4	EA	\$	150.00	\$	600.00	Engineers Judgment
Portable Toilets	2	MON	\$	150.00	\$	300.00	Engineers Judgment
Concrete Sampling/Testing	8	EA	\$	400.00	\$	3,200.00	Engineers Judgment
Concrete Compression Tests	8	EA	\$	30.00	\$	240.00	Engineers Judgment
Outstand					¢	00,000,00	
Subtotal					\$	26,890.00	
Abilization & Demolition							
Mobilization	1	LS	\$	17,500.00	\$	18,000.00	Engineers Judgment
Demobilization	1	LS	\$	12,000.00	\$	12,000.00	Engineers Judgment
Subtotal					\$	30,000.00	
Subiolai					φ	30,000.00	
rosion & Sediment Control							
Turbidity Barriers	200	LF	\$	30.00	\$	6,000.00	NH645.0001
Maintenance	1	LS	\$	1,500.00	\$	1,500.00	Engineer's Judgement
Subtotal					\$	7,500.00	
control of Water		1.0	•	40.000.00	•	40,000,00	Descent Design (Os etc.
Engineering Design	1	LS	\$	10,000.00	\$	10,000.00	Recent Project Costs
Cofferdam / Diversions	1	LS	\$	35,000.00	\$	35,000.00	Recent Project Costs
Dewatering	1	LS	\$	2,500.00	\$	2,500.00	
Subtotal					\$	47,500.00	
tabilize spillway ribs							
Form/Place Concrete	105	CY	\$	1,400.00	\$	147,000.00	Recent Project Costs/Engineer's Judgeme
Subtotal					\$	147,000.00	
						,	
Repair Gated Outlet							
Remove & Dispose Existing Gates	1	LS	\$	2,000.00	\$	2,000.00	Recent Project Costs
New Slide Gate	1	LS	\$	10,000.00	\$	10,000.00	Recent Project Costs
Install Slide Gate	2	DAY	\$	2,500.00	\$	5,000.00	Recent Project Costs
Stabilize Upstream Side with Concrete	25	CY	\$	1,400.00	\$	35,000.00	Recent Project Costs
Stabilize Downstream Side with Concrete	45	CY	\$	1,400.00	\$	63,000.00	Recent Project Costs
Subtotal					\$	115,000.00	
concrete Sealer Seal Concrete	3500	SF	\$	20.00	\$	70,000.00	NH536.11
			•		-		
Subtotal					\$	70,000.00	
scour Repair							
Fill Scour at Fish ladder	7	CF	\$	250.00		1,750.00	Recent Project Costs
Fill Scour at Right Training Wall	5	CF	\$	250.00	\$	1,250.00	Recent Project Costs
					\$	3,000.00	
Subtotal							
							(B) 1 1 1 1 1 1 1 1 1 1
v v				SUBTOTAL		447,000.00	(Rounded to the nearest \$1,000)
v v			Co	ontract Bonds	\$	5,000.00	1% of Project Subtotal
с с			Co		\$ \$	5,000.00 113,000.00	
с с	ONSTRUC	TION C		ontract Bonds Contingency	\$ \$	5,000.00	1% of Project Subtotal
Subtotal			оѕт	ontract Bonds Contingency	\$ \$ \$	5,000.00 113,000.00	1% of Project Subtotal
Subtotal	Engineerii	ng, Desi	OST gn, a	ontract Bonds Contingency (Base Work)	\$ \$ \$	5,000.00 113,000.00 565,000.00	1% of Project Subtotal

PROJECT : Oyster River Dam at Mill Pond - Durham, NH PROJECT NUMBER: 19169.00

SUBJECT: Conceptual Opinio	SUBJECT: Conceptual Opinion of Probable Cost - Spillway Stabilization								
COMPUTATIONS BY:	HMS	DATE: OCT 2020							
CHECK BY:	ARO	DATE: OCT 2020							

CONCEPTUAL OPINION OF PROBABLE COST - Alt. 3: Stabilization

Item	Quantity	Unit		Unit Price		Total	Source
General Bid Items							
Project Superintendent	2	MON	\$	8,200.00	\$	16,400.00	Engineers Judgment
, QC Plans	1	LS	\$	1,000.00	\$	1,000.00	Engineers Judgment
Submittals	5	EA	\$	175.00	\$	875.00	Engineers Judgment
Schedules	1	EA	\$	150.00	\$	150.00	Engineers Judgment
Meetings	4	EA	\$	150.00	\$	600.00	Engineers Judgment
Portable Toilets	2	MON	\$	150.00	\$	300.00	Engineers Judgment
Concrete Sampling/Testing	8	EA	\$	400.00	\$	3,200.00	Engineers Judgment
Concrete Compression Tests	8	EA	\$	30.00	\$	240.00	Engineers Judgment
Subtotal					\$	22,765.00	
Mobilization & Demolition							
Mobilization	1	LS	\$	10,000.00	\$	15,000.00	Engineers Judgment
Demobilization	1	LS	\$	5,000.00	\$	10,000.00	Engineers Judgment
Outstated							
Subtotal					\$	25,000.00	
Erosion & Sediment Control							
Turbidity Barriers	105	LF	\$	30.00	\$	3,150.00	NH645.0001
Maintenance	1	LS	\$	1,000.00	\$	1,000.00	Engineer's Judgement
Subtotal					\$	4,150.00	
Control of Water							
Engineering Design	1	LS	\$	5,000.00	\$	5,000.00	Recent Project Costs
Cofferdam / Control of Water	1	LS	\$	20,000.00	\$	20,000.00	Recent Project Costs
Orthogod						05 000 00	
Subtotal					\$	25,000.00	
Spillway Stabilization							
Form/Place Concrete Within Spillway Cells	275	CY	\$	1,100.00	\$	302,785.19	Recent Project Costs/Engineer's Judgement
Fiber Mesh	275	CY	\$	100.00	\$	27,525.93	Recent Project Costs/Engineer's Judgement
Subtotal					\$	330,311.11	
Repair Gated Outlet							
Stabilize Upstream Side with Concrete	36	CY	\$	1,100.00	\$	39,111.11	Recent Project Costs
Stabilize Downstream Side with Concrete	36	CY	\$	1,100.00	\$	39,111.11	Recent Project Costs
Subtotal					\$	78,222.22	
Gubtotai					Ψ	10,222.22	
				SUBTOTAL		486,000.00	(Rounded to the nearest \$1,000)
			С	ontract Bonds		5,000.00	1% of Project Subtotal
				Contingency		123,000.00	25%
OPINION OF TOTAL	CONSTRU	CTION C	OST	(Base Work)	\$	614,000.00	
OPINION OF TOTAL				(Base Work) 1, & Permitting		614,000.00 180,000.00	
OPINION OF TOTAL	Engine	ering, D	esign		\$,	

PROJECT : Oyste	r River Dam at Mill Pond - Durham,	PROJECT NUMBER: 19169.00
SUBJECT: Conce	otual Opinion of Probable Cost - Rede	sign
COMPUTATIONS	BY: HMS	DATE: OCT 2020
CHECK BY:	ARO	DATE: OCT 2020

CONCEPTUAL OPINION OF PROBABLE COST - Alt. 4: Redesign

CONCEPTUAL OPINION OF					lt. 4:		
Item	Quantity	Unit		Jnit Price		Total	Source
General Bid Items	4	MON	\$	8,200.00	\$	22,800,00	Engineers Judgment
Project Superintendent QC Plans	4 1	LS	ъ \$	1,000.00	э \$	32,800.00 1,000.00	Engineers Judgment
Submittals	15	EA	\$	175.00	\$	2.625.00	Engineers Judgment
Schedules	8	EA	\$	150.00	\$	1,200.00	Engineers Judgment
Meetings	16	EA	\$	150.00	\$	2,400.00	Engineers Judgment
Portable Toilets	4	MON	\$	150.00	\$	600.00	Engineers Judgment
Concrete Sampling/Testing	12	EA	\$	400.00	\$	4,800.00	Engineers Judgment
Concrete Compression Tests	12	EA	\$	30.00	φ \$	4,000.00	Engineers Judgment
Subtotal	12	LA	Ψ	50.00	\$	45,785.00	Engineers sudgment
					Ψ	40,700.00	
Abilization & Demolition	1	LS	¢	15 000 00	¢	25,000,00	Engineero ludament
Mobilization Demobilization	1	LS	\$ \$	15,000.00 10,000.00	\$ \$	25,000.00 15,000.00	Engineers Judgment Engineers Judgment
Subtotal	1	L0	Ψ	10,000.00	\$	40,000.00	Engineers sudgment
					Ψ	40,000.00	
rosion & Sediment Control Straw bales	100	LF	¢	7.00	\$	700.00	Recent Project Costs
Silaw bales	100	LF	\$	5.00	э \$	500.00	Recent Project Costs Recent Project Costs
Maintenance	100	LF	\$ \$	1,500.00	э \$	1,500.00	Engineer's Judgment
Subtotal	1	L3	φ	1,500.00	\$	2,700.00	Engineers sudgment
					Ľ.	_,: ••••••	
ontrol of Water Engineering Design	1	LS	\$	10.000.00	\$	10,000.00	Recent Project Costs
Cofferdam / Diversions	1	LS	\$	35,000.00	\$	35,000.00	Recent Project Costs
Dewatering	1	LS	\$	2,500.00	\$	2,500.00	·····
Subtotal				,	\$	47,500.00	
ated Outlet Headwall Demolition							
Remove & Dispose Existing Gates	1	LS	\$	2,000.00	\$	2,000.00	Recent Project Costs
Remove Existing Material	125	CY	\$	40.00	\$	5,000.00	Recent Project Costs
Disposal	240	TON	\$	15.00	\$	3,600.00	
Subtotal					\$	10,600.00	
econstruct Gated Outlet							
New Slide Gate	1	LS	\$	10,000.00	\$	10,000.00	Recent Project Costs
Install Slide Gate	2	DAY	\$	2,500.00	\$	5,000.00	Recent Project Costs
Gatehouse Concrete Structure	70	CY	\$	1,400.00	\$	98,000.00	-
Subtotal					\$	113,000.00	
ill Left Abutment							
Import Engineered Fill	60	TON	\$	25.00	\$	1,500.00	Recent Project Costs
Engineered Fil Placement	30	CY	\$	30.00	\$	900.00	Recent Project Costs
Import Loam	10	TON	\$	25.00	\$	250.00	Recent Project Costs
Loam and Seed	20	CY	\$ \$	9.00	\$	180.00	Recent Project Costs
concrete cap	1	CY	\$	1,400.00	\$	1,400.00	Recent Project Costs
Subtotal					\$	4,230.00	
rimary Spillway Wall							
R&D Existing	120	CY	\$	350.00	\$	42,000.00	Recent Project Costs
New Spillway	90	CY	\$	1,400.00	\$	126,000.00	Recent Project Costs
Subtotal					\$	168,000.00	
uxiliary Spillway Wall							
Spillway Wall	50	CY	\$	1,400.00	\$	70,000.00	Recent Project Costs
Engineered Fil Placement	60	CY	\$	30.00	\$	1,800.00	Recent Project Costs
Training Wall	25	CY	\$	1,400.00	\$	35,000.00	Recent Project Costs
Import Engineered Fill	120	TON	\$	35.00	\$	4,200.00	Recent Project Costs
Subtotal					\$	111,000.00	
onstruct Dike							
Import Engineered Fill	100	TON	\$	25.00	\$	2,500.00	Recent Project Costs
Engineered Fil Placement	50	CY	\$	30.00	\$	1,500.00	Recent Project Costs
Import Loam	30	TON	\$	25.00	\$	750.00	Recent Project Costs
Loam and Seed	15	CY	\$	9.00	\$	135.00	Recent Project Costs
Import Bedding Stone	30	TON	\$	35.00	\$	1,050.00	Recent Project Costs
Import Riprap	30	TON	\$	35.00	\$	1,050.00	Recent Project Costs
Riprap Slope Protection	15	SY	\$	75.00	\$	1,125.00	Recent Project Costs
Subtotal					\$	8,110.00	
			~	SUBTOTAL		551,000.00	(Rounded to the nearest \$1,000)
			Co	ontract Bonds		6,000.00 139.000.00	1% of Project Subtotal 25%
				Contingency		139,000.00	20%
OPINION OF TOTAL C				(Base Work) & Permitting		696,000.00 300,000.00	
				vices Budget		150,000.00	
OPINION OF TO						1,146,000.00	
				(Ŧ	.,	

 PROJECT : Oyster River Dam at Mill Pond - Durham, NH
 PROJECT NUMBER: 19169.00

 SUBJECT: Conceptual Opinion of Probable Cost - Removal & Channel Restoration
 DATE: OCT 2020

 COMPUTATIONS BY: HMS
 DATE: OCT 2020

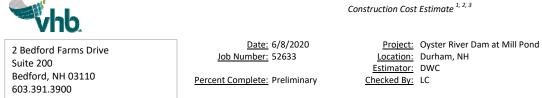
 CHECK BY:
 ARO
 DATE: OCT 2020

CONCEPTUAL OPINION OF PROBABLE COST - Alt. 5: Removal & Channel Restoration

Item		Quantity	Unit	<u> </u>	Unit Price		Total	Source
Concerned Rid House								
General Bid Items	andant	2	MON	¢	8 200 00	¢	24 600 00	Engineero Judament
Project Superint	C Plans	3 1	MON LS	\$ \$	8,200.00 5,000.00	\$	24,600.00	Engineers Judgment
	omittals		EA	ъ \$		\$	5,000.00	Engineers Judgment
		16			150.00	\$	2,400.00	Engineers Judgment
	nedules	8	EA	\$	150.00	\$	1,200.00	Engineers Judgment
	eetings	12	EA	\$	150.00	\$	1,800.00	Engineers Judgment
Portable		3	MON	\$	150.00	\$	450.00	Engineers Judgment
Sieve Ar		2	TEST	\$	100.00	\$	200.00	Laboratory Quote plus markup
Chemical Soi	il Tests	2	TEST	\$	1,000.00	\$	2,000.00	Recent project bids
Su	ubtotal					\$	37,650.00	
Abilization & Demolition								
	ization	1	LS	\$	15,000.00	\$	15,000.00	Engineers Judgment
Demobil		1	LS	\$	5,000.00	\$	5,000.00	Engineers Judgment
			20	Ψ	0,000.00	-		
Su	ubtotal					\$	20,000.00	
Erosion & Sediment Control								
Strav	w bales	100	LF	\$	7.00	\$	700.00	Recent Project Costs
Silt	Fence	100	LF	\$	5.00	\$	500.00	Recent Project Costs
Mainte	enance	1	LS	\$	1,500.00	\$	1,500.00	Engineer's Judgment
				+	.,	-		5 5
Si	ubtotal					\$	2,700.00	
Control of Water								
Engineering	Design	1	LS	\$	7,500.00	\$	7,500.00	Recent Project Costs
Dive	ersions	1	LS	\$	25,000.00	\$	25,000.00	Recent Project Costs
Dew	atering	1	LS	\$	5,000.00	\$	5,000.00	
Su	ubtotal					\$	37,500.00	
Demolition (Dam)	Ladder	<u> </u>	01/	¢	200.00	¢	40,000,00	Descript Drainet Consta
		60	CY	\$	300.00	\$	18,000.00	Recent Project Costs
Spillway S	Section	120	CY	\$	300.00	\$	36,000.00	Recent Project Costs
Su	ubtotal					\$	54,000.00	
Dam Site Channel Restoration								
Sediment Exca	avation	250	CY	\$	14.00	\$	3,500.00	NHDOT 203.4
Handle Se	ediment	250	CY	\$	40.00	\$	10,000.00	NHDOT 203.35
Streambed Fill Place	cement	1020	CY	\$	75.00	\$	76,500.00	
Channel Creation Da	am Site	15	DAY	\$	3,500.00	\$	52,500.00	
Su	ubtotal					\$	142,500.00	
					OUDTOTAL	¢	205 000 00	(Pounded to the recreat \$1,000)
				~	SUBTOTAL		295,000.00	(Rounded to the nearest \$1,000)
				C	ontract Bonds		3,000.00	1% of Project Subtotal
					Contingency		75,000.00	25%
OPINION OF	TOTAL C	ONSTRUC	TION CO	OST	(Base Work)	Þ	373,000.00	
OPINION OF	TOTAL C				<pre>(Base Work) n & Permitting</pre>		373,000.00 150,000.00	
OPINION OF T		Engine	ering, De	esigr		\$		

 PROJECT : Oyster River Dam at Mill Pond - Durham, NH
 PROJECT NUMBER: 19169.00

 SUBJECT: Conceptual Opinion of Probable Cost - Removal & Channel Restoration
 DATE: OCT 2020


 COMPUTATIONS BY: HMS
 DATE: OCT 2020

 CHECK BY:
 ARO
 DATE: OCT 2020

CONCEPTUAL OPINION OF PROBABLE COST - Alt. 5: Channel Restoration in Pond (ADD)

Item		Quantity	Unit	Ī	Jnit Price	 Total	Source
General Bid Items							
	Project Superintendent	2	MON	\$	8,200.00	\$ 16,400.00	Engineers Judgment
	QC Plans	1	LS	\$	5,000.00	\$ 5,000.00	Engineers Judgment
	Submittals	6	EA	\$	150.00	\$ 900.00	Engineers Judgment
	Schedules	2	EA	\$	150.00	\$ 300.00	Engineers Judgment
	Meetings	8	EA	\$	150.00	\$ 1,200.00	Engineers Judgment
	Portable Toilets	2	MON	\$	150.00	\$ 300.00	Engineers Judgment
	Sieve Analyses	2	TEST	\$	100.00	\$ 200.00	Laboratory Quote plus markup
	Chemical Soil Tests	2	TEST	\$	1,000.00	\$ 2,000.00	Recent project bids
	Subtotal					\$ 26,300.00	
Mobilization & Demolition							
	Mobilization	1	LS	\$	15,000.00	\$ 15,000.00	Engineers Judgment
	Demobilization	1	LS	\$	5,000.00	\$ 5,000.00	Engineers Judgment
	Subtotal					\$ 20,000.00	
Erosion & Sediment Control							
	Straw bales	400	LF	\$	7.00	\$ 2,800.00	Recent Project Costs
	Silt Fence	1300	LF	\$	5.00	\$ 6,500.00	Recent Project Costs
	Maintenance	1	LS	\$	1,500.00	\$ 1,500.00	Engineer's Judgment
	Subtotal					\$ 10,800.00	
Control of Water							
	Engineering Design	1	LS	\$	3,000.00	\$ 3,000.00	Recent Project Costs; Add to site work
	Diversions	1	LS	\$	60,000.00	\$ 60,000.00	Recent Project Costs; Add to site work
	Dewatering	1	LS	\$	2,500.00	\$ 2,500.00	Recent Project Costs; Add to site work
	Subtotal					\$ 65,500.00	
Sediment Management							
-	Access Ramps / Roads	1	LS	\$	35,000.00	\$ 35,000.00	Engineers Judgment
	Sediment Excavation	3000	CY	\$	14.00	\$ 42,000.00	NHDOT 203.4
	Handle Sediment	3000	CY	\$	40.00	\$ 120,000.00	NHDOT 203.35
	Dispose Sediment	4860	ΤN	\$	50.00	\$ 243,000.00	NHDOT 181.11 (assume unregulated)
	Subtotal					\$ 440,000.00	
					SUBTOTAL	\$ 563,000.00	(Rounded to the nearest \$1,000)
				Сс	ontract Bonds	\$ 6,000.00	1% of Project Subtotal
					Contingency	142,000.00	25%
	OPINION OF TOTAL O	ONSTRUC	TION CO	OST	(Base Work)	\$ 711,000.00	
		Engine	ering, De	esign	& Permitting	\$ 80,000.00	
		Constructio	on Phase	e Ser	vices Budget	\$ 60,000.00	

Page 1 of 4

Option Summary								
Option Type	Option Name	Total Cost						
Access	Mill Pond Road	\$47,929						
Access	Newmarket Road	\$106,393						
Dredging	Mechanical Dredging - Area 1	\$273,537						
Dredging	Hydraulic Dredging - Area 1	\$321,727						
Dredging	Mechanical Dredging - Area 2	\$447,870						
Dredging	Hydraulic Dredging - Area 2	\$393,664						
Dredging	Mechanical Dredging - Area 3	\$312,268						
Dredging	Hydraulic Dredging - Area 3	\$298,197						
Off-Site Disposal	Area 1	\$246,708						
Off-Site Disposal	Area 2	\$433,800						
Off-Site Disposal	Area 3	\$264,600						
Engineering Services	All Options	\$65,500						

Oyster River Dam at Mill Pond

Pond Restoration through Dredging

Preliminary Cost Estimate - DRAFT for REVIEW

Dredge

	Dredge Area	Volume		Dredging	Total	Mobilization	Engineering		Project Total
Area	<u>(sf)</u>	<u>(CY)</u>	Access Option ³	Option	Construction Cost	and Site Access	Services ⁴	25% Contingency	Cost
Area 1	23,500	3,560	Mill Pond Road	Mechanical	\$568,174	45,454	\$65,500	\$153,407	\$840,000
Area 1	23,500	3,560	Newmarket Road	Hydraulic	\$674,828	53,986	\$65,500	\$182,203	\$980,000
Area 2	46,300	4,820	Mill Pond Road	Mechanical	\$929 <i>,</i> 599	74,368	\$65,500	\$250,992	\$1,330,000
Area 2	46,300	4,820	Newmarket Road	Hydraulic	\$933,857	74,709	\$65,500	\$252,141	\$1,330,000
Area 3	34,000	2,940	Newmarket Road	Mechanical	\$683,261	54,661	\$65,500	\$184,481	\$990,000
Area 3	34,000	2,940	Newmarket Road	Hydraulic	\$669,190	53,535	\$65,500	\$180,681	\$970,000
Total⁵	103,800	11,320	(Both)	Mechanical	\$2,141,034	171,283	\$65,500	\$578,079	\$2,960,000
Total	103,800	11,320	Newmarket Road	Hydraulic	\$2,277,875	182,230	\$65,500	\$615,026	\$3,150,000
	DOT items where	annlicable							

VHB used DOT items where applicable

²VHB generated unit prices for construction items through a combination of NHDOT's Weighted Bid Prices, online resources, external consultation, RSMeans, and previous DOT and other in-water project experience. VHB conservatively estimated quantities for items using aerial takeoffs in AutoCAD,

³Hydraulic dredging is only feasibile from the Newmarket Road access option; there is insufficient space for operations at the Mill Pond Road access option

⁴Includes design, permitting, bathymetric survey, sediment sampling, natural resources delineation, etc.

⁵Total cost for all areas assumes 200 LF reduction in cofferdam length to mechanical dredge Areas 1 and 2 concurrently.

Hydraulic dredge turbidity curtain remains unchanged to contain individual dredge cells.

Construction Cost Estimate ^{1, 2, 3}

whb.

2 Bedford Farms Drive Suite 200 Bedford, NH 03110 603.391.3900 <u>Date:</u> 6/8/2020 Job Number: 52633

Percent Complete: Preliminary

Project:	Oyster River Dam at Mill Pond
Location:	Durham, NH
Estimator:	DWC
Checked By:	LC

Access Options

Mill Pond Road via Mill Pond Road Park for Areas 1 and 2

Item No.	Qty.	<u>Unit</u>	Description	<u>u</u>	Init Cost	<u>Amount</u>
102.3	16	HR	CONTROL OF INVASIVE PLANTS EXISTING ON SITE	\$	450.00	\$ 7,200.00
102.33	8	HR	INVASIVE PLANT MANAGEMENT STRATEGY	\$	280.00	\$ 2,240.00
102.511	4	EA	TREE PROTECTION - ARMORING AND PRUNING	\$	450.00	\$ 1,800.00
102.52	100	FT	TEMPORARY TREE PROTECTION FENCING	\$	15.00	\$ 1,500.00
443.	0.7	MGL	WATER FOR ROADWAY DUST CONTROL	\$	55.00	\$ 38.50
657.	400	FT	TEMPORARY FENCE	\$	20.00	\$ 8,000.00
697.1	4	EA	SILT SACK	\$	175.00	\$ 700.00
-	900	SY	RUBBER/IMPERMEABLE LINER	\$	15.00	\$ 13,500.00
765.	900	SY	SEEDING	\$	2.50	\$ 2,250.00
767.12	400	FT	COMPOST FILTER TUBES	\$	8.00	\$ 3,200.00
-	1	LS	TRAFFIC MANAGEMENT	\$	7,500.00	\$ 7,500.00
				Optio	on Subtotal	\$ 47,928.50

Newmarket Road via Map 6 Lot 9-6-1 for Area 3 and for all hydraulic dredging options

Item No.	Qty.	, <u>Unit</u>	Description	,	Unit Cost	Amount
101.	0.1	А	CLEARING AND GRUBBING	\$	20,000.00	\$ 2,000.00
102.3	16	HR	CONTROL OF INVASIVE PLANTS EXISTING ON SITE	\$	450.00	\$ 7,200.00
102.33	8	HR	INVASIVE PLANT MANAGEMENT STRATEGY	\$	280.00	\$ 2,240.00
102.52	80	FT	TEMPORARY TREE PROTECTION FENCING	\$	15.00	\$ 1,200.00
443.	70	MGL	WATER FOR ROADWAY DUST CONTROL	\$	55.00	\$ 3,850.00
304.4	593	CY	CRUSHED STONE FOR TEMPORARY ACCESS ROAD	\$	30.00	\$ 17,790.00
595.5	1778	SY	GEOGRID FOR TEMPORARY ACCESS ROAD	\$	6.00	\$ 10,668.00
-	900	SY	RUBBER/IMPERMEABLE LINER	\$	15.00	\$ 13,500.00
765.	1778	SY	SEEDING	\$	2.50	\$ 4,445.00
767.12	2000	FT	COMPOST FILTER TUBES	\$	8.00	\$ 16,000.00
-	1	LS	TRAFFIC MANAGEMENT	\$	7,500.00	\$ 7,500.00
-	1	LS	SHORELINE TREE RESTORATION	\$	20,000.00	\$ 20,000.00
				Opt	ion Subtotal	\$ 106,393.00

Dredging Options

Mechanical	Dredging -	- Area 1				
Item No.	Qty.	<u>Unit</u>	Description		Unit Cost	Amount
203.4	3560	CY	MUCK EXCAVATION	\$	11.00	\$ 39,160.00
203.35	3560	CY	HANDLING EXCAVATED CONTAMINATED SOILS	\$	34.00	\$ 121,040.00
-	653	SY	TEMPORARY SWAMP MATS	\$	25.00	\$ 16,325.00
-	380	LF	6 FT SUPERSACK COFFERDAM WITH POLY SHEETING	\$	200.00	\$ 76,000.00
-	49	CF	SUMP HOLE CONSTRUCTON, INCL. EXCAVATION GRAVEL, F	\$	2.21	\$ 108.29
-	8	DAY	PUMP INSTALLATION AND RETRIEVAL PER PUMP PER DAY	\$	243.00	\$ 1,944.00
-	240	DAY	ADDITIONAL PUMPING PER PUMP PER DAY	\$	79.00	\$ 18,960.00
				Opt	tion Subtotal	\$ 273,537.29

Hydraulic Dredging - Area 1

Item No.	Qty.	<u>Unit</u>	Description		Unit Cost	<u>Amount</u>
203.383	3560	CY	LIVE LOADING CONTAMINATED SOILS	\$	10.00	\$ 35,600.00
-	800	LF	15' TURBIDITY CURTAIN	\$	40.00	\$ 32,000.00
-	1	LS	ADDITIONAL BOATS	\$	10,000.00	\$ 10,000.00
-	6052	LF	GEOTUBES (5 FT DIA)	\$	6.00	\$ 36,312.00
-	1	LS	PUMPING SYSTEM	\$	50,000.00	\$ 50,000.00
-	1	LS	ADDITIONAL DEWATERING BAG MATERIALS	\$	30,000.00	\$ 30,000.00
-	4035	SY	REINFORCED POLYETHYLETE LINER	\$	11.25	\$ 45,393.75
-	4035	SY	FILTRATION FABRIC	\$	15.00	\$ 60,525.00
-	762	FT	SEDIMENT CONTROL BARRIER	\$	8.00	\$ 6,096.00
-	100	LB	DISPOSAL OF GRANULAR ACTIVATED CARBON	\$	8.00	\$ 800.00
-	30	DAY	EQUIPMENT RENTAL CONTINGENCY	\$	500.00	\$ 15,000.00
				Opt	tion Subtotal	\$ 321,726.75

Page 3 of 4

Construction Cost Estimate ^{1, 2, 3}

Estimator: DWC

Checked By: LC

25.00 Ś

2.21 \$

243.00 \$

79.00 \$

Option Subtotal \$ 447,870.29

<u>Unit Cost</u>

Unit Cost

10,000.00

6.00 \$

30,000.00 \$

11.25 \$

15.00 \$

8.00 \$

500.00 \$

8.00 \$

\$

Location: Durham, NH

Project: Oyster River Dam at Mill Pond

Amount

108.29

5,832.00

56,880.00

Amount

10,000.00

49,164.00

30,000.00

61,458.75

81,945.00

15,000.00

7,096.00

800.00

10.00 \$ 48,200.00

40.00 \$ 40,000.00

\$

50,000.00 \$ 50,000.00

11.00 \$ 53,020.00

34.00 \$ 163,880.00 32,150.00

200.00 \$ 136,000.00

	vh	b.		Con.
	2 Bedford Fa	arms Drive	<u>Date:</u> 6/8/2020	
	Suite 200		Job Number: 52633	
	Bedford, NH	03110	Percent Complete: Preliminary	
	603.391.390		reicent complete. Freiminary	
Mechanico	al Dredging -	Area 2		
Item No.	Qty.	Unit	Description	!
203.4	4820	CY	MUCK EXCAVATION	\$
203.35	4820	CY	HANDLING EXCAVATED CONTAMINATED SOILS	\$ \$ \$
-	1286	SY	TEMPORARY SWAMP MATS	\$
-	680	LF	6 FT SUPERSACK COFFERDAM WITH POLY SHEETING	\$
-	49	CF	SUMP HOLE CONSTRUCTON, INCL. EXCAVATION GRAVEL,	F\$
-	24	DAY	PUMP INSTALLATION AND RETRIEVAL PER PUMP PER DAY	\$
-	720	DAY	ADDITIONAL PUMPING PER PUMP PER DAY	\$
				Opt
Hydraulic	Dredging - A	rea 2		
Item No.	Qty.	Unit	Description	ļ
203.383	4820	CY	LIVE LOADING CONTAMINATED SOILS	\$
-	1000	LF	15' TURBIDITY CURTAIN	\$
-	1	LS	ADDITIONAL BOATS	\$
-	8194	LF	GEOTUBES (5 FT DIA)	\$ \$ \$
-	1	LS	PUMPING SYSTEM	\$
-	1	LS	ADDITIONAL DEWATERING BAG MATERIALS	\$
-	5463	SY	REINFORCED POLYETHYLETE LINER	\$
_	5463	SY	FILTRATION FABRIC	
_	887	FT	SEDIMENT CONTROL BARRIER	\$ \$
_	100	LB	DISPOSAL OF GRANULAR ACTIVATED CARBON	ŝ
	100	20	Dist Conte of Change and Change a	Ŷ

30

-

. ~

DAY

Option Subtotal \$ 393,663.75 Mechanical Dredging - Area 3 Item No. <u>Qty.</u> <u>Unit</u> **Description** Unit Cost Amount 203.4 2940 CY MUCK EXCAVATION \$ 11.00 \$ 32,340.00 203.35 2940 HANDLING EXCAVATED CONTAMINATED SOILS 99,960.00 CY 34.00 \$ \$ 25.00 \$ 23,600.00 944 SY TEMPORARY SWAMP MATS \$ --520 LF 6 FT SUPERSACK COFFERDAM WITH POLY SHEETING \$ 200.00 \$ 104,000.00 SUMP HOLE CONSTRUCTON, INCL. EXCAVATION GRAVEL, F \$ 49 CF 2.21 \$ 108.29 -20 DAY PUMP INSTALLATION AND RETRIEVAL PER PUMP PER DAY \$ 243.00 \$ 4,860.00 _ \$ 79.00 <u>\$ 47,400.00</u> Option Subtotal <u>\$ 312,268.29</u> 600 DAY ADDITIONAL PUMPING PER PUMP PER DAY -

EQUIPMENT RENTAL CONTINGENCY

Hydraulic D	redging - A	rea 3				
Item No.	Qty.	Unit	Description	<u> </u>	<u> Jnit Cost</u>	Amount
203.383	2940	CY	LIVE LOADING CONTAMINATED SOILS	\$	10.00	\$ 29,400.00
-	1000	LF	15' TURBIDITY CURTAIN	\$	40.00	\$ 40,000.00
-	1	LS	ADDITIONAL BOATS	\$	10,000.00	\$ 10,000.00
-	4998	LF	GEOTUBES (5 FT DIA)	\$	6.00	\$ 29,988.00
-	1	LS	PUMPING SYSTEM	\$	50,000.00	\$ 50,000.00
-	1	LS	ADDITIONAL DEWATERING BAG MATERIALS	\$	30,000.00	\$ 30,000.00
-	3332	SY	REINFORCED POLYETHYLETE LINER	\$	11.25	\$ 37,485.00
-	3332	SY	FILTRATION FABRIC	\$	15.00	\$ 49,980.00
-	693	FT	SEDIMENT CONTROL BARRIER	\$	8.00	\$ 5,544.00
-	100	LB	DISPOSAL OF GRANULAR ACTIVATED CARBON	\$	8.00	\$ 800.00
-	30	DAY	EQUIPMENT RENTAL CONTINGENCY	\$	500.00	\$ 15,000.00
				Opti	on Subtotal	\$ 298,197.00

whb.		Construction Cost	Estimate ^{1, 2, 3}
2 Bedford Farms Drive Suite 200 Bedford, NH 03110 603.391.3900	<u>Date:</u> 6/8/2020 Job Number: 52633 <u>Percent Complete:</u> Preliminar	Location: Estimator:	
	Off-Site Disposal for Area 1		
Qty. Unit 3,524 TON 1,762 TON	Description DISPOSAL OF UNREGULATED SOIL DISPOSAL OF REGULATED SOIL IN-STATE FACILITY	Unit Cost \$ 40.00 \$ 60.00 Subtotal	Amount \$ 140,976.00 \$ 105,732.00 \$ 246,708.00

Off-Site Disposal for Area 2

<u>ltem No.</u> 181.11

181.12

Item No.	Qty.	Unit	Description	Unit Cost	Amount
181.12	7,230	TON	DISPOSAL OF REGULATED SOIL IN-STATE FACILITY	\$ 60.00	\$ 433,800.00
				Subtotal	\$ 433,800.00

Off-Site Disposal for Area 3

<u>ltem No.</u> 181.12	<u>Qty.</u> 4,410	<u>Unit</u> TON	<u>Description</u> DISPOSAL OF REGULATED SOIL IN-STATE FACILITY	\$ <u>Unit Cost</u> 60.00	\$ <u>Amount</u> 264,600.00
				Subtotal	\$ 264,600.00

Construction Monitoring and Engineering Services

Item No.	Qty.	Unit	Description	Unit Cost	Amount
100.	1	LS	SCHEDULE OF OPERATIONS - FIXED PRICE	\$ 15,000.00	\$ 15,000.00
180.01	1	LS	ENVIRONMENTAL HEALTH AND SAFETY PROGRAM	\$ 5,500.00	\$ 5,500.00
180.02	100	HR	PERSONAL PROTECTION LEVEL C UPGRADE	\$ 10.00	\$ 1,000.00
-	160	HR	PROFESSIONAL ENGINEERING SERVICES	\$ 150.00	\$ 24,000.00
756.	1	LS	NPDES STORMWATER POLLUTION PREVENTION PLAN	\$ 5,000.00	\$ 5,000.00
148.02	1	LS	BATHYMETRIC POST-CONSTRUCTION SURVEY	\$ 15,000.00	\$ 15,000.00

Subtotal \$ 65,500.00

Appendix D: Sediment Evaluation Supporting Documents

Appendix D.1: June 2020 Sediment Sampling Analysis Plan

Sediment Evaluation for Feasibility Study

Oyster River Dam at Mill Pond

PREPARED FOR

Town of Durham Department of Public Works 100 Stone Quarry Drive Durham, NH, 03824 603.868.5578

PREPARED BY

2 Bedford Farms Drive, Suite 200 Bedford, NH 03110 603.391.3900

JUNE 2020

Table of Contents

1	Intro	duction	1
2	Proje	ect Background	3
	2.1	Site Description	3
	2.2	Due Diligence Review	4
		2.2.1 NHDES Environmental Database Search	4
		2.2.2 Previous Investigations	5
	2.3	Data Gap Analysis & Recommended Supplemental Data Collection Appr	
			6
3	Field	Sampling Procedures	7
	3.1	Sediment Sampling Locations	7
	3.2	Field Sampling Methods	8
	3.3	Sample Handling & Custody Protocols	8
	3.4	Decontamination & Waste Handling Protocols	9
4	Labo	ratory Analytical Methods	10
5	Qual	ity Control Measures	11
	5.1	Field Quality Control	11
	5.2	Equipment Maintenance and Calibration	11
	5.3	Data Verification & Validation	12
6	Data	Evaluation and Reporting	13
7	Refe	rences	14

List of Tables

Table No.	Description	Page
Table 1	Summary of Environmental Database Search Results	4
Table 2	Proposed Supplemental Sediment Sampling Scheme	7
Table 3	Sample Handling Requirements	9
Table 4	Field Quality Control Sample Requirements	11
Table 5	Field Equipment Performance and Corrective Action Requirements	12

List of Figures

Figure 1	Site Location Plan
Figure 2	2009 Exploration Location Plan
Figure 3	Proposed Supplemental Sediment Sampling Location Plan

List of Appendices

- Appendix A NHDES Environmental Database Search Results
- Appendix B 2009 Sediment Sampling Analytical Results
- Appendix C 2019 UNH Study Report Appendix
- Appendix D Sediment Sampling Field Form
- Appendix E Laboratory Reporting Limits
- Appendix F Screening Level Ecological Reference Values

Introduction

The Town of Durham, New Hampshire has contracted with VHB, and our partners Pare Corporation (Pare) and Weston & Sampson (W&S), to conduct a Feasibility Study (Study) of the Oyster River dam located at Mill Pond in Durham. The 100-year-old dam has been the subject of various Town-sponsored engineering studies and inspections by the New Hampshire Department of Environmental Services (NHDES) Dam Bureau over the last several decades, which have documented its deteriorating condition. In 2018, the NHDES issued a Letter of Deficiency (LOD) to the Town stating that that the dam lacks adequate discharge capacity for the 50-year flood event, which does not comply with the current state regulations for low-hazard structures (Env-Wr 303.11). The LOD requires the Town to develop a plan for corrective action by December 2020.

The purpose of the Feasibility Study is to characterize the existing environmental conditions at the Mill Pond impoundment and evaluate various alternatives to address noted deficiencies, including dam rehabilitation and removal. The Study will be used to supplement previous investigative work on the subject and facilitate the Town's selection of a preferred alternative in advance of the LOD's response deadline.

A key component of the Study is to assess the potential for adverse effects on water quality and benthic conditions downstream of the existing dam location from increased sediment migration associated with a possible 'dam-out' alternative. Risk factors include the relative amount of sediment likely to be mobilized by dam removal, which is largely dependent on physical nature of the deposits (i.e., thickness, stratigraphy, and grain size distribution), and the level of chemical contamination associated with the sediments (NHDES, 2016; NHDES, 2018). Although some relevant data can be used from previous studies, additional information is needed to adequately characterize the accumulated sediment within the impoundment in support of the sediment evaluation for the larger Feasibility Study. The purpose of this Sediment Sampling and Analysis Plan (SAP) is to inform and guide the collection of that supplemental field and analytical data. The subsequent sections of this SAP present the background information, which provides the basis for the recommended sampling and analysis program (**Section 2**); field and analytical methods to be used to generate the data (**Sections 3 and 4**); quality control measures to be implemented as part of the study (Section 5); and, data evaluation and reporting procedures (**Section 6**).

2

Project Background

This section of the SAP provides a brief overview of the Oyster River dam / Mill Pond site and summarizes the results of VHB's due diligence review of available environmental data and information. Based on this review and subsequent data gap analysis, VHB developed a recommended supplemental data collection approach, which is detailed in the subsequent sections of this plan.

2.1 Site Description

The Mill Pond is a highly visible, iconic water feature located at the eastern gateway to Durham (see **Figure 1).** The 9.5-acre impoundment within the Oyster River is formed by the Oyster River Dam, also referred to as Mill Pond Dam (NHDES Dam #071.03). The Amberson-style dam was originally constructed in 1913 and is now over 100 years old. The pond is relatively shallow with nearly half of the impoundment having less than 3 feet of water. The backwater effect of the dam extends approximately 3,700 feet up the Oyster River channel from the point where the river enters the pond.

The dam's location at the head of tidewater of the Oyster River is ecologically significant. The Oyster River is a major tributary of the Great Bay, one of the largest estuaries on the East Coast, with an area of approximately 6,000 acres. Thus, the river provides important habitat for diadromous fish species, which use the river and its tributaries for spawning and nursery habitat. Mill Pond itself supports habitat for both aquatic species and waterfowl. The dam was renovated in the 1970s to address significant deterioration. At that time, the Town worked with the NH Fish and Game Department (NHF&G) to install a denil fish ladder at the dam to create a means of upstream fish passage.

In addition to the previously noted structural concerns associated with the dam, declining water quality conditions have been observed in the Mill Pond impoundment of the Oyster River, presumably due in part to periodic stagnant water conditions. NHDES' 303(d) list of impaired water bodies identifies the Oyster River/Mill Pond segment as being impaired for occasional low dissolved oxygen levels and elevated chlorophyll *a* level (a measure of algal productivity in the water column). These two impairments negatively affect the integrity of the aquatic life and recreational uses, respectively, and indicate eutrophic conditions typical of impounded water bodies. In addition, the downstream estuarine portion of the Oyster River is listed as impaired due to low dissolved oxygen levels and reduced water clarity which are typical indicators of nutrient enrichment which has been linked to nitrogen contributions.

2.2 Due Diligence Review

This section summarizes VHB's review of existing sediment data and environmental information, which was considered in the development of a supplemental sampling and analysis program.

2.2.1 NHDES Environmental Database Search

VHB conducted a review of the searchable online environmental database ("OneStop") maintained by the NHDES, to identify contaminant sources that may have the potential to impact sediment quality within the Mill Pond dam impoundment. The database was queried to identify state regulated sites (e.g., storage tank facilities, hazardous waste generators, remediation sites) located within one mile from the Mill Pond dam and within the dam watershed (i.e., area of interest). The results of this query are summarized in the table below; graphical and detailed tabular outputs from the database query are also provided in **Appendix A**.

Type of Site		No. of Sites Located within the Area of Interest
Aboveground Storage Tank (AST) Sites		5
Underground Storage Tank (UST) Sites		12
Remediation Sites		26
Hazardous Waste Generators		4
Solid Waste Facilities		0
NPDES Outfalls		0
Local Potential Contamination Sites		0
	TOTAL:	84

Table 1 Summary of Environmental Database Search Results

While the query results indicate that multiple regulated storage tank and hazardous waste generator sites are located within the area of interest, the presence of these facilities, in and of themselves, is not indicative of a release of contaminants to the environment. Of the 26 remediation sites identified, 22 of these sites have been closed, indicating that any associated contaminant release(s) have been mitigated to the satisfaction of the NHDES. Further review of available database records for the remaining four active remediations sites similarly indicate that any associated release(s) are unlikely to significantly impact sediment quality at the Mill Pond given their location and facility type.

In addition to this regulated site information, the Onestop Data Mapper provides access to the NHDES Environmental Monitoring Database (EMD), which is a repository of sampling data for a variety of environmental media collected from across the state. Chemical analysis results for multiple sediment samples collected downstream of the dam are available via the EMD (see **Appendix A**). This data can be used to compare potential differences in sediment chemistry based on more recent samples and especially upstream samples.

2.2.2 Previous Investigations

Bathymetric Survey and Sediment Sampling Study (VHB, 2009)

On behalf of the Town, VHB previously conducted a bathymetric survey and sediment sampling study of the Mill Pond area (VHB, 2009). As shown on **Figure 2**, twelve sediment samples were collected with eleven samples in the upstream impoundment (grab) and one downstream of the dam (composite) as part of this study. The samples were collected from depths up to 3 to 5 feet below the river bottom and analyzed for various parameters including, polychlorinated biphenyls (PCBs), pesticides, metals, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and grain size distribution.

The analytical results from the study, which are summarized in **Appendix B**, indicated concentrations of PCBs, pesticides, and VOCs were below the laboratory reporting levels in all samples, however, various PAH compounds, were detected in eight of the 12 sediment samples. Concentrations of various PAH compounds in these eight samples exceeded ecological screening criteria¹ selected for the study. The PAH concentrations were relatively similar throughout the impoundment, although the higher concentrations tended to be in samples collected in the off-channel, depositional areas just outside the main channel. The highest PAH concentrations were observed in a sample collected approximately 200 feet downstream of where Hamel Brook enters the impoundment. PAHs were below detection levels in samples collected closer to Mill Pond Road and farther away from the main channel. PAH compounds were also below detection levels in the downstream sample collected below the dam. PAHs are commonly associated with urban stormwater runoff and have been linked to driveway sealants and other pavement treatment products.

Metals including arsenic, cadmium, chromium, lead, and mercury were also detected in various sediment samples above the selected ecological screening criteria. Much like the PAHs, the detected metal concentrations in sediment did not vary much from one location to another. There were no distinct differences in the upstream sediment samples from those collected in the river channel versus those outside the river channel or from upstream of the dam to those downstream of the dam. These observations appear to hold true for arsenic and mercury, which were two of the most commonly detected metals. Arsenic has been found to be naturally abundant in the sediment and bedrock within New Hampshire. Mercury is predominantly contributed from atmospheric deposition associated with the stack emissions from major coal-fired power plants located mostly in the Midwest States.

UNH Sediment Study (Miller, H., 2019)

In 2019, a graduate student at the University of New Hampshire (UNH) completed a research project, which involved the characterization of sediment samples from two local dam impoundments (Mill Pond and Sawyer Mill Pond in Dover, NH) (Miller, H., 2019). As part of the study, surficial and core sediment samples were analyzed for grain size distribution and

¹ The 2009 study compared the observed parameter levels to the 1999 NOAA Ecological Risk Screening Threshold Effect Concentrations (TECs) established for various parameters, which represent the lowest concentrations where aquatic organisms might be at risk of adverse effects from long-term exposure to contaminant levels in freshwater sediments.

mercury content. Research findings reportedly indicate that relatively homogenous, finegrained sediment is located throughout the impoundment. Elevated levels of mercury (i.e., greater than the NOAA 1999 Upper Effects Threshold) were also reported at multiple locations within the impoundment, particularly at depths equal to or greater than 20 centimeters (about 8 inches). It was also reported that depositional areas adjacent to the main channel were more likely to contain fine-grained sediment, and therefore be associated with mercury contamination. In addition to air pollution from regional sources and possible upstream industrial sites, the former UNH waste incinerator, which closed in the 1980s, was identified as a possible local historical source of mercury contamination. A copy of the study analytical data summary appended to this report is provided in **Appendix C**.

2.3 Data Gap Analysis & Recommended Supplemental Data Collection Approach

VHB proposes to conduct an additional supplemental sampling effort to collect up to six (6) samples at various locations for chemical analysis and grain size distribution to address any potential data gaps and to verify that the sediment chemistry conditions are similar to those observed in 2009. The previous sediment sampling study collected samples from most of the impoundment area (i.e., immediately upstream of the dam to the upper limits of the impoundment) as well as immediately downstream of the dam. This new data as well as other more recent data collected by UNH students, as discussed above, will be used to supplement the characterization of sediment chemistry above and below the dam. Samples will be collected in areas where data may be limited such as the upper limits of the Hamel Brook channel and farther downstream below the dam where the channel widens out into a more estuarine environment. VHB proposes to collect at least one additional sample in each of these locations for sediment chemistry analysis. In addition, VHB will collect samples at two similar impoundment locations that were done in 2009 and immediately downstream of the dam. The impoundment locations will target the area where the highest levels of PAHs were observed in the previous sampling.

Based on the previous sediment data, VHB proposes to analyze the additional samples for PAHs and metals (RCRA 8), as well as for PCBs and pesticides due to their persistent, bioaccumulative and/or toxic properties (NHDES, 2005). Because volatile organic compounds (VOCs) were not detected in the previous sampling effort, VOC testing is not considered necessary for the additional sampling. Total phosphorous and nitrogen are also recommended for testing given the downstream water quality impairments.

As discussed above, review of NHDES' environmental monitoring database did not reveal any additional contaminant sources and/or individual chemical constituents of concern that should be included in the supplemental sampling and analysis program. Testing for per- and polyfluoroalkyl substances (PFAS) is not recommended at this time since the presence of these compounds are not anticipated given the due diligence review findings.

The proposed sampling locations are discussed in the next section.

3

Field Sampling Procedures

This section of the SAP outlines the methods and protocols to be implemented during the field sample and data collection program. In general, the sampling collection methods will be consistent with the U.S. Environmental Protection Agency's (USEPA's) Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual (USEPA, 2001).

3.1 Sediment Sampling Locations

A total of six (6) supplemental samples are planned for this effort at various locations relative to the dam, as described in the following table:

Sample ID	Sample Location Description	Grain Size Analysis	Chemical Analysis	Rationale
SED-13	Hamel Brook upstream near impoundment limits	1	1	Address spatial data gap upstream of sample with elevated levels of PAHs
SED-14	Hamel Brook upstream between SED-13 and SED-1	1	1	Address spatial data gap upstream of sample with elevated levels of PAHs
SED-15	Main river channel upstream of dam (targeting previous sample locations SED-3)	1	1	Confirm existing data is representative of current conditions; supplement existing impound data
SED-16; SED-16MS; SED-16MSD; SED-FD; SED-EB ¹	Main river channel upstream of dam (targeting previous sample locations SED-7 or SED-8)	1	5	Confirm existing data is representative of current conditions; supplement existing impound data
SED-17 A-E, SED-18 A-E ²	Downstream of Mill Pond dam in tidal estuary	2	2	Supplement existing downstream data
	Total:	6	6	

Table 2 Proposed Supplemental Sediment Sampling Scheme

Notes:

 VHB plans to collect field quality control samples from this sampling location; however, actual location will be determined in the field based on the amount of material available (i.e., where sufficient sediment material is available). MS - matrix spike; MSD indicates matrix spike duplicate; FD – field duplicate; EB – equipment blank.

Figure 3 shows the general locations of each of the proposed sediment samples. The actual locations of all samples will be determined in the field based on a review of local site

conditions, availability of access, riverbed substrate, as well as potential equipment limitations. The final sampling location selection will be determined in the field as targeted locations may shift depending on whether there is sufficient sediment deposits available to collect sediment material for all proposed parameters.

Sampling locations will be geo-referenced using a Trimble ProXT GPS Unit (or similar) capable of achieving sub-meter horizontal accuracy. A minimum of 60 GPS positions will be collected at each location to ensure that at least 90% of the GPS data is sub-meter accuracy. GPS data will be post-processed using Trimble GPS Analyst with Trible Delta Phase technology. Sampling locations will be reported in latitudes and longitudes (to the nearest hundredth of a second) or in state plane coordinates, relative to the North American datum (NAD) 1983. Additional Field instrument operation/maintenance requirements are discussed in Section 5.2.

3.2 Field Sampling Methods

Consistent with the 2009 study (VHB, 2009), the supplemental sediment samples will be collected using hand and gravity coring techniques (e.g., Wildco® Hand Corer or similar). Prior to sample collection, the approximate depth of unconsolidated sediment deposits at each location will be estimated based on sediment probing using stainless steel rods. The upstream samples within impoundment will be retrieved as distinct sediment cores and the sampling equipment will be manually advanced through the soft sediments into the more dense silty clay material below, which is anticipated to be three to five feet below the river bottom (or shallower if refusal is encountered). Consistent with the 2009 study, the downstream samples will be composited from multiple (four to five) sediment cores collected from the top one-foot interval along transects perpendicular to the stream channel at the selected locations (see Figure 3).

Once collected, the core sample(s) will be photographed and visually observed for sediment texture, color, or debris content. Each core sample (or samples in the case of the downstream composite samples) will then be transferred to a clean, stainless-steel bowl and mixed using a stainless-steel spoon or spatula, prior to filling the sample containers. The field sampling activities will be documented using the field data sheet provided in Appendix D, which will be completed for each sampling location.

3.3 Sample Handling & Custody Protocols

The homogenized sediment material will be immediately transferred into clean, unused, laboratory-supplied sample containers. Sample container, preservation, and holding time requirements are provided in the table below.

Parameter	Analytical Method	Sample Containers	Sample Preservation	Holding Time
Metals (RCRA 8)	EPA 6020 and 7471	4 oz. glass jar	4 ± 2°C	28 days (Hg); 180 days
PCBs	EPA 8082	4 oz. glass jar	4 ± 2°C	1 year
PAHs	EPA 8270	4 oz. amber glass jar	4 ± 2°C	14 days
Pesticides	EPA 8081	4 oz. amber glass jar	4 ± 2°C	14 days
Total Phosphate	EPA 365.3	4 oz. glass jar	4 ± 2°C	28 days
Total Nitrogen	EPA 350.1	4 oz. glass jar	4 ± 2°C	7 days
TOC	EPA 9060	4 oz. glass jar	4 ± 2°C	28 days
Grain Size	ASTM D-422	1000 mL plastic jar	N/A	N/A

Table 3 Sample Handling Requirements

Labels will be affixed to each sample container with the following information: project identification (ID), sample ID, sample date/time, sampler's initials, laboratory analysis required, and preservative used (if applicable). The container lids will be fastened securely.

All sample containers will be carefully packed in cooler(s) with bubble wrap or other suitable packaging material to avoid breakage. The cooler(s) also will be packed with bagged ice and a temperature blank to verify the cooler temperature upon arrival at the laboratory.

VHB will deliver the packed coolers directly to the contract laboratory, under standard chainof-custody protocols, to track the possession and handling of individual samples from the time of field collection through laboratory analysis. Samples and unused sample containers will remain in the sample collector's view at all times, unless locked in a vehicle or other secured location.

3.4 Decontamination & Waste Handling Protocols

All equipment that comes into direct contact with the sediment collected for analysis will be dedicated (i.e., single use) or made of stainless-steel to facilitate proper decontamination. Sampling equipment will be decontaminated at the point-of-use, before introducing it to a sampling location, and after completion of work at a particular sampling point. Trace decontamination of small equipment follows removal of solids and gross contamination and generally consists of washing with a laboratory-grade, phosphate-free, detergent (e.g., Liquinox®), and rinsing with ambient (site) or distilled water, prior to a final triple rinse with deionized water. Equipment may be air dried or wiped dry with paper towels.

Decontamination (wash/rinse) waters may be discharged to the ground surface in the vicinity of the sampling location provided no evidence of gross contamination is observed.

Excess sediment material not used to fill sample containers may also be returned to the immediate vicinity from which it was collected provided no evidence of gross contamination is observed.

All other investigation-derived waste (e.g., personal protective equipment [PPE}, plastic wrappers, etc.) will be collected and appropriately disposed off-site as solid waste.

4

Laboratory Analytical Methods

Sediment samples will be submitted to a New Hampshire Environmental Laboratory Accreditation Program (NHELAP)-accredited laboratory for analysis of the following chemical contaminants:

- RCRA 8 list of metals, including arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium (Se), and silver (Ag) by United States Environmental Protection Agency (EPA) methods 6020 and 7471 (mercury only);
- > Polychlorinated biphenyls (PCBs) by EPA method 8082;
- > Polycyclic aromatic hydrocarbons (PAHs) by EPA method 8270;
- > Organochlorine pesticides by EPA method 8081;
- > Total Phosphate by EPA method 365.3; and
- > Total Nitrogen by EPA method 350.1.

Sediment samples will also be analyzed for total organic content (TOC) by EPA method 9060 and grain size by ASTM method D-422.

Sample container, preservation, and holding time requirements are provided in Section 3.3. Laboratory reporting limits for each target analyte are provided in Appendix E.

5

Quality Control Measures

This section describes the quality control measures, which will be implemented during the supplemental sampling and analysis program to ensure the validity of the resulting data.

5.1 Field Quality Control

A summary of planned field quality control samples is provided in the table below:

QC Item	Frequency	Acceptance Criteria	Corrective Action
Field Duplicate Sample	One per 10 samples	Duplicate results have an RPD of less than or equal to 50% for inorganic analyses.	Reanalyze samples or review similarity of samples.
Matrix Spike/ Matrix Spike Duplicate	One per 20 samples	Matrix spike sample results between 75 and 125% of actual concentrations; RPD between MS and MSD < 15 to 20%	Note deviation in report.
Equipment Blank	One per mobilization (select analyses)	No detections at or above reported detections for associated samples.	Review decontamination procedures. Resample if necessary.
Cooler Temperature Blank	One per cooler	4 ± 2°C	Document in the laboratory report. Alter packing and shipping procedures as required.

Table 4 Field Quality Control Sample Requirements

The sampling location at which the field quality control samples will be collected will be determined in the field based on the amount of material available (i.e., where sufficient sediment material is available).

5.2 Equipment Maintenance and Calibration

In general, field sampling equipment and instruments including, but not limited to, sediment corer, GPS receiver, and PID, will be maintained, tested, and inspected according to the manufacturer's instructions. All equipment/instruments will be inspected for signs of defects prior to field deployment by VHB. The sediment corer kit will be inspected to ensure that all the parts to the kit are included; any malfunctioning, broken, or missing components will be

repaired or replaced. Field equipment/instrument performance and corrective action requirements are summarized in the table below.

Equipment	Activity	Frequency of activity	Acceptance criteria	Corrective action	Person responsible
Sediment Corer	Inspect/ clean	Prior to each sample	No defects/ clean, unused plastic sleeve	Replace as necessary	VHB Field Staff
GPS Receiver (Trimble ProXT or equivalent)	Record sampling location coordinates	At each sample location	Minimum satellite coverage	Post-field Data Analysis	VHB Field Staff / VHB GIS Specialist

Table 5Field Equipment Performance and Corrective Action Requirements

5.3 Data Verification & Validation

Verification and validation of the data generated during the supplemental sampling program will be performed to determine the usability of the data relative to project objectives and to ensure results are generated in accordance with the procedures defined in this SAP. Verification of the field sampling procedures used will be performed first by the field staff or sampler, and then by the VHB Project Manager (or designee). The Project Manager will review all field forms for completeness by making sure all entries on the data sheets are filled out. The Project Manager will also verify any questionable entries by speaking to the field staff/sampler and noting any unusual or anomalous data in the project files.

The VHB Project Manager (or designee) will review all sediment data results and evaluate laboratory QC notes to assess usability relative to project objectives. The Project Manager's review will include checking holding times, proper chain-of-custody documentation, acceptable detection limits, surrogate recoveries, duplicate results, and MS/MSD results. The results of the data review will be summarized in the final report. Any decisions made regarding the usability of the data will be left to the VHB Project Manager; however, the VHB Project Manager may consult with project personnel, the Town of Durham, or NHDES. Given the scope and objectives of the project, independent third-party verification/validation is not considered necessary.

6

Data Evaluation and Reporting

Laboratory analytical results obtained during this study will be summarized in cross-tabular format for comparison to applicable screening-level ecological reference values. Specifically, VHB proposes to use the consensus-based threshold effect concentration (TEC) and probable effect concentration (PEC) for freshwater species, as well as threshold effect level (TEL) and probable effect level (PEL) for aquatic species, from the most recent National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRT) Tables (Buchman, 2008), a copy of which is provided in Appendix F. Following the procedure outlined in NHDES guidance (NHDES, 2005), detected concentrations of target analytes will be qualified as low, moderate, or high risk. In addition, sample results will be compared to applicable NHDES Contaminated Sites Risk Characterization and Management Policy (RCMP) Method 1 Category S-1 Soil Standards (equivalent to NHDES Soil Remediation Criteria, Env-Or 606.19) to assess potential handling and/or disposal concerns in the event that sediment removal actions are needed to implement the preferred alternative.

Following data evaluation, VHB will prepare a brief sediment sampling and analysis report (technical memorandum), which documents the field activities completed, presents an assessment of potential sediment contamination considerations based on the screening-level risk assessment, and provides recommendations for further analysis, if applicable. Report attachments will also include copies of field documentation and laboratory analytical data reports.

7

References

Buchman, M.F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.

Miller, H., 2019. Research Experience and Apprenticeship Program Final Report, Department of Civil and Environmental Engineering, University of New Hampshire. November 1.

NHDES, 2005. Draft Evaluation of Sediment Quality Guidance Document, NHDES-WD-04-9. April.

NHDES, 2016. Guidance for Assessing and Managing Sediment Behind Dams/Barriers, NHDES-WD-16-04. November.

NHDES, 2018. Guidelines to the Regulatory Requirements for Dam Removal Projects in New Hampshire, NHDES-WD-03-35. 2003, Revised 2007, 2018.

U.S. Environmental Protection Agency (USEPA), 2001. Methods for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual, EPA-823-B-01-002. October.

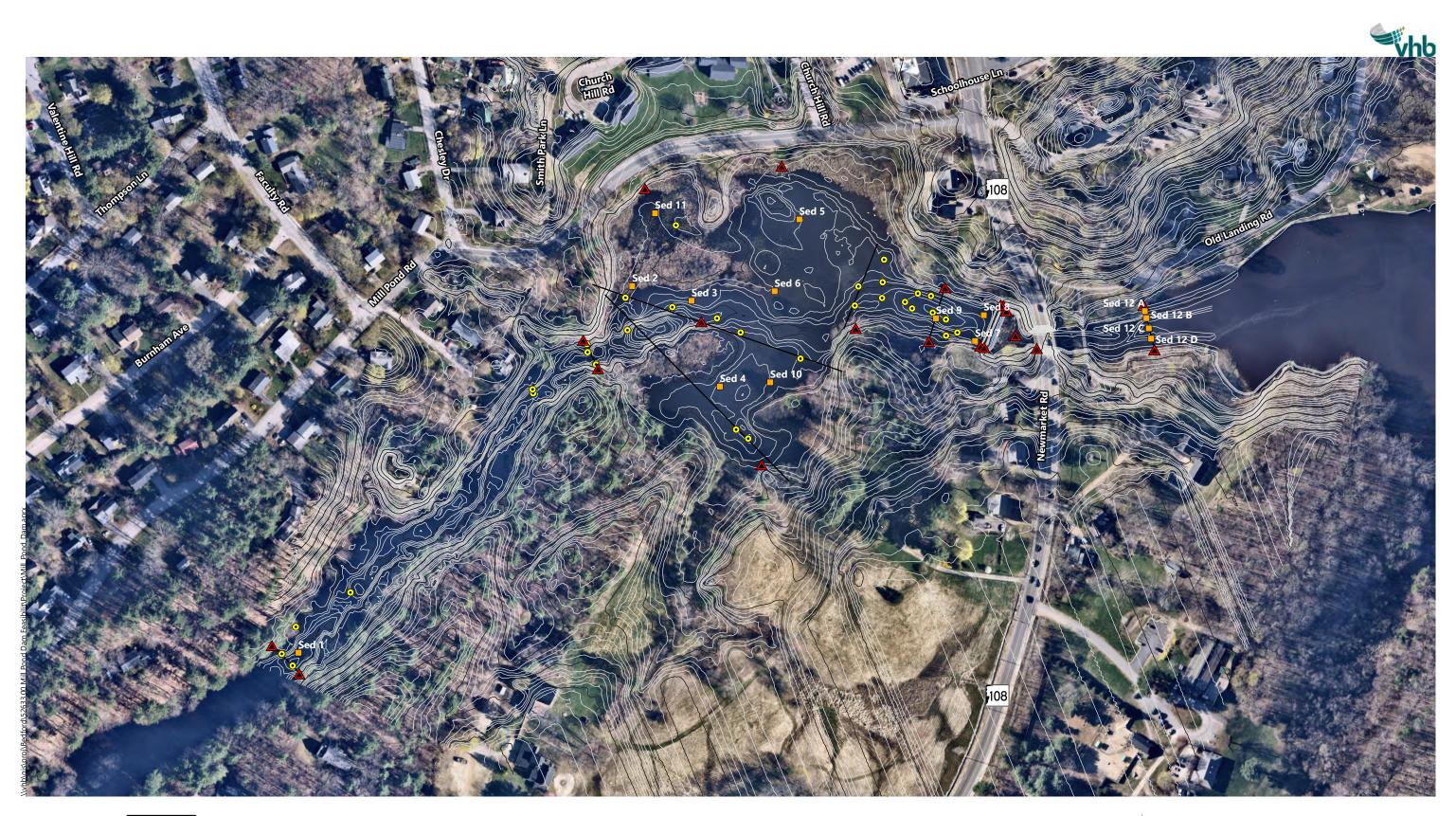
VHB, 2009. Final Technical Report, Mill Pond Bathymetric Survey and Sediment Sampling Study, Durham, New Hampshire.

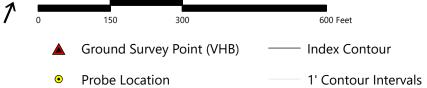
Figures

1000

0

2000

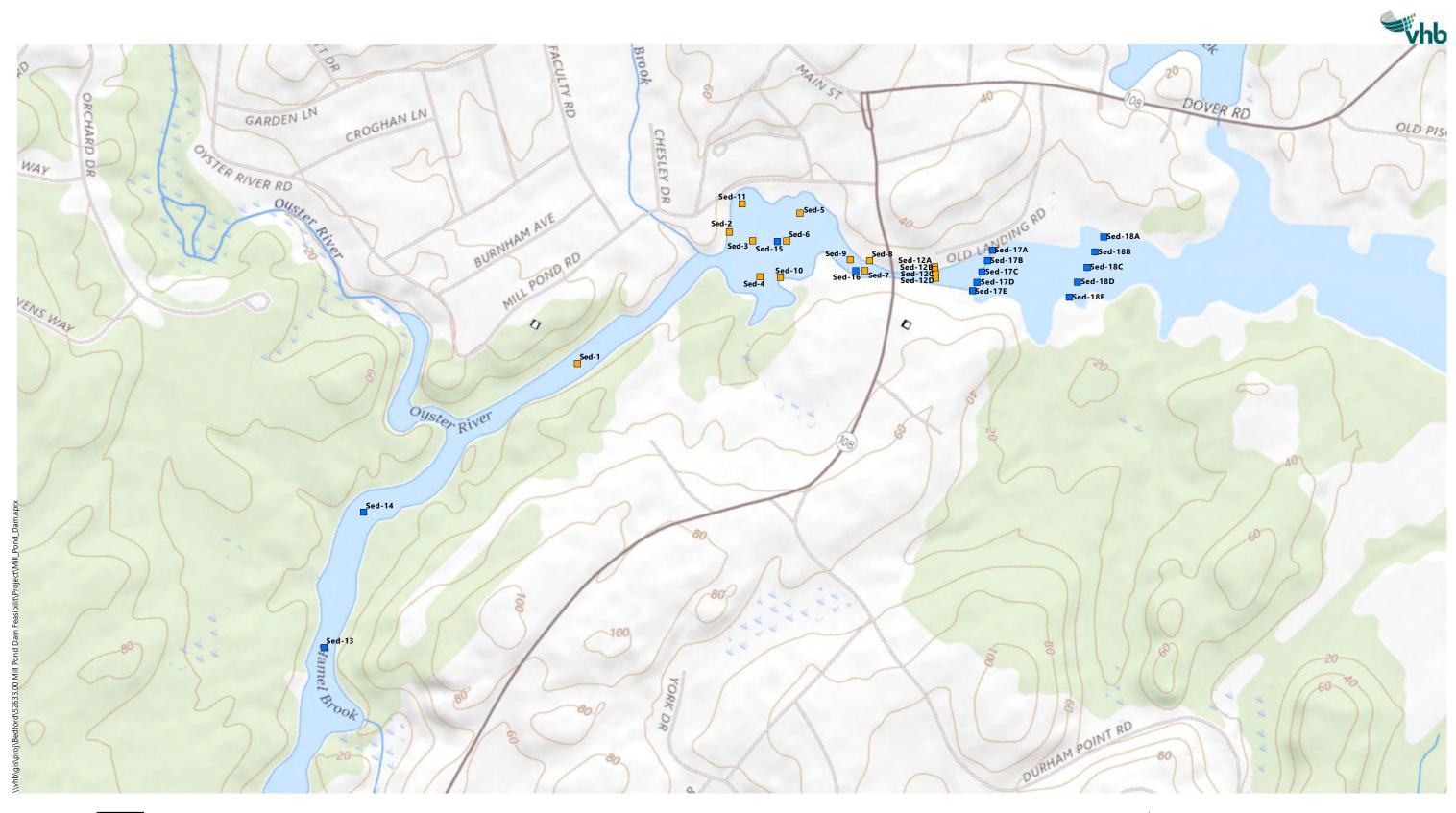

4000 Feet


Mill Pond Dam Feasibility Study

Source : NHDES, VHB, ArcGIS Online

Durham, New Hampshire

Figure 1 Site Location Plan


Mill Pond Dam Feasibility Study

Source : NHDES, VHB, ArcGIS Online

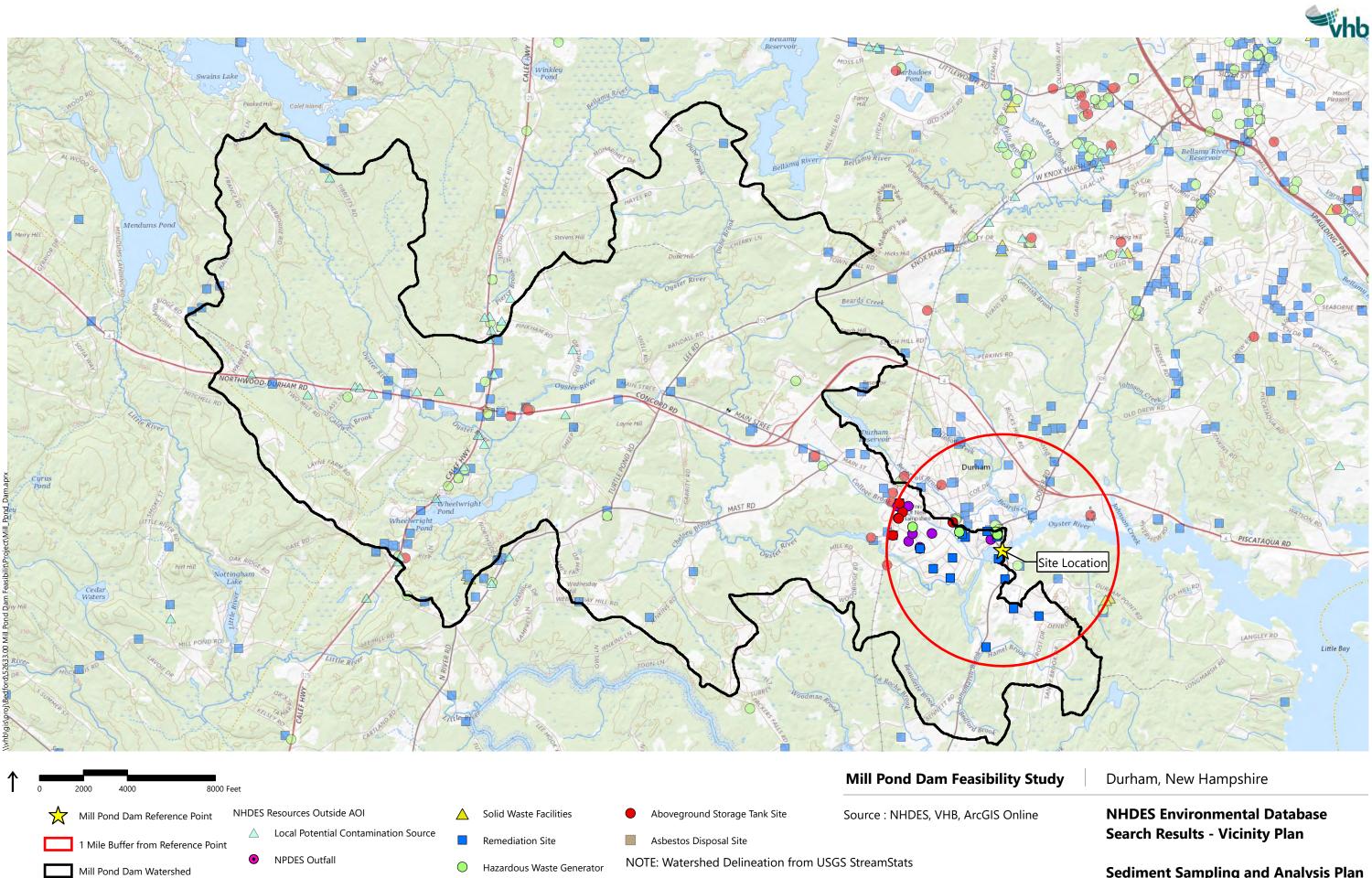
- Sediment Sampling Locations
- Transect Lines

Durham, New Hampshire

Figure 2 2009 Exploration Location Plan

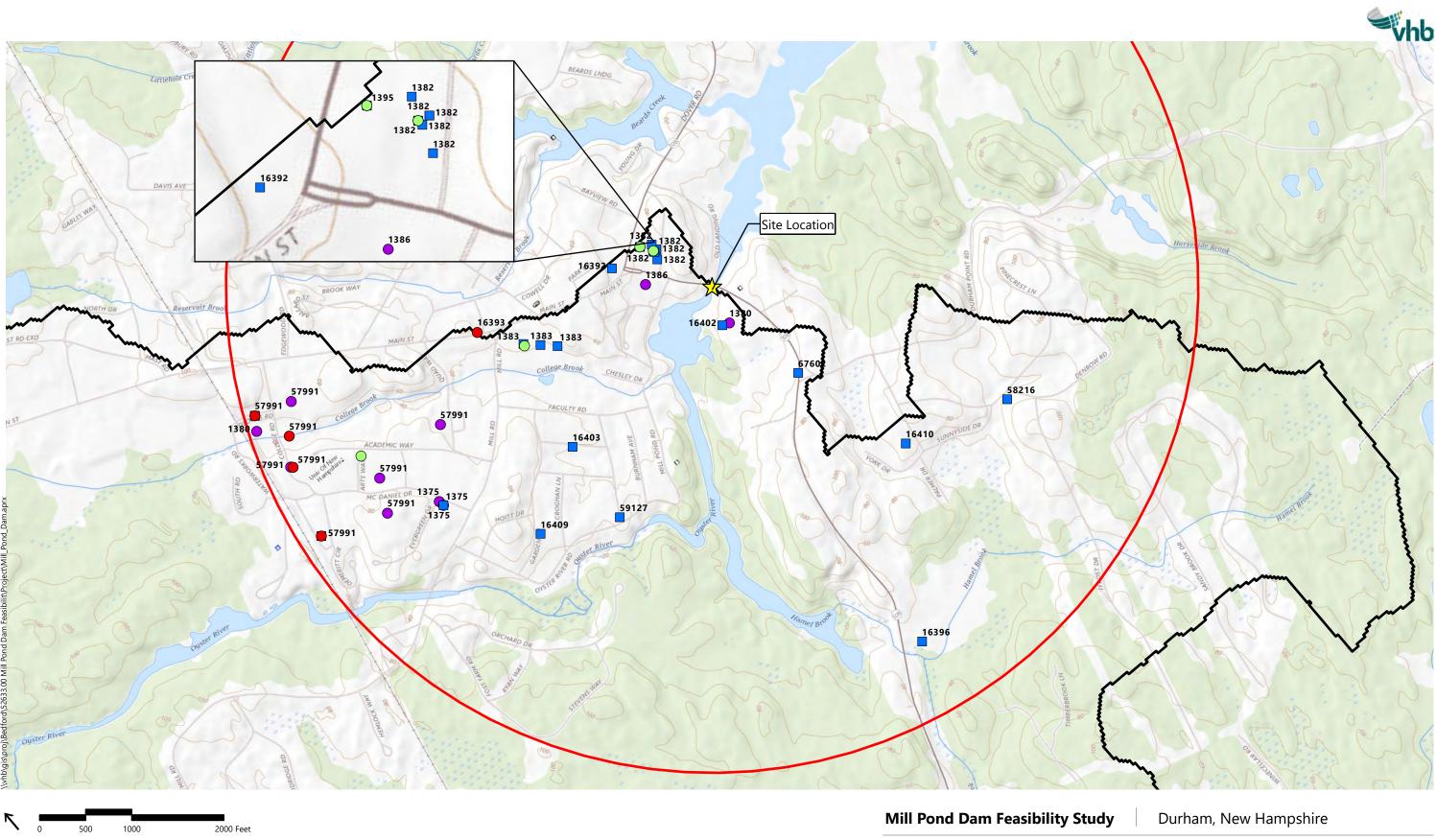
1 250 500 1000 Feet 0

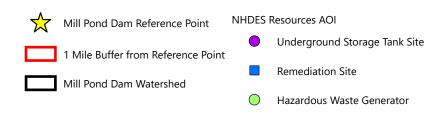
Mill Pond Dam Feasibility Study


- 2009 Sediment Sampling Locations
- Proposed Sampling Location

Source : NHDES, VHB, ArcGIS Online

Durham, New Hampshire


Figure 3 **Proposed Sediment Sampling** Location Plan


Appendix A: NHDES Environmental Database Search Results

Underground Storage Tank Site

Automobile Salvage Yard

Aboveground Storage Tank Site

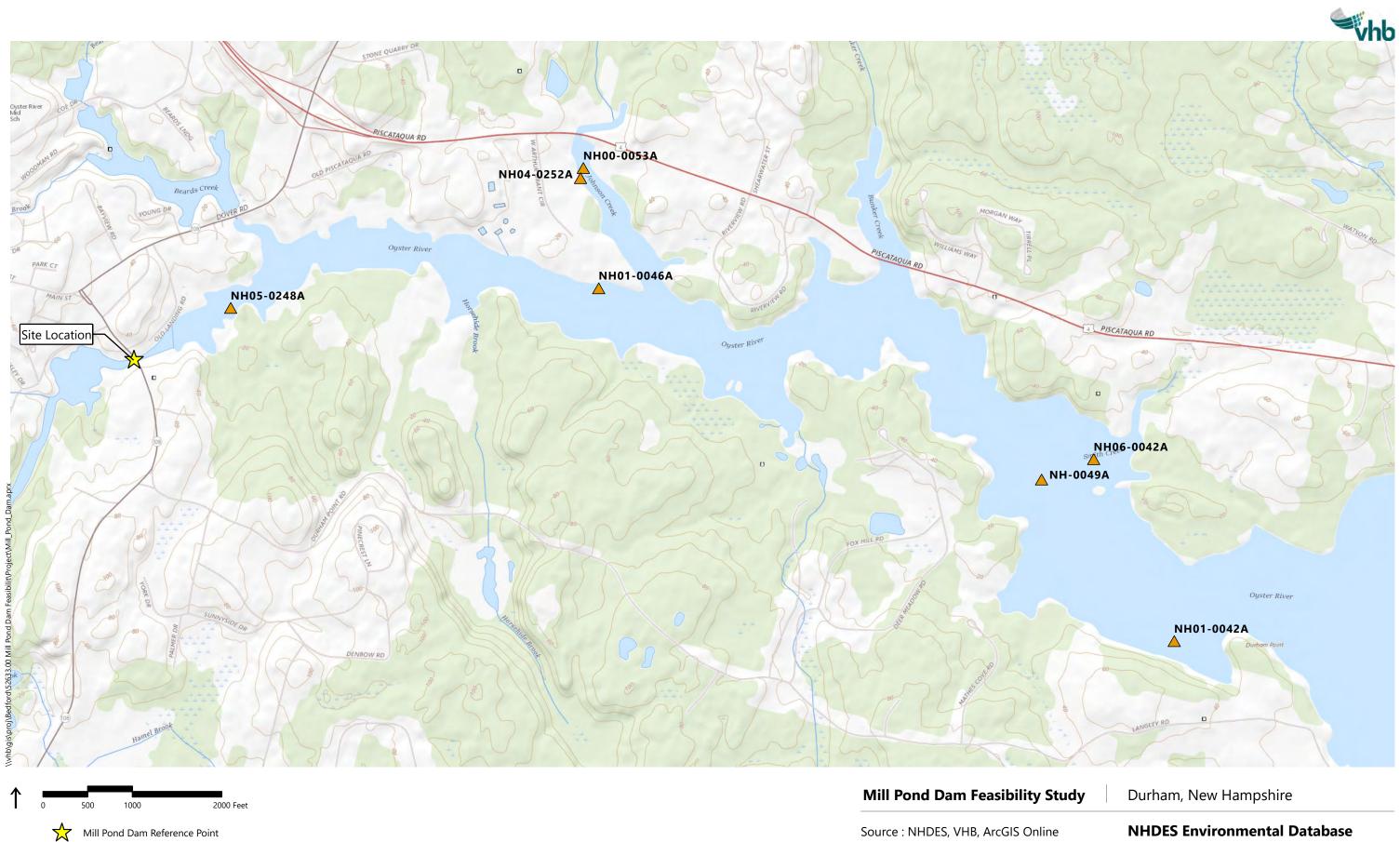
Source : NHDES, VHB, ArcGIS Online

NOTE: Watershed Delineation from USGS StreamStats

NHDES Environmental Database Search Results - Area of Interest

NHDES Environmental Database Search Results Aboveground Storage Tank Sites

FID	Shape	MASTERID	SITE_NO	FAC_NO	FACILITY	ADDRESS	TOWN	FAC_TYPE	GIS_TYPE	TANK_NO	COLL_METHO	LONGITUDE	LATITUDE
87	Point	16393	199501045	950145A	GANGWER REALTY INC	56 MAIN ST	DURHAM	COMMERCIAL	AST			-70.926964	43.134466
94	Point	57991	200303059	7	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	COLLEGE/UNIVERSITY	AST_TANK			-70.935512	43.135784
153	Point	57991	200303059	7	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	COLLEGE/UNIVERSITY	AST_TANK			-70.937178	43.132903
192	Point	57991	200303059	7	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	COLLEGE/UNIVERSITY	AST_TANK			-70.936222	43.135005
198	Point	57991	200303059	7	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	COLLEGE/UNIVERSITY	AST_TANK			-70.936032	43.136911


NHDES Environmental Database Search Results Hazardous Waste Generators

FID	Shape	DESID	MASTERID	RCRA_	SITE_NAME	ADDRESS	ADDRESS2	TOWN	GEN_TYPE	GEN_SIZE	GEN_STATUS	X_COORD	Y_COORD
119	Point	11693	40761	NHD000790923	UNIVERSITY OF NEW HAMPSHIRE	11 LEAVITT LN	PERPETUITY HALL	DURHAM	RCRA REGULATED	FQG1(LQG)	ACTIVE	1179867.5	231895.625
200	Point	16608	40770	NHD510000870	RITE AID 10295	5 MILL RD	UNIT G	DURHAM	RCRA REGULATED	SQG(CESQG)	ACTIVE	1181995.896	231662.761
269	Point	15825	1395	NHD510051170	DURHAM CIRCLE K 7241	4 DOVER RD	RTE 108	DURHAM	RCRA REGULATED	NONE	INACTIVE	1183647	231672.8281
372	Point	10331	1382	NHD986483477	DURHAM TOWN OF	SCHOOLHOUSE LN		DURHAM	RCRA REGULATED	SQG(CESQG)	INACTIVE	1183730.625	231545.6094

NHDES Environmental Database Search Results Remediation Sites

FID	Shape	MASTERID	SITE_NO	FACILITY	ADDRESS	TOWN	PROJ_TYPE	PROJ_NO	STAFF	WLP	RISK	COLL_METHO	LONGITUDE	LATITUDE
22	Point	57991	200303059	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	LAST	12200	CLOSED	3	8		-70.937178	43.132903
79	Point	1395	198906040	DURHAM CIRCLE K	4A DOVER RD	DURHAM	HAZWASTE	12694	CLOSED	3	8		-70.91968	43.133234
113	Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	UIC	10359	CLOSED	3	8		-70.919477	43.132615
123	Point	1383	199308004	DURHAM SHOPPING PLAZA	5 MILL RD	DURHAM	LUST	4407	CLOSED	3	8		-70.924854	43.132598
164	Point	16410	199612008	ZARROW RESIDENCE	12 SUNNYSIDE DRIVE	DURHAM	OPUF	6694	CLOSED	3	8		-70.916714	43.123625
204	Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	HOLDTANK	6388	REGISTRATION	3	NDY		-70.919371	43.132883
344	Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	HAZWASTE	8797	CLOSED	3	8		-70.919244	43.132856
414	Point	16392	199409018	GABRIEL APARTMENTS	4-6 MAIN ST	DURHAM	OPUF	5100	CLOSED	3	8		-70.921112	43.133294
431	Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	LUST, HOLDTANK	10359	CLOSED, REGISTRATION	3, 3	8, NDY		-70.919371	43.132883
459	Point	57991	200303059	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	OPUF	12727	CLOSED-AUR	3	3		-70.936032	43.136911
467	Point	58216	200306002	PJ MAGUIRE PROPERTY	2 DENBOW RD	DURHAM	OPUF	12930	CLOSED	3	8		-70.912415	43.12265
544	Point	67602	201210089	MERRYWEATHER PROPERTY	OFF DURHAM PT	DURHAM	IRSPILL	29486	CLOSED	3	8	DESKTOP	-70.918151	43.127311
627	Point	16402	199308017	RUTH CHAMBERLIN	28 NEWMARKET RD P O BOX 628	DURHAM	OPUF	4425	CLOSED	3	8		-70.919223	43.129862
631	Point	16396	199311029	GREAT BAY ANIMAL HOSPITAL./KENNEL	27 NEWMARKET RD	DURHAM	UIC	4567	REGISTRATION	3	8		-70.921471	43.118837
632	Point	1383	199308004	DURHAM SHOPPING PLAZA	5 MILL RD	DURHAM	LUST	4407	CLOSED	3	8		-70.925352	43.132954
697	Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	LUST	4633	CLOSED	3	8		-70.919371	43.132883
698		1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	HAZWASTE	10359	UNASSIGNED	3	7		-70.919244	43.132857
811	Point	16409	199805058	YIGE WANG RESIDENCE	27 GARDEN LANE	DURHAM	OPUF	8450	CLOSED	3	8		-70.930364	43.12869
879	Point	57991	200303059	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	SPILL/RLS	12728	CLOSED	3	8		-70.936032	43.136911
898	Point	1375	199302013	CONSOLIDATED COMMUNICATIONS OF NORTHERN	MCDANIEL DR	DURHAM	LUST	4144	CLOSED	3	8		-70.932599	43.131222
905	Point	59127	200404078	LOWY RESIDENCE	17 THOMPSON LN	DURHAM	OPUF	13567	CLOSED	3	8		-70.927483	43.127523
982	Point	16403	199511027	RUTH EDWARDS	12 VALENTINE HILL ROAD	DURHAM	OPUF	6035	CLOSED	3	8		-70.927067	43.130032
106	4 Point	1395	198906040	DURHAM CIRCLE K	4A DOVER RD	DURHAM	LUST	1079	PISKOVITZ	2	7		-70.91968	43.133234
110	6 Point	1383	199308004	DURHAM SHOPPING PLAZA	5 MILL RD	DURHAM	LUST	4407	CLOSED	3	8		-70.925849	43.133309
112		1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	UIC	10359	CLOSED	3	8		-70.919255	43.133058
113	3 Point	1382	199312048	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	UIC	10359	CLOSED	3	8		-70.919366	43.132837

FID Shape	MASTERID	SITE_NO	FACILITY_N	FACILITY	ADDRESS	TOWN	FACILITY_T	GIS_TYPE	TANK_NO	COLL_METHO	LONGITUDE	LATITUDE
1 Point	57991	200303059	113502	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	STATE GOVERNMENT	UST_TANK			-70.934533	43.132134
53 Point	1395	198906040) 111352	DURHAM CIRCLE K	4A DOVER RD	DURHAM	GAS STATION	UST			-70.91968	43.133234
63 Point	57991	200303059	113502	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	STATE GOVERNMENT	UST_TANK			-70.936293	43.135058
95 Point	57991	200303059	113502	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	STATE GOVERNMENT	UST			-70.934532	43.136527
112 Point	1386	198606008	3 112229	FIRST SAVINGS BANK	6 NEWMARKET RD	DURHAM	COMMERCIAL	UST			-70.920508	43.132275
219 Point	1380	199006011	220100	DURHAM LANDFILL	DURHAM POINT RD	DURHAM	LOCAL GOVERNMENT	UST_TANK			-70.936389	43.136523
232 Point	57991	200303059	113502	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	STATE GOVERNMENT	UST_TANK			-70.930547	43.133104
262 Point	1375	199302013	3 220512	CONSOLIDATED COMMUNICATIONS OF NORTHERN	MCDANIEL DR	DURHAM	UTILITIES	UST TANK	3		-70.932631	43.131387
352 Point	1380	199006011	220100	DURHAM LANDFILL	DURHAM POINT RD	DURHAM	LOCAL GOVERNMENT	UST			-70.918945	43.129777
413 Point	1382	199312048	3 112701	DURHAM PUBLIC WORKS DEPARTMENT	15 NEWMARKET RD	DURHAM	LOCAL GOVERNMENT	UST			-70.919371	43.132883
415 Point	57991	200303059	113502	UNIVERSITY OF NEW HAMPSHIRE	MAIN ST	DURHAM	STATE GOVERNMENT	UST_TANK			-70.933841	43.133076
434 Point	1375	199302013	3 220512	CONSOLIDATED COMMUNICATIONS OF NORTHERN	MCDANIEL DR	DURHAM	UTILITIES	UST			-70.932599	43.131222

Environmental Monitoring Site \triangle

Search Results - EMD Sediment **Quality Sample Locations**

Appendix B: 2009 Sediment Sampling Analytical Results

TABLE 2.0 SEDIMENT SAMPLING ANALYTICAL RESULTS - MILL POND/OYSTER RIVER - DURHAM, NEW HAMPSHIRE

SAMPLE ANALYSIS COMPOUND	SED1 0'-4' 10/30/09	SED2 0'-4' 10/30/09	SED3 0'-4' 10/30/09	SED4 0'-4' 10/30/09	SED5 0'-2' 10/30/09	SED6 0'-2' 10/30/09	SED7 0'-3' 10/30/09	SED8 0'-2.5' 10/30/09	SED9 0'-1.5' 10/30/09	SED10a 0'-1.5' 11/01/09	SED10b 0'-1.5' 11/01/09 DUP	SED11a 0'-3' 11/01/09	SED11b 0'-3' 11/01/09 DUP	SED12 0'-1.5' 11/01/09 COMP	FreshWater ARCS PEL (5)	Freshwater Ecosystems TECs (6)	Marine Ecotox ERL (5)
SIEVE - GRAIN DESCRIPTION	1% G, 54% S, 45%S/C	0% G 13% S 87%S/C	0.2% G 43% S 57%S/C	0% G 10% S 90%S/C	NA	0% G 3% S 97%S/C	(0-2') 0.7% G 29% S 70%S/C (2-3') 0.5% G 22% S 77%S/C	1% G 24% S 75%S/C	0.5% G 12% S 88%S/C	0.1 % G 39% S 69%S/C	NA	0 % G 10 % S 90%S/C	NA	35 % G 30 % S 35%S/C		-	
DETECTED VOCS (Method 8260B)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND			
DETECTED PAHs (Method 8270C) (ug/Kg) Phenanthrene Fluoranthene Pyrene Benzo(a)Anthracene Chrysene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,4-cd)Pyrene	ug/Kg < 640 <640 <640 <640 <640 <640 <640 <640 <	ug/Kg 847 1530 1330 583 798 1060 <799 661 698	ug/Kg 463 774 730 <740 451 658 <740 <740 532	ug/Kg 1100 2210 1970 910 1140 1540 434 992 901	ug/Kg <800 <800 <800 <800 <800 <800 <800 <80	ug/Kg <1000 1220 1100 <1000 668 945 <1000 616 806	ug/Kg 463 774 730 <740 451 658 <740 <740 532	ug/Kg 623 1090 1060 434 593 809 <810 516 659	ug/Kg <860 <860 <860 <860 <860 <860 <860 <860	ug/Kg 630 1240 1140 <990 673 983 <990 594 767	ug/Kg 508 982 901 <890 546 809 <890 <890 665	ug/Kg <670 <670 <670 <670 <670 <670 <670 <670	ug/Kg <680 <680 <680 <680 <680 <680 <680 <680	ug/Kg <990 <990 <990 <990 <990 <990 <990 <99	ug/Kg 515 2355 875 385 862 NS NS 782 NS	ug/Kg 204 423 195 108 166 NS NS NS NS	ug/Kg 240 600 665 261 384 NS NS 763 NS
RCRA METALS (mg/Kg) Arsenic Barium Cadmium Chromium Lead Selenium Silver Mercury	mg/Kg 12.0 103 3.6 32 83 <3.4 <1.7 <0.09	mg/Kg 10.4 101 0.9 38 64 <3.7 <1.9 <0.09	mg/Kg 9.1 32 <2.0 11 6 <2.0 <2.0 0.14	mg/Kg 11.4 163 <0.9 53 17 <5.9 <2.9 0.29	mg/Kg 12.8 115 <2.2 36 45 <4.4 <2.2 0.35	mg/Kg 16.1 130 0.8 39 48 <5.5 <2.7 0.49	mg/Kg 11.8 99 <2.1 37 21 <4.2 <2.1 0.53	mg/Kg 13.5 101 <2.2 40 36 <4.4 <2.2 0.92	mg/Kg 12.4 116 <2.4 41 9 <4.8 <2.42 0.07	mg/Kg 17.6 120 1.1 43 54 <5.4 <2.7 0.86	mg/Kg 15.3 122 0.8 44 52 <5.0 <2.5 1.0	mg/Kg 9.1 98 <1.9 33 17 <3.9 <1.9 0.19	mg/Kg 9.0 102 <1.8 33 15 <3.7 <1.8 0.18	mg/Kg 14.6 86 <2.8 64 14 <5.6 <2.8 0.14	mg/Kg 5.9 NS 0.596 37.3 35 NS NS 0.14	mg/Kg 9.79 NS 0.99 43.4 35.8 NS NS 0.18	mg/Kg 8.2 NS 1.2 81 46.7 NS 1.0 0.15
PEST/PCBS Method 246/8081 (mg/Kg)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			

Notes: 1 < 110 = less than Laboratory Reporting Limit

2. Bold value = indicates exceedance of one of the Ecological Screening Level Criteria

3. NA = not analyzed NS = No Ecological Screening Level; ND = No compound detected above compound associated Laboratory Reporting Limit

4. Ecological Screening Level Data - NOAA Screening Quick Reference Table NOAA OR&R 08-01

6. Consensus Threshold Effect Concentration (TEC) - D.D. MacDonald - Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (Arch. Environ. Contam. Toxicol. 39-20 -2000). Samples were collected and data summary was provided by HYDROTERRA Environmental Services, LLC

J:\52065.00/reports\Final Report\Durham Mill Pond Final Report.doc

Appendix C: 2019 UNH Study Report Appendix

Appendix: Data tables for mercury content and loss on ignition

Sawye	er Mill C	ore-94	Sawyer Mill Core-100			Mill I	Pond Cor	e-125	Mill Pond Core-127			
	Merc			Merc			Merc			Merc		
Depth	ury		Depth	ury		Depth	ury		Depth	ury		
(cm)	(ppb)	+/-	(cm)	(ppb)	+/-	(cm)	(ppb)	+/-	(cm)	(ppb)	+/-	
0	83.35	4.326	0	5.888	0.995	0	423.9	19.57	0	433.7	4.085	
10	79.85	2.608	5	10.49	2.927	5	454.7	36.03	5	549.3	39.97	
15	87.46	5.796	6	20.86	0.753	10	596	22.94	10	867.1	17.91	
20	104.8	5.187	10	5.638	0.959	15	549.1	19.8	15	1217	20.26	
30	92.15	3.933	15	5.292	1.975	20	330.4	1.673	20	3824	10.77	
40	50.28	2.031	20	72.36	4.962	25	474.3	16.16	25	2975	107.1	
50	22.81	0.619	25	15.26	0.685	30	463.5	41.06	30	2483	36.76	
60	18.09	1.397	30	21.17	1.825	35	723.6	58.15	35	1457	20.58	
						40	1344	41.71	40	380.7	4.036	
						45	2688	34.27	45	79.67	0.165	
						50	1882	107.2	50	56.92	10.76	
						55	457.4	18.19	55	42.89	2.866	
						60	37.91	3.397	60	81.31	1.564	
						65	31.46	1.07	65	29.69	0.768	
						69	20.22	0.097				

Table A-1. Mercury content over depth as determined by the *Milestone DMA-80* Direct Mercury Analyzer. Each value represents the average content of two (or more) duplicates.

Table A-2. Loss on ignition, reported on fractional mass basis, of oven-dried surficial samples collected with a Van-Veen grab sampler.

Sawyer Mill	Grab Samples	Mill Pond C	Grab Samples
Sample ID	Loss on Ignition	Sample ID	Loss on Ignition
SM-GS-96	0.137	MP-GS-113	0.116
SM-GS-98	0.203	MP-GS-114	0.137
SM-GS-99	0.010	MP-GS-115	0.178
SM-GS-102	0.095	MP-GS-116	0.149
SM-GS-103	0.101	MP-GS-117	0.176
SM-GS-104	0.185	MP-GS-118	0.132
SM-GS-105	0.156	MP-GS-119	0.314
SM-GS-106	0.140	MP-GS-120	0.218
SM-GS-107	0.142	MP-GS-121	0.093
SM-GS-108	0.134	MP-GS-122	0.258
SM-GS-109	0.233	MP-GS-123	0.140
SM-GS-110	0.185		
SM-GS-111	0.158		

Appendix D: Sediment Sampling Field Form

Date:	Notes Taken By:
Place:	

Project No.:

Re:

Field Sampling Data Sheet

General Information:

Date and Time:	VHB Project #:
Location (Town/City):	Project Name:
Field Sampler:	Project Manager:
Photo #(s) and Direction:	

Weather Conditions:

Current Weather and Temperature: Weather within previous 72 hrs:

Sample Information:

Sample ID #:	
Sample Location (GPS Coordinates or field ties):	
Water Depth:	
Probing Depth:	

Sediment	Type:
----------	-------

Sediment Description:

Sample Type (composite, grab, etc.):

Approx. Length of Sediment Core:

Depth of penetration of the core into the sediment / amount of sediment recovery:

Additional Comments / Observations:

Appendix E: Laboratory Reporting Limits

Summary of Laboratory Quantitation Limits Absolute Resource Associates Portsmouth, New Hampshire

TestGroupName	Analyte	CAS	MDL	LOD	RDL	Units	Method	Prep
PAHs in solid by 8270	naphthalene	91-20-3	0.39	0.50	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	2-methylnaphthalene	91-57-6	0.10	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	acenaphthylene	208-96-8	0.27	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	acenaphthene	83-32-9	0.26	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	dibenzofuran	132-64-9	0.45	0.50	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	fluorene	86-73-7	0.28	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	phenanthrene	85-01-8	0.22	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	anthracene	120-12-7	0.23	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	fluoranthene	206-44-0	0.49	0.50	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	pyrene	129-00-0	0.37	0.40	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	benzo(a)anthracene	56-55-3	0.27	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	chrysene	218-01-9	0.30	0.30	0.40	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	benzo(b)fluoranthene	205-99-2	0.10	0.30	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	benzo(k)fluoranthene	207-08-9	0.29	0.40	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	benzo(a)pyrene	50-32-8	0.27	0.30	0.40	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	indeno(1,2,3-cd)pyrene	193-39-5	0.39	0.40	0.50	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	dibenzo(a,h)anthracene	53-70-3	0.27	0.30	0.40	ug/g	SW8270E	SW3550C
PAHs in solid by 8270	benzo(g,h,i)perylene	191-24-2	0.10	0.30	0.50	ug/g	SW8270E	SW3550C
PCBs in soil by 8082	PCB-1016	12674-11-2	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1221	11104-28-2	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1232	11141-16-5	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1242	53469-21-9	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1248	12672-29-6	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1254	11097-69-1	0.018	0.040	0.17	ug/g	SW8082A	SW3546
PCBs in soil by 8082	PCB-1260	11096-82-5	0.018	0.040	0.17	ug/g	SW8082A	SW3546
Pesticides in soil by 8081	alpha-BHC	319-84-6	0.0030	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	beta-BHC	319-85-7	0.0040	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	delta-BHC	319-86-8	0.0040				SW8081B	SW3546
Pesticides in soil by 8081	gamma-BHC (Lindane)	58-89-9	0.0040	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Heptachlor	76-44-8	0.0040	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Aldrin	309-00-2	0.0050	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Heptachlor Epoxide	1024-57-3	0.0070	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Endosulfan I	959-98-8	0.0050	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Dieldrin	60-57-1	0.0050	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	4,4'-DDE	72-55-9	0.0070	0.030	0.040	ug/g	SW8081B	SW3546
Pesticides in soil by 8081	Endrin	72-20-8	0.0070				SW8081B	
Pesticides in soil by 8081	Endosulfan II	33213-65-9					SW8081B	
Pesticides in soil by 8081	4,4'-DDD	72-54-8	0.0060				SW8081B	
Pesticides in soil by 8081	Endosulfan Sulfate	1031-07-8	0.0030				SW8081B	
Pesticides in soil by 8081	4,4'-DDT	50-29-3	0.0060				SW8081B	
Pesticides in soil by 8081	Methoxychlor	72-43-5	0.011		0.040		SW8081B	
Pesticides in soil by 8081	Endrin Ketone	53494-70-5					SW8081B	
Pesticides in soil by 8081	Endrin Aldehyde	7421-93-4	0.015		0.040		SW8081B	
Pesticides in soil by 8081	alpha-Chlordane	5103-71-9	0.0050				SW8081B	
Pesticides in soil by 8081	gamma-Chlordane	5103-74-2	0.0050				SW8081B	
Pesticides in soil by 8081	Toxaphene	8001-35-2	0.040	0.20	0.20	ug/g	SW8081B	
	· · · · · · · · · · · · · · · · · · · ·	3001 33 2	5.540	5.20	5.20	~0/ D	0.00010	2112340

Summary of Laboratory Quantitation Limits Absolute Resource Associates Portsmouth, New Hampshire

TestGroupName	Analyte	CAS	MDL	LOD	RDL	Units	Method	Prep
Arsenic in solids by 6020	Arsenic	7440-38-2	0.097	0.50	2.5	ug/g	SW6020A	SW3051A
Barium in solids by 6020	Barium	7440-39-3	0.13	0.50	5.0	ug/g	SW6020A	SW3051A
Cadmium in solids by 6020	Cadmium	7440-43-9	0.0064	0.050	0.50	ug/g	SW6020A	SW3051A
Chromium in solids by 6020	Chromium	7440-47-3	0.020	0.50	5.0	ug/g	SW6020A	SW3051A
Lead in solids by 6020	Lead	7439-92-1	0.27	0.50	2.5	ug/g	SW6020A	SW3051A
Mercury in solids by 7471	Mercury	7439-97-6	0.033	0.080	0.14	ug/g	SW7471B	TOTAL
Selenium in solids by 6020	Selenium	7782-49-2	0.17	0.50	5.0	ug/g	SW6020A	SW3051A
Silver in solids by 6020	Silver	7440-22-4	0.0055	0.25	2.5	ug/g	SW6020A	SW3051A

Appendix F: Screening Level Ecological Reference Values

Screening Quick Reference Tables

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

This set of NOAA Screening Quick Reference Tables, or SQuiRTs, presents screening concentrations for inorganic and organic contaminants in various environmental media. Additional reference material, such as guidelines for sample preservation, are also included.

NOAA identifies potential impacts to coastal resources and habitats likely to be affected by hazardous wastes. To screen for substances which may threaten natural resources of concern to NOAA, environmental concentrations are compared to these screening levels. These tables are intended for preliminary screening purposes only: they do not represent official NOAA policy and do not constitute critena or clean-up levels. NOAA does not endorse their use for any other purposes. Screening levels are reported with the number of significant figures they were originally reported with.

In this new version, column headings link to OR&R's web site wherebrief descriptions of the benchmark may be found. However, detailed guidance on the recommended application of various screening guidelines is provided in the original sources (listed in each SQuiRT section, with web links for many). Users of the SQuiRT cards are strongly encouraged to review supporting documentation to determine appropriateness for their specific use.

The SQuiRT card set has been re-organized from earlier versions to accommodate expansion. Benchmarks from numerous new sources have been incorporated, and the list of analytes vastly increased. The SQuiRT cards present benchmarks representing different degrees of protectiveness. Multiple benchmarks are also provided in many cases: the user is advised to review the derivation of any particular benchmark before selecting a specific value. Information is still presented in sections, with *new sections* appearing in this expanded version:

 Inorganics in Sediment (freshwater and marine)

- Inorganics in Soil
- Inorganics in Water (groundwater and surface water)
- · Organics in Water and Soil
- Toxic Equivalency Factors
- · Guidelines for Sample Collection & Storage
- Analytical Methods for Inorganics
- Organics in Sediment
- PCB Composition
- · Composition by Carbon Range
- Analytical Methods for Organics

Footnotes within each SQuiRT section which appear at the bottom of the page are only to aid in deciphering the nature of specific entries. Due to space constraints, notations which relate to the source for individual values are explained at the end of the section. Organic chemicals are now listed alphabetically, without categorization. A few synonyms are provided, but CAS numbers are also presented to aid in identifying and finding specific analytes. Except as noted, all concentrations in the SQuiRT cards are in parts per billion.

For surface water samples, because releases from hazardous waste sites are often continuous and long-term, concentrations are most often compared directly with chronic benchmarks, when available. Groundwater concentrations are also screened against chronic benchmarks. However, suitable site-specific dilution factors should be applied to allow for dilution upon migration and discharge of groundwater to surface water. The SQuiRT cards present U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCLs), applicable to drinking water sources and secondary MCLs applicable to groundwater, supplemented by values from Canada and the United Nations World Health Organization.

Preference for surface water and groundwater benchmarks is given to U.S. EPA Ambient Water Quality Criteria (AWQC). This is generally followed by Tier II Secondary Acute Values (SAVs) or available standards and guidelines from other regulatory agencies. Tier II SAVs are derived using a similar approach to AWQC, but do not have sufficient supporting data for full criteria calculation. Lowest Observable Effect Levels (LOELs) were originally published by EPA with AWQC. Around 2000, EPA stopped publishing these values, however, LOELs are reproduced here when no other benchmark is available, because in many instances, they formed the basis for state standards.

For many trace elements, AWQC are now expressed in terms of the "dissolved" fraction, which is essentially defined operationally as a filtered fraction. Likewise, the toxicity of many trace elements is related to the water hardness, and the values presented are for a default hardness of 100 mg/L CaCO₃. Equations are provided in the SQuiRT cards to calculate the exact criteria for a given hardness, or, to convert from unfiltered, total concentrations to "dissolved" fractions.

Screening Quick Reference Table for Inorganics in Sediment

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Analyte				FRESHWATER SEDIMENT						MARINE SEDIMENT							
All concentrations in pa billion dry weight un specified otherwis	less	"Background" 1	ARCS H. azteca TEL ²	TEC 3	TEL 3	LEL 4	PEC 3	PEL 1	<u>SEL</u> 4	UET 1	T ₂₀ 5	<u>TEL</u> 8	<u>ERL</u> 6	<u>T50</u> 5	PEL e	<u>ERM</u> *	<u>AET</u> 7
Predicted Toxicity Gradient:			>		Inci	reasi	ng				· >		li	ncreas	ing		
Aluminum (%)	Al	0.26%	2.55%														1.8% N
Antimony	Sb	160								3,000 M	630			2,400	· · ·		9,300 E
Arsenic	As	1,100	10,798	9,790	5,900	6,000	33,000	17,000	33,000	17,000 I	7,400	7,240	8,200	20,000	41,600	70,000	35,000 B
Barium	Ba	700			ja si bati				i en stan en in National stat	er e e e e de la de Norme e		130,100#		in a substant			48,000 A
Cadmium	Cd	100-300	583	990	596	600	4,980	3,530	10,000	3,000 I	380	680	1,200	1,400	4,210	9,600	3,000 N
Chromium	Cr	7,000-13,000	36,286	43,400	37,300	26,000	111,000	90,000	110,000	95,000 H	49,000	52,300	81,000	141,000	160,000	370,000	62,000 N
Cobalt	Co	10,000				50,000+											10,000 N
Copper	Cu	10,000-25,000	28,012	31,600	35,700	16,000	149,000	197,000	110,000	86,000 I	32,000	18,700	34,000	94,000	108,000	270,000	390,000 MO
lron (%)	Fe	0.99-1.8 %	18.84%			2%			4%	4% I						-	22% N
Lead	Pb	4,000-17,000	37,000	35,800	35,000	31,000	128,000	91,300	250,000	127,000 H	30,000	30,240	46,700	94,000	112,000	218,000	400,000 B
Manganese	Мп	400,000	630,000			460,000			1,100,000	1,100,000 I]				260,000 N
Mercury	Hg	4-51		180	174	200	1,060	486	2,000	560 M	140	130	150	. 480	700]: 710	
Nickel	Ni	9,900	19,514	22,700	18,000	16,000	48,600	36,000	75,000	43,000 H	15,000	15,900	20,900	47,000	42,800	51,600	110,000 EL
Selenium	Se	290	· ·														1,000 A
Silver	Ag	<500				500 +				4,500 H	230	730	1,000	1,100	1,770	3,700	3,100 B
Strontium	Sr	49,000											ka sin				
Tin	Sn	5,000										48 *					> 3,400 N
Vanadium	V	50,000														haan ay	57,000 N
Zinc	Zn	7,000-38,000	98,000	121,000	123,000	120,000	459,000	315,000	820,000	520,000 M	94,000	124,000	150,000	245,000	271,000	410,000	410,000 I
Lead 210 ^{bq} / _g dv	N					0.5 ^			< 9.7 ^								
Polonium 210 ^{bq/}	Polonium 210 ^{bq} /g dW					0.6 ^			< 8.7 ^								
Radium 226 ^{bq} /g	dw					0.1 ^			. < 13 ^					·········			
Sulfides							· · · ·			130,000 M			fri Lusi	····· · · · · · ·			4,500 MO

- Based on SLC approach using sensitive species HC5%; ES&T 2005 39(14):5148-5156. Sources * - Based upon EQp approach using current AWQC CCC 1 - Buchman, M. 1999. NOAA HAZMAT Report 99-1. ^ - Based on SLC approach to derive LEL and SEL; Env'al Monitor & Ass'ment 2005 110:71-85 2 - EPA 905-R96-008 + - Carried over from Open Water disposal Guidelines; treated as if LEL for management decisions. 3 - Arch ET&C 2000, 39(1)20- TEL and PEL are also known as Canadian ISQGs and PELs 4 - Guidelines for the protection and management of aquatic sediment quality in Ontario Aug 1993 Bioassay endpoints: M - Microtox; B - Bivalve; E - Echinoderm larvae; O - Oyster larvae; 5-ET&C 2002, 21(9)1993-A - Amphipod; N -- Neanthes; L -- Larval bioassay; plus, I -- Infaunal community impacts 6 - Ecotox, 1996, 5(4):253-7 - Chapter 173-204 WAC, 1991/95 as supplemented by WA Dept of Ecology staff with unpublished data. Pg₂ For more information, email SQuiRT@NOAA.gov OR&R Report 08-1

Screening Quick Reference Table for Inorganics in Soil

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE		minute estador de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp de la companya de la companya de la companya de la companya de la company de la companya de la comp	BACKGRO		OUND ¹ <u>DUTCH STANDARDS</u> ²			Eco			
All concentrations in parts per I weight unless specified other		CAS Number	Mean	Range	Target	Intervention	Avian	Inverts	Mammals	Plants	Microbes ⁴
Aluminum	AI	7429905	4.70%	0.5- >10%						50,000 a	600,000
Antimony	Sb	7440360	480	bd-8,800	3,000	15,000		78,000	142 v	5,000 a	
Arsenic	As	7440382	5,200	bd-97,000	900 L	55,000	43,000	60,000 a	5,700 v	18,000	100,000
Barium	Ba	7440393	440,000	10,000-0.5%	160,000	625,000		330,000	1,040 v	500,000 a	3,000,000
Beryllium	Be	7440417	630	bd-15,000	1,100	30,000 S		40,000	1,060 v	10,000 a	an baar ab starte stille betern
Boron	В	7440428	26,000	bd-300,000						500 a	20,000
Bromine	Br	7726956	560	bd-11,000	20,000	, Diana ang ang ang ang ang ang ang ang ang		io contonto e perorene enviro. V		10,000 a	
Cadmium	Cd	7440439			800	12,000	770	20,000 a	2.22 v	4,000 a	20,000
Chromium III	Cr	7440473	< 37,000	1,000-0.2%	< 380 L	< 220,000 L	26,000	<400 a	34,000	< 1,000 a	< 10,000
Chromium VI	Cr	18540299	< 37,000		< 380 L	< 220,000 L		400 a	81,000	< 1,000 a	< 10,000
Cobalt	Co	7440484	6,700	bd-70,000	2,400 L	180,000 L	120,000	s minin here a service of	140 v	13,000	1,000,000
Copper	Cu	7440508	17,000	bd-700,000	3,400 L	96,000 L	28,000	50,000 a	5,400 v	70,000	100,000
Cyanide (total complex)	CN	57125			5,000	50,000 (pH>5)			1,330 v		si dise data Matan di
Cyanide (total free)	CN				1,000	20,000					
Fluorine	F	7782414	210,000	bd-0.37%	500,000			20 / Classifi frantificana critanea (h		200,000 a	30,000
lodine		7553562	750	bd-9,600						4,000 a	
Iron	Fe	7439896	1.80%	0.01->10%	Personal constraints for the second	, franciska se		 Merci - Children Scholare (Astronomic Contine) 			200,000
Lanthanum	La	7439910	30,000	bd-200,000							50,000
Lead	Pb	7439921	16,000	bd-700,000	55,000 L	530,000	11,000	500,000 a	53.7 v	50,000 a	900,000
Lithium	្រៃ	7439932	20,000	bd-140,000						2,000 a	10,000
Manganese	Mn	7439965	330,000	bd-0.7%			4,300,000	450,000	4,000,000	220,000	100,000
Mercury	Hg	7439976	58	bd-4,600	300	10,000		100 a v		300 a	30,000
Mercury(methyi)		22967926			37 L	4,000 L	 Frider 11 internitionalisations, adda.com 	< 100 a v	1.58 v	< 300 a	span sastatit
Molybdenum	Mo	7439987	590	bd-15,000	3,000	190,000 L		u noreni. Dir tahih H		2,000 a	200,000
Nickel	Ni	7440020	13,000	bd-700,000	260 L	100,000 L	210,000	200,000 a	13,600 v	30,000 a	90,000
Selenium	Se	7782492	260	bd-4,300	700 L	100,000 S	1,2000	4,100	630	520	100,000
Silver	Ag	7440224		···· ···· ··· ··· ···· ···· ··· ···		15,000 S	4,200	in the start class is true to	4,040 v	2,000 a	50,000
Strontium	Sr	7440246	120,000	bd-0,3%							
Sulfide		18496258		· · · · · · · · · · · · · · · · · · ·		reconcernent station.llfll			3.58 v	i ana ana amin'ny fisiana	. [
Sulfur	S	7704349	0.12%	bd-4.8%							
Technetium	Tc	7440268			······································					200 a	and a second
1: bd – below detectio 2: S – serious contami		evel; L – Envir	onmental Risk Lin	nit.							
For more informatio	n, ema	il SQuiRT@N	OAA.gov			Pg 3				OR&	R Report 08-1

Screening Quick Reference Table for Inorganics in Soil

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE			BACKGP	OUND ¹	DUTCH S1	ANDARDS ²	a daha boʻr dahadi Ama di boʻr dahadi daga Ama dahadi boʻr dahadi daga daga	<u>Eco</u>	SSL ³		
All concentrations in parts per b weight unless specified othe		CAS Number	Mean	Range	Target	Intervention	Avian	Inverts	Mammals	Plants	Microbes ⁴
Tellurium	Te	13494809			na series de la composición de la compo Composición de la composición de la comp	600,000				······································	an an an an Array an Array
Thallium	TI	7440280	8,600	2,20-31,000	1,000	15,000 S			56.9 v	1,000 a	
Tin	Sn	7440315	890	bd-10,000	19,000 background	900,000 S			7,620 v	50,000 a	2,000,000
Titanium	Ti	7440326	0.224 %	0.007-2 %					n e sur un de la companya de la comp		1,000,000
Tin as Triphenyltin		668348				< 2,500					
Tungsten	W	7440337									400,000
Uranium	U	7440611	2,300	290-11,000						5,000 a	
Vanadium	V	7440622	58,000	bd-500,000	42,000	250,000 S	7,800		1,590 v	2,000 a	20,000
Zinc	Zn	7440666	48,000	bd-0.29%	16,000 L	350,000 L	46,000	6,620 v		50,000 a	100,000

Sources

- 1 USGS Prof. Paper 1270, 1984. Mean is geometric mean of national data.
- 2 Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has not been done here.

Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: Updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere. Min. Housing, Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.

3 - Entry is lower of either:

- EPA Eco-SSLs, www.epa.gov/ecotox/ecossl/
- a ORNL Screening benchmark for earthworms and soil microorganisms: ORNL 1997a, ES/ER/TM-126/R2
- v EPA R5 Eco Screening levels soil shrew or vole, www.epa.gov/reg5rcra/ca/
- 4 ORNL 1997b, ES/ER/TM-85/R3.

1: bd – below detection 2: S – serious contamination level; L – Environmental Risk Limit

Screening Quick Reference Table for Inorganics in Water

6

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ELEMEN			SURFACE WATERS2							
All concentrations in parts per billion		GROUND WATER 1	Freshwa	ter	Marij	1 e				
unless specified othe			Acute	Chronic	Acute	Chrónic				
Aluminum	Al	50-200 *	pH 750	pH 87						
Antimony	Sb	6	88 p	30 p	1,500 p	500 p				
Arsenic III	As+3	<10		190 E		2.3 NZ				
Arsenic V	As ⁺⁵	< 10	66 T	3.1 T	2,319 *					
Arsenic, Total	As	10	340	150	69	36				
Barium	Ba	2,000	110 T	3.9 E	1,000 вс	200 BC				
Beryllium	Be	. 4	35 T	0.66 T	1,500 BC	100 BC				
Boron	В	5,000 C	30 T	1.6 T		1,200				
Cadmium	Cd	5	2.0 †	0.25 †	40	8.8				
Chromium III	Cr+³	< 100	570 †	74 †	10,300 *	27.4 NZ				
Chromium VI	Cr+s	< 100	16	11	1,100	50				
Chromium, Total	Cr	100								
Cobalt	Co		1,500 T	3.0 E		1 NZ				
Copper	Cu	1,300	13 †	9†	4.8	3,1				
Fluoride	F	4,000	200 BC (hardness < 50)		1,500 BC					
Gallium	Ga			18 NZ		use 18 NZ				
Iron	Fe	300 *		1,000	300 BC	50 BC				
Lanthium	La			0.04 NZ						
Lead	РЬ	15	65 †	2.5 †	210	8.1				
Lithium	Ц		260 T	14 T						
Мапдалеѕе	Mn	50*	2,300 T	80 E		100 BC				
Мегсигу	Hg	2	14	0.77	1.8	0.94				
Methyl Mercury			0.099 T	0.0028 T		<pre>interior encoded encoded example in the initial initi Initial initial ini</pre>				
Molybdenum	Мо	70 W	16,000 T	34 NŻ		23 NZ				
Nickel	Ni	20 W	470 †	. 52 †	74	8.2				
Phosphorus	P					0.1				
Potassium	ĸ	·····	373,000 вс							
Selenium	Se	50	13-186 total	5 total	290	71				
Silver	Ag	100 *	1.6 (½) †	0.36 T	0.95 (½)					
Strontium	Sr	under als de la constante en entre de la constante en entre de la constante en entre de la constante en entre Estatuta de processiones en entre entre de la constante entre entre entre entre entre entre entre entre entre e	15,000 T	1,500 T						
Thallium	TI	2	110 T	0.03 NZ	2,130 *	17 NZ				
Tin as TBT			0.46	0.072	0.42	0.0074				

1. * - Secondary standard 2: pH - criteria is pH dependent ; p - proposed; † - hardness dependent; * - EPA LOEL ; (½) - CMC is halved to compare to 1985 Guideline derivation

For more information, email SQuiRT@NOAA.gov

Pg 5

į.

OR&R Report 08-1

Screening Quick Reference Table for Inorganics in Water

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ELEMENT All concentrations in parts p unless specified otherw		GROUNDWAT	E R 1	Fr Acute	eshw	ater Chronic	RFACE	WATERS2 Acute	Marine	Chronic
Tin as Di-N-Butyl				0.08 BC						
Tin as Triethyl				0.4 BC		- : - · · ·				
Tin as Triphenyl				0.022 BC				34 BC		
Titanium	· Ťi ·		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	2,000 BC					· · ·	
Uranium	U	30		46 T		0.5 NZ		500 BC		100 BC
Vanadium	• V			280 T		19 E				50 BC
Zinc (Zn)	Zn	5,000 *		120 †		120 †		90		81
Zirconium	Zr			310 T	- 1	17 T			· ·	
Hydrogen Sulfide		-		- 2		·		2		
Cyanide, free	CN	200		2 2	÷.	1 a m m 1 a m 1 m 5.2 m a m		1.		1

Freshwater criterion for certain elements (†) are expressed as a function of hardness (mg/L) in the water column. The values shown assume 100 mg/L. Values for a different hardness may be calculated using the following equations to arrive at a <u>CMC</u> or <u>CCC</u> for *filtered* samples. Hardness may range up to 400 mg/L as calcium carbonate. For hardness above this range, use 400 mg/L as the maximum value allowed. For salinity between 1 and 10 ppt, use the more stringent of either fresh or marine values.

Sources

1 - Primary entry is the US EPA MCL value, followed by the WHO drinking water guidelines.

Maximum Contaminant Levels (MCLs): http://www.epa.gov/safewater/index.html

W - World Health Organization's (WHO) Drinking water guidelines: http://www.who.int/water_sanitation_health/dwg/en/

C - Canadian water Quality Guidelines: http://www.ec.gc.ca/CEQG-RCQE/English/Ceqg/Water/default.cfm

- 2 Primary entry is the US Ambient Water Quality Criteria, followed by the lowest of Tier II SAVs or available standards and guidelines.
 - EPA Ambient water Quality Criteria (AWQC): http://www.epa.gov/waterscience/criteria/aglife.html

T - Tier II Secondary Acute Value: http://www.esd.ornl.gov/programs/ecorisk/tools.html

BC - British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wq/

NZ - Australian & New Zealand ECLs and Trigger values: ANZECC Oct 2000, Volume 1, The Guidelines. www.mfe.govt.nz/publications/

E - EcoUpdate: www.epa.gov/oswer/riskassessment/ecoup/

Lowest Observable Effect Levels (LOELs) previously published by EPA are also included since these essentially were the basis for many state standards. EPA LOELs: EPA Water quality Criteria Summary, Office of Science & Technology, Health & Ecological Criteria Div., Ecological Risk Assessment Branch, 1991. Full listings appeared in various Fed. Register notices and in EPA's Quality Criteria for Water, 1992.

1: * – Secondary standard 2: pH – criteria is pH dependent ; p - proposed; + hardriess dependent; * EPA LOEL ; (½) - CMC is halved to compare to 1985 Guideline derivation

Screening Quick Reference Table for Inorganics in Water

These tables were developed for internal use for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Zinc (Zn)	CMC = e ^{0.8473} [<i>In</i> (hardness)] + 0.884	_{CCC} = e ^{0.8473} [<i>in</i> (hardness) +0.884	CF = 0.978	CF = 0.986	CF = 0.946
Silver (Ag)	CMC = e ^{1.72} [<i>In</i> (hardness)] - 6.52	CCC — No criteria	CF = 0.85		CF = 0.85 /
Selenium (Se)			-		CF = 0.998
Nickel (Ni)	_{CMC} = e 0.846 [<i>In</i> (hardness)] + 2.255	_{CCC} = e 0.846 [<i>In</i> (hardness)] + 0.0584	CF = 0.998	CF = 0.997	CF = 0.990
Mercury (Hg)			CF = 0.85	CF = 0.85	CF = 0.85
Lead (Pb)	_{CMC} = e ^{1.273} [<i>In</i> (hardness)] - 1.46	CCC = e 1.273 [In(hardness)] - 4.705	CF = 1.46203 - 0.145712 [<i>in</i> (hardness)]	SAME AS CMC	CF = 0.951
Copper (Cu)	$CMC = e^{0.9422 [in(hardness)] - 1.7}$	CCC = e ^{0.8545} [<i>In</i> (hardness)] - 1.702	CF = 0.960	CF = 0.960	CF = 0.83
Chromium VI (Cr+6)			CF ≈ 0.982	CF ≂ 0.962	CF = 0.993
Chromium III (Cr+3)	$CMC = e^{0.819 [In(hardness)] + 3.7256}$	CCC = e ^{0.819} [<i>In</i> (hardness)] + 0.6848	CF = 0.316	CF = 0.860	_
Cadmium (Cd)	CMC = e 1.0166 [In(hardness)] - 3.924	_{CCC} = _e 0.7409 [<i>In</i> (hardness)] - 4.719	CF = 1.136672 - 0.041838 [<i>in</i> (hardness)]	CF = 1.101672 - 0.041838 [<i>In</i> (hardness)]	CF = 0.994
Arsenic (As)			1	1	1
ELEMENT	A state of the second	ILTERED FRESHWATER CRITERIA	UNFILTERED TO Fresh water CMC	FILTERED CALCULATIONS	Marine CMC / CCC

Freshwater criterion for certain elements are expressed as a function of hardness (mg/L) in the water column. The values shown assume 100 mg/L. Values for a different hardness may be calculated using the above equations to arrive at a CMC or CCC for *filtered* samples. Hardness may range up to 400 mg/L as calcium carbonate. For hardness above this range, use 400 mg/L as the maximum value allowed.

Criteria for most metals are expressed as standards for samples filtered through 0.45 m filter (*i.e.*, "dissolved"). To convert unfiltered concentrations to filtered, multiply the unfiltered concentration value by the appropriate Conversion Factor (CF) above. For cadmium and lead, the conversion factor itself is hardness-dependent.

CMC: Criteria Maximum Concentration is the highest level for a 1-hour average exposure not to be exceeded more than once every three years, and is synonymous with "acute." CCC: for a 4-day average exposure not to be exceeded more than once every three years, and is synonymous with "chronic."

Sources

EPA Ambient water Quality Criteria (AWQC): http://www.epa.gov/waterscience/criteria/aglife.html

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

19 14 34 .61	14 34	0.00085 c 6.71 5.87 46.9	ERL 7 16 44 85.3	116 140	0.0215 c 88.9 128	<u>ERM</u> 7 500 640	AET ⁸ 0.0036 N 130 E 71 E	EgP ⁹ @1%Toc
14 34 61	14 34	6.71 5.87 46.9	16 44		88.9		130 E	
14 34 61	14 34	5.87 46.9	44		1		ł	
34 61	34	46.9		140	128	640	71 E	
34 . 61	34		85.3	۰ ۲			1	1
34 . 61	34		85.3				[
34 . 61	34		85.3	· · · · · ·		l l	9.5 AE	
61			85.3		a di sta			Ì
61				290	245	1,100	280 E	
	.61					4.4		5
	. 61							
67		74.8	261	466	693	1,600	960 E	
. 67		· ·						57
1 11	67	1 a.c.	· L. · · ·	497		1 a.c.	670 M	2 E
69	69	88.8	430	520	763	1,600	1,100 E	
130	130			1,107			1,800 E I	
70	70			537			1,800 E I	
	··· ·						65 O	
							52 B	
		1.						
							÷.	
	÷.,				a se ar	1.11		
		0.32			0.99		> 4.8 N	3.7
17	17	0.02		5 73		1. S. S. L.		1,100
ų ų	1 7	182			2647		1,300 I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			. 19 ⁴	·				650
			1 · ·	1 .	- 14 - 14	i in the second		
		·				1.1	<u>.</u>	
	- · ·	the start	l s sinsi	1	. Litter i D		63 M	1,100
			1.1.1					
1 ¹ . 1			· · ···	· ·	·· [· ···	· ·	
					· · · · · · ·			1,200
		a picción da Constiguida	ue on dry weight basis. Iarvae ; L Lärval _{max} ;	ue on dry weight basis.	ue on dry weight basis.		ue on dry weight basis.	e on dry weight basis.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHV	VATE	RSI	EDIM	ENT			ITCH Iment ^s		M	ARIN	ESE	DIMEN	T		Eco Tox
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL1	TEL 2	TEC 2	<u>LEL</u> 3	PEL 2	<u>PEC</u> 2	<u>SEL</u> 3	UET 4 @1%TOC	Target	Intervention	<u>T</u> 20.*	TEL 7	ERL 7	<u>Ten</u> 6	<u>PEL</u> 7	ERM.7	AET *	<u>ЕаР</u> ^э @1%Toc
Catechol (o-Dihydroxybenzene)	120809									3.2 LB	2,600 LB]		
Chlordane	57749		4.5	3.24	7	8.9	17.6	60	30 I	0.03	4,000		2.26	0.5		4,79	6	2.8 A	
Chlordane (alpha)	5103719									< 0.03	< 4,000								
Chlordane (gamma)	5103742									< 0.03	< 4,000								
Chloro, 4- 2-methyl phenol	1570645										< 15,000 S								
Chloro, 4- 2-methylphenoxy acetic acid (MCPA)	94746									0.05	4,000								
Chloro, 4- 3-methyl phenol	59507										< 15,000 S								
Chioro, 4- methyl phenols	na										15,000 S							1. 요구	
Chloroaniline	27134265								· · · ·	5	50,000				1			n in fa erforgen.	
Chiorobenzenes (sum)	na									30	30,000								820
Chloroform (trichloromethane)	67663						1			20	10,000								
Chloronaphthalene, 1-	90131					yanga.				57 LB	< 10,000						in a creg		
Chloronaphthalene, 2-	91587									250 LB	< 10,000				[1	
Chiorophenol, 2-	95578							The state of the	2426256	55 LB	7,800 LB				125563			0.333	abria, par
Chlorophenol, 3-	108430									35 L	14,000 L								
Chlorophenol, 4-	106489									20 LB	1,400 LB								
Chlorophenols (sum)	na				ľ					10	10,000								
Chrysene	218019	26.83	57,1	: 166	: 340	862	1,290	4,600	800 I	8,100 LB	35,000 LB	82	108	384	650	846	2,800	950 E	
Cresol [m-] (3-Methyl phenol)	108394									1,600 L	16,000 L								
Cresol [o-] (2-Methyl phenol)	95487									500 L	50,000 L				laran di-			8 B	
Cresol [p-] (4-Methyl phenol)	106445									5.1 LB	2,600 LB							100 B	
Cresols, sum	1319773								 distribution distribution 	50	5,000								
Cyclohexanone	108941						·			100	45,000								- -
DDD, 4,4- (p,p-DDD, TDE)	72548		3.54	4.88	8	8.51	28	60	< 60 I	3.9 LB	34,000 LB		1.22	2		7.81	20	< 16 T	
DDE, 4,4- (p,p-DDE)	72559		1.42	3.16	5	6.75	31.3	190	<50 I	5.8 LB	1,300 LB		2.07	2.2		374	27	< 9 I	
DDT, 4,4- (p,p-DDT)	50293		1.19 c	4.16	8	4.77 c	62.9	710	50 1	9.8 LB	1,000 L		1.19	1		4.77	7	< 12 E	
DDT+DDE+DDD (sum)	na		7	5.28	7	4,450	572	120	50 1	10	4,000		3.89	1.58		51.7	46.1	11 B	
Diazinon	333415																		1.9
Dibenz[ah]anthracene	53703	10	6.22 c	33	60	135 c		1,300	100 M			19	6.22	63.4	113	135	260	230 OM	
Dibenzofuran	132649								5,100 H									110 E	2,000

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: 1 - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; + - value on dry weight basis.

5: S-Serious Contamination, L-Environmental Risk Limit for soil: LB-Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact: A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Oyster larvae; E - Echlnoderm larvae; L - Larval max; or; N - Neartifies bioassay.

For more information, email SQuiRT@NOAA.gov

OR&R Report 08-1

Pg 9

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHV	I A T E	RSE	DIM	ENT			<u>TCH</u> iment ^s		M	ARIN	ESEI	DIMEN	7		Eco To
Ali concentrations in parts per billion dry weight unless specified otherwise	Number	<u>ARCS</u> Hyalella TEL ¹	- <u>TEL</u> 2	TEC ²	<u>1EL</u> 3	PEL ²	PEC 2	<u>SEL</u> 3	UET 4 @1%TOC	Target	Intervention	<u>T20</u> •	<u>TE</u> 7	<u>ERL</u> 7	<u>T₅₀ s</u>	<u>PEL</u> '	ERM 7	<u>AET</u> *	<u>EqP</u> 9 @1%TO
Dichloroaniline, 2,4-	554007									< 5	< 50,000 S					inter et de la companya de la			-
Dichloroaniline, 3,4-	95761			i .			, taite i			. < 5	< 50,000 S					· ·			· .
Dichloroaniline, 3,4-	95761									< 5	< 50,000 S								
Dichlorobenzene, 1,2-	95501				·			1990 - 1997 1997 - 1997		< 30	17,000 LB							13 N	340
Dichlorobenzene, 1,3-	541731					· ·.				< 30	24,000 LB						··· ···		1700
Dichlorobenzene, 1,4-	106467		·· . · · ·	1 1		· · · · ;				< 30	18,000 LB	÷					· · · ·	110 IM	350
Dichlorobenzenes	25321226									< 30	19,000 LB							10070	
Dichloroethane, 1,1-	75343				5 - 5 S	Υ.	· · .		· · · ·	20	15,000						10 Te		
Dichloroethane, 1,2-	107062						·			20	4.000							: :	
Dichloroethene, 1,1- (vinylidene chloride)	75354	1. I.	· · · ·						•	100	300								· .
Dichloroethene, 1,2- (cis or trans)	540590									200	1,000								
Dichlorophenol, 2,4-	120832	n ja tara							·	. < 10	8,400 LB						1.1	0.2083	
Dichlorophenol, 2,6-	87650		8	· ·						< 10	57.000 LB							0,2,000	
Dichlorophenol, 3,4-	95772		1 A				- <u>.</u>			< 10	57,000 LB					1			
Dichlorophenol, 3,5-	591355			· ·						< 10	5,400 LB		14.1 1	:			- 1		· ·
Dichlorophenols (sum)	na						·			< 10	22,000 LB	·. ·.	· .					· .	
Dichloropropane, 1,2- (propylene dichloride)	78875									< 2	< 2,000								
Dieldrin ‡ and a state of the second state of	60571	•	2.85	1.9	· 2 ·	6.67	61.8	910	300 I	0.5	: : 1,900 LB	0.83	0,72	0.02	2.9	4.3	8.	1.9 E	
Diethyl phthalate	84662									530 L	53,000 L							6 BL	630
Diethylene-glycol	111466				·			÷			270,000 S							a serte	
Dihydroxybenzenes, sum	na									62 LB	8,000 LB		· ·		·				
Di-iso-butyl phthalate	84695	·		1	· ·					92 LB	17.000 LB			· · ·		· .			1 .
Dimethyl phthalate	131113									1,000 LB	84,000 LB							6 B	
Dimethylnaphthalene, 2,6-	581420		· . ·					:	at so at j			25	· ·		133		. •		
Dimethylphenol, 2,4-	105679																	18 N	
Di-n-butyl phthalate	84742	· · · · ·							- 110 H	7.000 LB	36.000 LB	- <u>1</u>						58 BL	11,000
Di-n-octyl phthalate	117840			1 · · ·				* •• • ••		< 100	< 60,000							61 BL	1
Dodecylbenzene	25155300	· · ·		114. L							1,000,000 S					<u>.</u>			1911 - 1
Endosulfan (a or b)	115297			· •.				· · · ·		0.01	4,000								2.9 α 14 β

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact M - Microtox bioassay; H - Hyalella azteca bicassay; + value on dry weight basis.

5: S-Serious Contamination; L-Environmental Risk Limit for soil; LB-Environmental Risk Limit for soil or bedded sediment

8: Entry is lowest value among AET tests: I - Infaunal community impact ; A - Amphipod ; B - Bivalve ; M - Microtox bioassay ; O - Oyster larvae ; E - Echinoderm larvae ; L - Larvalmax ; or , N - Neanthes bioassay.

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHV	VATI	ERSI	EDIM	ENT		D L Sec	<u>JTCH</u> iment⁰		M	ARIN	ESE	DIMEN	T		Eco To
All concentrations in parts per billion dry weight unless specified otherwise	Number	<u>ARCS</u> Hyalella TEL ¹	<u>T6L</u> 2	TEC 2	LEL 3	<u>PEL</u> 2	PEC 2	SEL 3	UET 1 @1%TOC	Target	Intervention	<u>T29</u> 6	TEL 7	<u>ERL</u> 7	<u>T 59</u> 6	<u>PE</u> L 7	ERM 7	<u>AET</u> ®	<u>ЕqР</u> ^э @1%тос
Endosulfan II	33213659			1													a na anna an taoinn a	e e ter ser te ser	
Endrin	72208		2.67	2.22	3	62.4	207	1,300	500 I	0.04	95 L					122555			, la mai
Ethyl acetate	141786										75,000 S								
Ethyl acetate	141786										75,000 S						jaa. maa		
Ethyl benzene	100414			1.000	1.1.1.1.1.1.1.1					30	50,000							4 EL	3,600
Ethylene glycol	107211										100,000 S							5-32-51	
Fluoranthene	206440	31.46	111	423	750	2,355	2,230	10,200	1,500 M	1,000 LB	260,000	119	113	600	1,034	1,494	5,100	1,300 E	1 ·· · · · · ·
Fluorene	86737	10	21.2 c	77.4	190	144 c	536	1,600	300 M 🕾			19	21.2	19	114	144	540	120 E	540
Formaldehyde	50000			[· · · ·		[· · · · · · · · · · · · · · · · · · ·					100 S				** ****			· · · · · ⁻ ·	
Guthion (Azinphos-methyl)	865000									0.005	2,000 S						les éga		
Heptachlor	76448						1.100.010		10 I	0.7	4,000	i to concerne		i e secondo		i interve		0.3 B	u utiliti i siri
Heptachlorepoxide	1024573		0.6	2.47	5	2.7.4	16	50	30 I	0.0002	4,000	0.6 c		a the type		2.74 c			e la moreg
Hexachlorobenzene	118741				20			240	100 1	1.4 LB	2,000 LB					and a brain		6 B	
Hexachlorobutadiene (HCBD)	87683	er ta til ere		Berner							1449 places top						66699	1.3 E	
Hexachlorocyclohexane (BHC)	608731				3		1	120	100 I			-				a shi dalar	-	- A	· · · · · · ·
Hexachloroethane	67721																	73 BL	1,000
Hydroquinone (p-dihydroxybenzene)	123319									50	43,000 LB								1.5.5.0.0.0
Indeno[1,2,3-cd]pyrene	193395	17.32			200			3,200	330 M	31 LB	1,900 LB	68			488			600 M	
Linar alkylbenzene sulfonates (LAS)	na												<12,800 €		and a reaction	>62,000 €			•
Malathion	121755																		0.67
Мапер	12427382	al a consector	1		- under sond in	a an an and				2	22,000 L	1 Mercelander	115 min Winner	1. 1	landiain i I			i surgentig fe	
Methanol	67561		ter etter sig				line and				30,000 S	l caracte			10000				
Methoxychlor	72435			1				Bernsteinen.			attance per ana akada		energiation trans		[n an shi shisisari	energi e e e	and the second	19
Methyl ethyl ketone (MEK; 2-Butanone)	78933								larga pe		35,000 S			(i.e.e.)					
Methyl naphthalene, 2-	91576						de mud i			ator: tratación a	n an	21	20.2	70	128	201	670	64 E	
Methylene chloride (Dichloromethane,	75092									18 LB	2 000 1					tennet.			la stati
DCM	n _b ianga kuis									18 LB	3,900 L								
Methylnaphthalene, 1-	90120											21			94				
Methylphenanthrene, 1-	832699											18			112				16700
Methyl-tert-butyl ether (MTBE)	1634044										100,000 S								
Mirex	2385855				7			1,300	1 008			122.222.2					gaanaaa.		

5: S – Serious Contamination; L – Environmental Risk Limit for soil; LB – Environmental Risk Limit for soil or bedded sediment
 8: Entry is lowest value among AET tests: I – Infaunal community impact ; A – Amphipod; B – Bivalve; M – Microtox bioassay; O – Oyster larvae; E – Echinoderm larvae; E – Larvalmax; or; N – Neanthes bioassay.

For more information, email SQuiRT@NOAA.gov

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHV	V A T I	ERSE	DIM	ENT			ITCH iment⁵		M	ARIN	ESE	DIMEN	T		Eco Tox
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL ¹	<u>TEL</u> 2	<u>TEC</u> 2	L <u>EL</u> 3	<u>PEL</u> *	<u>PEC ?</u>	SEL ³	UET * @1%TOC	Target	Intervention	1 <u>720</u> 6	<u>TEL</u> ?	<u>ERL</u> 7	<u>T50</u> 6	<u>PEL</u> 7	ERM ?	AET ^s	EqP ^a @1%TOC
Monochloroaniline (3 isomers)	na									5	50,000					1			
Monochlorobenzenes	108907	n nati Serie di Serie		11			la se se La se	7		< 30	15,000 LB		•••••••••••••••••••••••••••••••••••••••	1911 - 19 1911 - 19	1 1 1 1 1 1 				820
Monochloronaphthalenes	na									120 LB	10,000								11 - 11 - 11 - 11 - 11 - 11 - 11 - 11
Monochlorophenols (sum)	na		s et de		10 A.					< 10	5,400 L		·			1911-1	·		1. A.S.
Naphthalene	91203	14.65	34.6 c	176		391 c	561		600 I	120 LB	17,000 LB	30	34.6	160	217	391	2,100	230 E	480
Nitrobenzene	98953							· . ·	a a a a Aanaratata a									21 N	
Nitrosodiphenylamine, N-	86306						1 · ·											28 I	
Nonylphenol	25154523	<u>.</u>	1,400 c				2.5	1.7.7				dia dia	1,000 c				}		
PAHs, Low MW	na -	76.42				:			5,300 M	< 1,000	< 40,000		312	552		1,442	3,160	1.200 E	
PAHs, High MW	na	193							6,500 M	< 1,000	< 40,000		655	1,700		6,676	9,600	7,900 E	. di
PAHs, Total	па	264.1		1,610	4,000	· · · ·	22,800*	100,000*	12,000 M	1,000	40,000		1,684	4,022		16,770	44,792	.,	
PCB 105	32598144			1,010	1,000		22,000	100,000	12,000 111	1.5 LB	< 1,000		1,001	-,OLL	· .				-
PCB 126	57465288		· · · · · ·	1 1.1		. : ``	ang a sa	*****	i i e se i	0.0025 LB	920 LB	· · ·		1.1.1	1111		1 ¹ .1		
PCB 77	32598131					· • • •	1.1	2		0.42 LB	<1,00						· · · · ·		
PCB-Arocior 1254	na	• • • • • •	60 c		60	340 c		340	1	0.42.00		·· · ·	63.3 c	. t. t.		709 c			-
PCBs (sum)	1336363	31.62	34.1	59.8	70	277	676	5,300	26 M	0.3 LB	1,000	35	21.6	22.7	368	189	180	130 M	
Pentachloroaniline	527208	01.02	34.1	35.0	10		0/0	5,500	2014		10,000 S	.55	21.0	22.1	. 300 .	103	100		· · · **•
Pentachlorobenzene	608935					- 14 - C		1		15 LB -	16,000 LB				· .		· · .		690
Pentachlorophenol [PCP: at ph 7.8‡]	87865	i ita		1.1	· :		a		11	< 10	8,000 LB		1.1.1				·	17 B	. 090
Perylene	198550			· .						× 10	0,000 LB	. 74			450				
	85018	18.73		0.04	500	- FAR	4.470	0.500	000 T	0.00010	04.00 L D		00.7		453	-	4500		
Phenanthrene		18.73	41.9	204	560	515	1,170	9,500	800 I	3,300 LB	31,00 LB	68	86.7	240	455	544	1500	660 E	
Phenol	108952			1.11		⁺	. t		48 † H	50	14,000 LB	[14]		· · · ·				130 E	
Phthalates (sum)	па									100	60,000				1				
Propanol, 2- (isopropanol)	67630	·									220,000 S	- ·							
Pyrene	129000	44.27	53	195	490	875	1,520	8,500	1,000 i			125	153	665	932	1,398	2,600	2,400 E	1.1111
Pyridine	110861			l'in a						100	500			·	· · · · ·		1 ¹	lantat di	1.1.1
Resorcinol (m-dihydroxybenzene)	108463									34 LB	4,600 LB								
Styrene (Vinyl benzene)	100425	12.5A		l tradici.	· · · · · · · · ·					200 LB	86,000 LB			1.100.00	in a the		· · · ·		
Tetrachloroaniline, 2,3,5,6-	3481207										< 30,000 S								
Tetrachlorobenzene, 1,2,3,4-	634662	Next of								160 L	16,000 L	•	···		le far ch				
Tetrachlorobenzene, 1,2,3,5-	634902									6.5 L	650 L								
 Entry is lowest, reliable value among A S. – Serious Contamination; L. – Enviro Entry is lowest value among AET tests 	onmental Ris	k Limit for	soil; LB – I	Environm	iental Ri	sk Limit fo	r soil or be	edded sedi	nent					or N - Nea	anthes bio	assav.			

8: Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M - Microtox bioassay; O - Oyster larvae; E - Echinoderm larvae; L - Larvai_{max}; or; N - Neanthès bioassay

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		FRE	SHV	VATI	ERS	EDIM	ENT			<u>ITCH</u> iment⁵		M	ARIN	ESE	DIMEN	T		Eco Tox
All concentrations in parts per billion dry weight unless specified otherwise	Number	ARCS Hyalella TEL1	<u>TEL</u> 2	<u>TEC</u> 2	LEL 3	<u>PEL</u> 2	PEC 2	SEL 3	UET 4 @1%IOC	Target	Intervention	<u>T₂₀ 6</u>	<u>TEL</u> 7	ERL 7	<u>T so</u> ¢	<u>PEL</u> 7	ERM 7	<u>AET</u> *	EgP 9 @1%toc
Tetrachlorobenzene, 1,2,4,5-	95943									10 L	1,000 L				1.005.014.00	in the second			
Tetrachlorobenzenes	na									22 L	2,200 L							landiga.	an tai tai t
Tetrachioroethylene (Tetrachioroethene; PCE; PER)	127 184									2	4,000							57 I	530
Tetrachlorophenol, 2,3,4,5-	4901513									< 10	< 10,000								e aran
Tetrachlorophenol, 2,3,4,6-	58902									< 10	< 10,000	-						· · · · · · · · · · ·	
Tetrachlorophenols (sum)	25167833									< 10	< 10,000								
Tetrahydrofuran	109999					-				100	2,000								
Tetrahydrothiophene	110010									100	8,800 LB								
Toluene	108883									10	47,000 L								670
Toxaphene	8001352		0.1 c										0.1 c				ingeni:	1.000	28
Tributyltinoxide	56359									< 10	< 2,500			1	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				[
Trichloroaniline (multiple isomers)	na										10,000 S								
Trichloroaniline, 2,4,5.	636306					[.]		1			< 10,000 S								1111
Trichlorobenzene, 1,2,3-	87616									<11 L	5,000 L								
Trichlorobenzene, 1,2,4-	120821								:	11 LB	5,100 LB							> 4.8 E	9,200
Trichlorobenzenes	12002481									38 L	11,000 L						Margan and Sector 20		
Trichloroethane, 1,1,1-	71556									70	15,000								170
Trichloroethane, 1,1,2-	79005									400	10,000								
Trichloroethene (TCE)	na									7.8 L	2,500 L							41 N	1,600
Trichlorophenol, 2,3,5-	na			landha Ar anna-						< 10	4,500 L								
Trichlorophenol, 2,4,5-	95954									< 10	22,000 LB							31	
Trichlorophenol, 2,4,6-	88062									< 10	110,000 LB							6 I	lana ter
Triclorophenols, (sum)	na									< 10	22,000 L	[· · · · · · · ·		l for bring	performant d		and of our	la constata f
Vinyl chloride	75014									10	100	142 pages					Section.		h
Xylene	1330207	and an and					There is a			130 LB	17,000 LB		· ·····.					4 BL	·····
Xylene, m-	108383				10000					110 LB	18,000 LB								25
Xylene, o-	95476				}					89 LB	9,300LB		and sharing	[· · ··· · ·	and a subtrib	and a first	na interior a	
					lanes.												l de trace		1.446.4

Entry is lowest, reliable value among AET tests, on 1% TOC basis: I - Infaunal community impact; M - Microtox bioassay; H - Hyaiella azteca bioassay; T - value on dry weight basis.
 S - Serious Contamination; L - Environmental Risk Limit for soil; LB - Environmental Risk Limit for soil or bedded sediment.
 Entry is lowest value among AET tests: I - Infaunal community impact; A - Amphipod; B - Bivalve; M- Microtox bioassay; O - Cyster larvae; E - Echinoderm larvae; L - Larval_{max}; or, N - Neanthes bioassay.

For more information, email SQuiRT@NOAA.gov

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Sources

- 1 Assessment & Remediation of Contaminated Sediments (ARCS) Program, Sept 1996. EPA 905-R96-008.
- 2 MacDonald et al, 2000. Arch ET&C 39(1):20-C – Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Summary Tables Update 2002, <u>www.ccme.ca/publications/cegg_rcge.html</u>
- 3 Persuad 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Thompson et al., 2005. Enval Monitor & Assessment 110:71-
- 4 Buchman 1999. NOAA HAZMAT Report 99-1.
- 5 Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has not been done here. Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere. Min. Housing, Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.
- 6 Field et al., 2002. ET&C 21:1993-
- 7 MacDonald et al., 1996. Ecotox. 5(4):253 C Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Summary Tables Update 2002, <u>www.ccme.ca/publications/cegg_rcge.html</u>
 € DelValls et al., 1999. Ecotox. & Env Rest 2(1):34-
- 8 Wash Dept Ecol Publ 95-308, 1995 and 97-323a, 1997 Gries & Waldrow Puget Sound Dredged Disposal Analysis Rept 1996. <u>http://www.ecy.wa.gov/biblio/wac173204.html</u> plus unpublished information.
- 9 EcoUpdate EcoTox Thresholds, http://www.epa.gov/oswer/riskassessment/

4: Entry is lowest, reliable value among AET tests, on 1% TOC basis: 1 - Infaunal community impact; M - Microtox bioassay; H - Hyalella azteca bioassay; t - value on dry weight basis.

- 5: S Senous Contamination; L Environmental Risk Limit for soil; LB Environmental Risk Limit for soil or bedded sediment
- 8: Entry is lowest value among AET tests: I Infaunal community impact; A Amphipod; B Bivalve; M Microtox bioassay; O Oyster larvae; E Echinoderm larvae; L Larvalmax: or; N Neanthes bioassay

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UNDWAT	ER		SURFACE	EWATER	S		S O	IL	n an the first of
All concentrations in parts per billion unless specified otherwise	Number		<u>tch</u> Intervention	<u>MCL</u> 2	Fi Acute ³	esh Chronic ³	Mar Acute ³	ine Chronic ³	Invertebrates ⁴	Mammals ⁵	Plants *	Other 7
2,3,7,8-TCDD (dioxin TEQs)	1746016		0.001 ^{ng} /L S	0.00003	<0.01 *	<0.00001 *				0.000199		
2,4,5-Trichlorphenoxyacetic acid (2,4,5-T)	93765			9 W		36 NZ				596		
2,4-Dichlorophenoxyacetic acid (2,4-D)	94757			70		4.0 CA				27.2		
Acenaphthene	83329				1,700 *	5.8 CA	970 *	40 Eco		682,000	20,000	
Acenaphthylene	208968					4,840 V	300 *C			682,000		
Acetone	67641				28,000 T	1,500 T				2,500		late de la composition de la compositio La composition de la c
Acetonitrile	75058					160 NZ				1,370		
Acetophenone	98862									300,000		
Acetylaminofluorene, 2-	53963									596		
Acridine	260946	el al contra por esta Por contra por contra				4.4 CA						
Acrolein	107028				68 *	0.01 NZ	55 *	0.1 NZ		5,270		
Acrylonitrile	107131	0.08	5 S		7,550 *	2,600 *				23.9		1,000,000 M 0.007 D
Alcohol ethoxylated surfactants (AE)	na	·····	l an efferen alfa 6.85 	laina laine laite	an a	140 NZ	lan ar - sinna	Padalo dal Menerez 1	netien tenatine	atte terre de broetrekte d	n mir tiszteket	
Alcohol ethoxyolated sulfate (AES)	na					650 NZ	 Andreas and a second problem of the second problem of					
Aldicarb	116063			9 C		1 CA		0.15 CA				
Aldrin	309002	0.009 ^{ng} /L	< 0.1		1.5 (½)	0.017 V	0.65 (1/2)				3.32 V	0.06 D
Aldrin+Dieldrin+Endrin	na		0.1	<0.03 W								5 D
Allyl chloride	107051									13.4		
Aminobiphenyl, 4-	92671		1							3.05		
Aminomethylphosphonic acid (AMPA)	1066519	0.797 L							 All - Delived y Derevelander All - Delived y Derevelander All - Delived y Derevelander 	- La regar ar gaptan bagian araba Tari an bar (arabar arabar) anang		
Amitrole	61825					22 NZ					,	
Aniline	62533					2.2 CA				56.8		alman upper en stel evita Statue dati invarijationen
Anthracene	120127	0.0007	5		13 T	0.73 T 0.012 CA	300 *C			1.48E6		
Aramite	140578									16,600		
Atrazine	1912249	29 ^{₀g} /∟	76 L	3		1.8 CA		10 BC				0.2 D
Benz[a]anthracene	56553	0.0001	0.5		0.49 T	0.027 T	300 *C			5,210		
Benzene	71432	0.2	30	5	2,300 T	46 Eco	5,100 *	110 CA		255		10 D
Benzidine	92875				70 T	3.9 Т						
Benzo(ghi)perylene	191242	0.0003	0.05			7.64 V	300 *C			119,000		· · · · · · · · · · · · · · · · · · ·
Benzo[a]pyrene	50328	0.0005	0.05	0.2	0.24 T	0.014 T Eco	300 *C			1,520		

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p + proposed; * + LOEL; C - value for chemical class; S - value for summation of isomers; (1/2) - CMC is halved to compare to 1985 Guideline derivation; x 0: - chronic value derived by division of acute value by 10 7: M = microbes; A = avian

For more information, email SQuiRT@NOAA.gov

Pg 15

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	JND WAT	ER		SURFACE	WATER	S		S 0	C	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> 1	MCL 2	Fr.	esh	Mar	'ine	Invertebrates ⁴	Mammals ⁵	Plants ⁶	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³				
Benzo[b]fluoranthene	205992					9.07 V	300 *C			59,800		
Benzo[k]fluoranthene	207089	0.0004	0.05				300 *C			148,000		
Benzoic acid	65850				740 T	42 T						
Benzyl alcohol	100516				150 T	8.6 T				65,800		
BHC, alpha (α-HCH)	319846	33 ^₀ %/L	<1		39 T	2.2 T				99.4		3 D
BHC, beta (β-HCH)	319857	8 ^{ng} /L	<1		39 T	2.2 T 0.495 V				· · · · · · · ·	3.98 V	9 D
BHC, deita δ-HCH)	319868	< 0.05	<1		39 T	2.2 T				9,940		< 10 D
BHC, gamma- (γ-HCH; Lindane)	58899	9 ^{ng} /L	<1	0.2	0.95	0.08	0.08 (½)				5 v	0,05 D
BHC (sum)	na	0.05	1		< 0.95	< 0.08	< 0.08					10 D
Biphenyl a state of the second s	92524			a ang bi		14 T Eco					60,000	
Bis(2-chloroethoxy) methane	111911				11,000 *C		12,000 *C	6,400 *C		302		
Bis(2-chloroethyl) ether	111444									23,700	an a	· ··· ···
Bis(2-ethylhexyl)phthalate (DEHP)	117817	1.9 ^{ng} /L L	< 5	6	400 p	32 Eco 16 CA 0.3 V	400 p	360 p		925		< 100 D
Bis-2-chloro-1-methylethylether	108601											
Bromocil	314409					5 CA						
Bromodichloromethane (Dichlorobromomethane)	75274		· · · · · · · · · · · · · · · · · · ·	60 W	11,000 *C		12,000 *C	6,400 *C		540		
Bromoform (Tribromomethane)	75252		630		2,300 T	320 T Eco				15,900		
Bromoxynil	1689845			5 C		5 CA						
Butanol	35296721		5,600 S									
Butyl acetate, 1- or 2-	na		6,300 S									· · · · ·
Butyl benzyl phthalate	85687	2.9 ^{ng} /L L	< 5		940 *C	19 T Eco	2,944 *C	3.4 *C		239		< 100 D
Captan di anno 1999 a	133062					1.3 CA						
Carbaryl	63252	2 ^{ng} /L	41 L	90 C		0.2 CA		0.32 CA				· · ·
Carbofuran	1563662	9 ^{ng} /L	6.5 L	40		1.8 CA	· · ·	0.06 NZ	· · ·	and a first	1 1 A	1 · · ·
Carbon disulfide	75150				17 T	0.92 T				94.1		
Carbon tetrachloride (Tetrachloromethane;Tetra)	56235	0.01		5	180 T	9.8 T	50,000 *	5,000 x 0.1		2,980		1,000,000 M 400 D
Catechol (o-Dihydroxybenzene)	120809	0.2	630 L									50 D
[10] T. M. Markell, "A set of the set of												

1: L – Environmental Risk Limit, S – Serious Contamination Level 3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x o 1 – chronic value derived by division of acute value by 10

7: M-microbes; A-avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROL	JNDWA1	ſER		SURFACE	WATER	S		S O		
All concentrations in parts per billion	Number	Du	<u>tch</u> t	MCL 2	F	resh	Mar	ine	Invertebrates*	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³		- mammara	f 141113	Other
Chlordane	57749	0.02 ^{nø} /L	0.2	2	1.2 (½)	0.00215 (1⁄2)	0.045 (½)	0.002 (1/2)			224 V	0.03 D
Chlordane (alpha)	5103719	< 0.02 ^{ng} /L	< 0.2						 The found induction of a sequence of a subject of the second sequence of a sequence of second second second sequence of a sequence of a second second second second second second second second second second second se second second seco		< 224 V	< 0.03 D
Chlordane (gamma)	5103742	< 0.02 ^{ng} /L	< 0.2		1.00						< 224 v	< 0.03 D
Chlorfenvinphos	470906					0.1 EU		0.1 EU				
Chloroacetamide	79072								2,000			5 D
Chloroaniline	27134265		30									< 5 D
Chloroaniline, 3-	108429		< 30						30,000		20,000	< 5 D
Chloroaniline, 4-	106478		< 30		250 *C	50 *C	160 *C	129 *C		1,100		< 30 D
Chlorobenzenes (sum)	na	< 7	< 180	100		130 Eco <47 V			< 40,000	< 13,100		30 D
Chlorobenzilate	510156									5,050		20 D
Chloroform (trichloromethane)	67663	6	400	200 W	490 T	1.8 CA				1,190		
Chioro, 4- 2-methyl phenol	1570645		< 350 S									
Chloro, 4- 3-methyl phenol	59507		< 350 S							7,950		
Chioro, 4- methyl phenols	na		350 S							< 7,950		
Chloro, 4- 2-methylphenoxy acetic acid (MCPA)	94746	0.02	50	2 W		2.6 CA	· · · · · · · · · · · · · · · · · · ·	4.2 CA		*******		0.05 D
Chloronaphthalene, 1-	90131	3.7 ^₀ /L L	< 6									
Chloronaphthalene, 2-	91587	0.016 L	< 6		1,600 * C	0.396 V	7.5 * C			12.2		
Chlorophenol, 2-	95578	< 0.3	< 100		4,380 *	490 NZ 24 V				243		< 10 D
Chlorophenol, 3-	108430	< 0.3	< 100			····		nononini noni i	10,000	1	7,000	< 10 D
Chlorophenol, 4-	106489	< 0.3	< 100			220 NZ		fabria ga anti t Guinin a barant				< 10 D
Chlorophenols (sum)	na	0.3	100	·		< 24 V	nastana inin inin		< 10,000	< 243	< 7,000	< 10 D
Chloroprene	126998								l y Long an Lamer Le v Clangent Clauser an I	2.9		
Chlorothalonil	1897456			200 BC		0.18 CA		0.36 CA		en over en en sender værder bo	· ······	n i streten e lit
Chlorpyrifos	2921882			30 W	0.083	0.041	0.011	0.0056			dronofines cen-	
Chrysene	218019	0.003	0.2				300 *C			4,730		
Cresol [m-] (3-Methyl phenol)	108394	< 0.2	< 200							3,490		< 50 D
Cresol [o-] (2-Methyl phenol)	95487	< 0.2	<200		230 T	13 T				40,400		< 50 D
Cresol [p-] (4-Methyl phenol)	106445	< 0.2	< 200							163,000		< 50 D
Cresols, sum	1319773	0.2	200		< 230 T	< 13 T				< 3,490		50 D
Cyclohexanone	108941	0.5	15,000			e eggi decherged	Pagar gardag			sa ngalè iki		100 D

3. p-proposed. *+LOEL: C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x o 1 - chronic value derived by division of acute value by 10 7. M - microbes; A - avian

For more information, email SQuiRT@NOAA.gov

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	رز الناعد ومونته وانخ	JND WAT	ER	1.11111111111111111111111111111111111	SURFACE	do ménesirte nomb	그는 아무 한 만 모님 것이 같이 많이 했다.		S.O.	IL	
All concentrations in parts per billion unless specified otherwise	Number	l i Cariol de la Surger	tch Intervention	<u>MCL</u> ^z	Fr Acute ^s	esh Chronic ³	Mar Acute ³	'ine Chronic ³	Invertebrates4	Mammals ⁵	Plants ⁶	Other 7
DDD, 4,4- (p,p-DDD, TDE)	72548	<0.004 ^{ng} /L	< 0.01	< 1 W	0.19 T	0.011 T	3.6 *	0.36 x 0.1		758		< 10 D
DDE, 4,4- (p,p-DDE)	72559	<0.004 "%/L	< 0.01	< 1 W	1,050 *	105 x 0.1	14 *	1.4 x 0.1		596		< 10 D
DDT, 4,4- (p,p-DDT)	50293	<0.004 "%/L	< 0.01	< 1 W	0.55 (1/2)	0.0005 (1/2)	0.065 (1/2)	0.0005 (1/2)		3.5		< 10 D
DDT+DDE+DDD (sum)	na	0.004 ^{ng} /L	0.01	1 W	<0.55 (1⁄2)	<0.0005 (1⁄2)	<0.065 (½)	<0.0005 (1⁄2)		21 ЕРА		93 A 10 D
Decane	124185				880 T	49 T						
Deltamethrin	52918635					0.0004 CA				: : : :	*	
Demeton	8065483					0.1		0.1				
Diallate	2303164								- 	452		
Diazinon	333415			20 C	0.17	0.17	0.82	0.82				
Dibenz[ah]anthracene	53703				·		300 *C	and the g		18,400		
Dibenzofuran	132649				66 T	3.7 T						
Dibromo, 1,2- 3-chloropropane (DBCP)	96128	a an		0.2			· · · · ·			35.2		
Dibromochloromethane (Chlorodibromomethane)	124481			100 W	11,000 *C		12,000 *C	6,400 *C		2,050		
Dibromoethane, 1,2-	106934		i la pere	. 0.4 W						1,230		
Dicambia	1918009			120 C	[10 CA						
Dichloro, 1,4- 2-butene (cis)	1476115				1					a nata a b		1,000,000 M
Dichloro, 1,4- 2-butene (trans)	110576											1,000,000 M
Dichloroaniline, 2,4-	554007		< 100 S	· · · · · · · · · · · · · · · · · · ·		7 NZ	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		100,000			< 5 D
Dichloroaniline, 3,4-	95761		< 100 S			3 NZ		150 NZ	20,000			< 5 D
Dichlorobenzene, 1,2-	95501	< 3	< 50	600	260 T	0.7 CA	< 1,970 *S	42 CA		2,960		< 30 D
Dichlorobenzene, 1,3-	541731	< 3	< 50		630 T	71 T Eco 38 V	< 1,970 *S			37,700		< 30 D
Dichlorobenzene, 1,4-	106467	< 3	< 50	75	180 T	15 T Eco 60 NZ 9.4 V	< 1,970 *S	129 *C	20,000	546		< 30 D
Dichlorobenzenes	25321226	3	50	< 75	< 180 T	< 0.7 CA	1,970 *S		< 20,000	< 548		< 30 D
Dichlorobenzidine, 3,3- Dichlorodifluoromethane	91941 75718			ni di	· · · · · · · · · · · · · · · · · · ·	4.5 V				646 39,500		
Dichloroethane, 1,1-	75343	in 1 .7	5 5 900		830 T	47 T Eco				20,100		20 D
Dichloroethane, 1,2-	107062	7	400	5	8,800 T	100 CA	113,000 *	11,300 x 0.1		21,200	:	20 D
n an an an an an an an an ann ann an an									an a			

L – Environmental Risk Limit; S – Serious Contamination Level
 p - proposed; *- LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x o t – chronic value derived by division of acute value by 10
 M - microbes; A - avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	UND WAT	ER		SURFACE	WATER	S		S O	ĹĹ	
All concentrations in parts per billion	Number	Du	<u>tch</u> 1	MCL 2	Fi Ei	resh	Mar	ine	Invertebrates ⁴	Mammals 5		
Unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute 3	Chronic ³	Invertebrates	Mammais	Plants *	Other 7
Dichloroethene, 1,1- (vinylidene chloride)	75354	0.01	10	7	450 T	25 T	224,000 *S			8,280		100 D
Dichloroethene, 1,2- (cis or trans)	540590	0.01	20	70 cis	1,100 T	590 T	224,000 *S					200 D
Dichloroethene, 1,2- (trans)	156605			100	11,600 *S	1,160 x 0.1	224,000 *S			784	**	
Dichlorophenol, 2,4-	120832	< 0.2	< 30	900 C	2,020 *	160 NZ 11 V				87,500		< 10 D
Dichlorophenoi, 2,6-	87650	< 0.2	< 30	100 A 200 DA 250 AA	And Markeline	< 0.2 CA	l hander van de ster van de s	ALCOLUMN)	The State Contract Contract Contraction	1,170		< 10 D
Dichlorophenol, 3,4-	95772	< 0.2	< 30			< 0.2 CA			20,000		20,000	< 10 D
Dichlorophenol, 3,5-	591355	< 0.2	< 30			< 0.2 CA					1	< 10 D
Dichlorophenols (sum)	na	0.2	30	< 900 C	<2,020 *	0.2 CA			< 20,000	< 1,170	< 20,000	< 10 D
Dichloropropane, 1,2- (propylene dichloride)	78875	< 0.08	< 80	5	23,000 *S	5,700 *S	10,300 *S	3,040 *S	700,000	32,700		< 2 D
Dichloropropene, 1,3-	542756			20 W	0.99 T	0.055 T	790 *S					
Dichloropropene, 1,3- (cis)	10061015			< 20 W	< 0.99 T	< 0.055 T				398	· · · · · · · · · · · · · · · · · · ·	in allocation in the second
Dichloropropene, 1,3- (trans)	10061026			< 20 W	< 0.99 T	< 0.055 T				398		
Diclofop-methyl	51338273			9 C		6.1 CA			and the second second second			i sek david port informas
Dicofol	115322					0.5 NZ		0.1 NZ	na na sala ang tang tang tang tang Kalapatèn kang menerakan ka			
Didecyl dimethyl ammonium chloride (DDAC)	7173515					1.5 CA				1	e beckele 1	n nanadaalad ku kuluub (ku
Dieldrin ‡	60571	0.1 ^m /L	< 0.1		0.24	0.056	0.355 (½)	0.00095 (1⁄2)		2.38		22 A
Diethyl phthalate	84662	< 0.5	< 5		1,800 T	210 T 110 V	2,944 *C	3.4 *C		24,800	100,000	< 100 D
Diethylene-glycol	111466		13,000 S			alaalaan ee						
Dihydroxybenzenes, sum	na	0.24 L				·		··· ··· ··· ····	11 m m 11 m 11 m 11 m	ala da destructura de la composición de		errer er fielstil sidsiste
Di-iso-butyl phthalate	84695	< 0.5	< 5									< 100 D
Dimethoate	60515	· ·. ·		6 W		6.2 CA 0.15 NZ				218	*1.11.1.12011.1.	
Dimethyl aminoazobenzene [p-]	60117									40		
Dimethyl benz(a)anthracene, 7,12-	57976									16,300	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999	i a dell'elle de compositor a casa da
Dimethyl benzidine, 3,3-	119937									104		
Dimethyl naphthalene, 2,6-	581420							·······	Anna ann an an ann ann an Anna	· · · · · · · · · · · · · · · · · · ·	arrente a la data	nana an ann ann an an an an an an an an
Dimethyl phenethylamine [alpha,alpha]	122098									300		
Dimethyl phenol, 2,4-	105679				2,120 *	100 V				verseerden, broun dat in meisten bief 1996	10 v	nononineee ee ee witduit.
Dimethyl phthalate	131113	< 0.5	< 5		940 *C	3*C	2,944 *C	3.4 *C	200,000	734,000		< 100 D

L - Environmental Risk Limit; S - Serious Contamination Level
 p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 - chronic value derived by division of acute value by 10
 M - microbes; A = avian

For more information, email SQuiRT@NOAA.gov

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JNDWAT	ER		SURFACE	WATER	S		S O	11	
All concentrations in parts per billion	Number	Du	<u>tch</u> 1	MCL 2	Fr	esh	Mar		Invertebrates ⁴	Mammals ⁶	Plants 6	Other 7
unless specified otherwise	n martin (f. 1997), for stall a start anna a tha an tha ann an tha ann an tha Ann ann ann an tha ann an tha ann an tha Ann ann ann an tha ann an tha ann an tha	Target	Intervention		Acute ³	Chronic ^{3 -}	Acute ³	Chronic ³				
Di-n-butyl phthalate	84742	< 0.5	< 5		190 T	19 CA 9.7 V	2,944 *C	3.4 *C		150	200,000	< 100 D
Dinitrobenzene, 1,3-	99650									655		
Dinitrophenol, 2,4-	51285				230 *C	45 NZ 19 V	4,850 *C			60.9		
Dinitrotoluene, 2,4-	121142			· · · · ·	330 *	65 NZ 44 V	590 * S	370 *S		1,280		
Dinitrotoluene, 2,6-	606202									32.8		
Di-n-octyl phthalate	117840	< 0.5	< 5		940 *C	3 *C	2,944 *C	3.4 *C		709,000		< 100 D
Dinoseb	88857			7		0.05 CA				21.8		
Dioxane, 1,4-	123911	an an c					freder Ale			2,050		
Dioxins (sum of PCDDs)	na		0.001 ^{ng} /∟ S							0.000199		· · · ·
Diphenlyhydrazine 1,2-	122667				270 *	27 x 0.1	the second second					· · · · · ·
Diphenylamine	122394									1,010		
Diquat	85007			20		1.4 NZ	· ·				an in a	
Disulfoton	298044			450.0				0.4511		19.9		
Diuron	330541		0.02 S	150 C		0.1EU		0.1EU	· · ·			
Dodecylbenzene	25155300	0.0.154	1		544 (10)	0.000 (14)	0.017 (1()	0.00405 (10)		440		0.04 D
Endosulfan (α or β : I or II)	115297	0.2 ^{ng} /L	5	1 a. a. 2	0.11 (½)	0.028 (1/2)	0.017 (½)	0.00435 (½)		119		0.01 D
Endosulfan sulfate Endrin	1031078 72208	0.04 ^{°ng} /L	< 0.1	2	0.086	2.22 V 0.036	0.0185 (½)	0.00115 (1/2)		35.8 10.1		0.04.D
Endrin aldehyde	7421934	0.04 7L		· · ∠ · ·	0.000	0.036 0.15 V	0.0165 (72)	0.00115 (72)		10.5	1	0.04.0
Esfenvalerate	66230044					0.15 V			· .	10.5		at a star star
Ethanol	64175					1,400 NZ						the second second
Ethyl acetate	141786		15,000 S		n an n Ar th	n fan se Sengen fan se				n i mi Li tar 1 des		
Ethyl benzene	100414	4	150	700	130 T	7.3 T 14 ∨	430 *	25 CA		5,160		30 D
Ethyl methacrylate	97632			1			· · · · · · · · · · · · · · · · · · ·			30,000		
Ethylene glycol	107211		5,500 S			192,000 CA			-			
Famphur	52857				e set a the					49.7		
Fenitrothion	122145					0.2 NZ						
Fluoranthene	206440	0.003	in si t riance		3,980 *	0.04 CA	40 *	11 Eco		122,000		
Fluorene	86737				70 T	3.9 T Eco	300 *C		30,000	122,000		

1: L – Environmental Risk Limit; S – Serious Contamination Level 3: p - proposed; * LOEL; C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; × 0.1 – chronic value derived by division of acute value by 10 7: M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GRO	JNDWAT	ER		SURFACE	WATER	S		S O	(6	
All concentrations in parts per billion unless specified otherwise	Number	where the president states and	<u>tch</u> 1 Intervention	MCL ²	Fi Acute ³	esh Chronic ³	Mai Acute ³	rine Chronic ³	Invertebrates4	Mammals ⁵	Plants 🍋	Other 7
Formaldehyde	50000		50 S	900 W							ang sang pang bang bang bang pang pang pang pang pang pang pang p	dananisi seri-sa takut ba
Furan	110009										600,000	
Glyphosate	1071836			280 C		65 CA						
Guthion (azinphos-methyl)	865000	0.1 ^{ng} /L	2 S	20 C		0.01 0.02 NZ		0.01				0.005 D
Heptachlor	76448	0.005 ™/∟	0.3	0.4	0.26 (1/2)	0.0019 (½)	0.0265 (1/2)	0.0018 (1/2)		5.98	- Aria de la centre	0.7 D
Heptachlor epoxide	1024573	0.005 "%/L	3	0.2	0.26 (1/2)	0.0019 (1⁄2)	0.0265 (1/2)	0.0018 (½)		152		0.0002 D
Hexachlorobenzene	118741	2.1E-7 L	0.5	1	6 p	3.68 p 0.0003 ∨	160 *C	129 *C		199		1,000,000 M
Hexachlorobutadiene (HCBD)	87683			0.6 W	90 *	1.3 CA 0.053 V	32 *	3.2 x 0.1		39.8		
Hexachlorocyclohexane (BHC)	608731				100 *	10 x 0.1	0.34 *	0.034 x 0.1		s en seus d'altre d'anne seus de la company de la compa A	n mensiyar buqqu	e eekileedik disili mida carree
Hexachlorocyclopentadiene	77474			50	7*	5.2 *	7 *	0.7 x 0.1		755	10,000	
Hexachloroethane	67721				210 T	12 T Eco 8 V	940 *	94 x 0.1		596		· · · · · · · · · · · · · · · · · · ·
Hexachlorophene	70304									199		
Hexane	110543				10 T	0.58 T						
Hexanone, 2- (methyl butyl ketone)	591786				1,800 T	99 T				12,600		
Hydroquinone (p-dihydroxybenzene)	123319	0.2	800									50 D
Indeno[1,2,3-cd]pyrene	193395	0.0004	0.05			4.31 V	300 *C			109,000		
iodo, 3- 2-propyni butyi carbamate (IPBC)	55406536					1.9 CA	,					
Isodrin	465736		Manual Andrewski, and and an and a star and a Manual Andrewski, and a star and a	en dan siya. Selar territ							3.32 V	
Isophorone	78591				117,000 *	1,170 x 0.1 920 V	12,900 *	1,290 x 0.1		139,000		
Isoproturon	34123596			9 W		0.1 EU		0.1 EU				
Isosafrole	120581									9,940		
Kepone	143500									32.7		
Linar alkylbenzene suifonates (LAS)	ла			·		280 NZ						
Linuron	335502					7.0 CA						
Malathion	121755			190 C		0.1		0.1				
Maneb	12427382	0.05 [™] /L	0,1									2 D
Methacrylonitrile	126987				1.11					57		-
Methanol	67561		24,000 S				les en entrader bit Graphicar secorde)				Nagatikan Rationa dini	

1: L -- Environmental Risk Limit; S -- Serious Contamination Level

3. p - proposed; *- LOEL; C - value for chemical class; S - value for summation of isomers; (%) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 -- chronic value derived by division of acute value by 10 7: M -- microbes; A -- avian

For more information, email SQuiRT@NOAA.gov

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROU	JND WAT	ER		SURFACE	WATER	eri na o karda eta a		\$ O	l L	
	Number		<u>tch</u> 1	<u>MCL</u> 2	Fr	esh.	Mar	ine	Invertebrates ⁴	Mammals ^s	Plants 6	Other 7
unless specified otherwise and the second		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³			e figere	
Nethanol	67561		24,000 S									
Vethapyrilene	91805					and the		1		2,780		
Methomyl	16752775					3.5 NZ						
Methoxychlor	72435	на стр. 19		40		0.03		0.03	i i i i i i i i i i i i i i i i i i i	19.9		
Nethyl bromide	74839					16 V				235		
Methyl chloride	74873	n in the second								10,400		
Methyl cholanthrene, 3-	56495									77.9		
Methyl, 2- 4,6-dinitrophenol	534521							14 14 14 14 14		144		
Methyl ethyl ketone (MEK; 2-Butanone)	78933		6,000 S		240,000 T	14,000 T				89,600		
Methyl iodide	74884				1					1,230		
Methyl methacrylate	80626									984,000		
Methyl methanesulfanate	66273		·				1. N. N.			315		
Methyl naphthalene, 1-	90120				37 T	2.1 T						
Methyl naphthalene, 2-	91576			· · · ·		330 V	300 *C			3,240		
Methyl parathion	298000									0.292		
Methyl, 4- 2-pentanone	108101				2,200 T	170 T				443,000	· · · · ·	
Methyl-tert-butyl ether (MTBE)	1634044		9,200 S			10,000 CA		5,000 CA				
Methylene bromide (Dibromomethane)	74953				11,000 *C		12,000 *C	6,400 *C		65,000	· · ·	
Methylene chloride (Dichloromethane, DCM)	75092	0.01	1,000	5	26,000 T	2,200 T 98.1 CA	12,000 *C	6,400 *C		4,050		400 D
Metolachlor	51218452			10 W		7.8 CA					. :	
Metribuzin	21087649			80 C		1 CA						
Mineral oil (Operationally defined)	8012951	50	600									50,000 D
Mirex	2385855					0.001		0.001				
Molinate	2212671			6 W	· · · · ·	3.4 NZ						
Monochloroaniline (3 isomers)	na		30									5 D
Monochlorobenzenes	108907	· · · 7· · · ·	180	100	1,100 T	1.3 CA	160 *C	25 CA	40,000	13,100		. · · · < 30 D · ·
Monochioronaphthalenes		7.7 ""/L L	6							,		120 L
Monochiorophenols (sum)	na	0.3	100			7 CA	and a track of a second					< 10 D
Naphthalene	91203	0.01	70		190 T	1.1 CA	2,350 *	1.4 CA		99.4		
Naphthoquinone, 1,4-	130154									1,670		

L – Environmental Risk Limit, S – Serious Contamination Level
 ρ - proposed; * LOEL, C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10
 M – microbes; A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. Ail attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROI	UNDWAT	ER	5	SURFACI	WATER	S		S O	[L	
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u> t	MCL 2	Fr	esh	Mar	ine	Invertebrates*	Mammals ^s	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³				
Naphthylamine, 1-	134327									9,340		
Naphthylamine, 2-	91598									3,030		
Nitroaniline [m-]	99092									3,160		
Nitroaniline [p-]	100016									21,900		
Nitroaniline, 2-	88744						.	· · · · · ·		74,100	-	
Nitrobenzene	98953				27,000 *	550 NZ 220 V	6,680 *	668 x 0.1	40,000	1,310		1,000,000 M
Nitro-o-toluidine, 5-	99558	varendo es llansa înst	, a na luchte staar af	, ingen i den de la ja	· : ;	anna <u>a sta</u> irtí an tai				8,730	1	
Nitrophenol, 2-	88755									1,600		
Nitrophenol, 4-	100027				1,200 T	300 T 60 V	4,850 *C		7,000	5,120		
Nitroquinoline, 4-1-oxide	56575					en deteration (* 1911) Statement				122		
Nitrosodiethylamine, N-	55185				n i se tatanaka s	768 V				69.3		
Nitrosodimethylamine, N-	62759		, propagati status i							0.0321		
Nitroso-di-n-butylamine, N-	924163							•		267		
Nitroso-di-n-propylamine, N-	621647									544		
Nitrosodiphenylamine, N-	86306				3,800 T	210 T	3,300,000*C		20,000	545		
Nitrosomethylethylamine, N-	10595956									1.66		
Nitrosomorpholine, N-	59892									70.6		
Nitrosopiperidine, N-	100754									6.65		
Nitrosopyrrolidine, N-	930552									12.6		
Nonyiphenol	25154523				28	6.6	7	1.7				
0,0-diethyl 0-2- pyrazinylphosphorothioate	297972									799,000		
Octanone, 2-	111137				150 T	8,3 T						an haile an an dùthach bar bar an haile an haile an tar bar an tar bar
PAHs, High MW	na				·		300 *C		29,000 EPA	100,000 ера		< 1,000 D
PAHs, Low MW	na						300 *C		18,000 EPA	1,100 EPA	http://www.com/databal	< 1,000 D
PAHs, Total	па						300 *C			an a		1,000 D
Paraquat	4685147					0.5 NZ						dennaida-da.
Parathion	56382	1.1		50 C	0.065	0.013		filling total and the	0.34 V			
PCBs (sum)	1336363	0.01	0.01	0.5	0.6 T 0.03 NZ	0.014	0.033 T	0.03		0.332	40,000	< 20 D
Pentachloroaniline	527208	1911-1911 - 1919) 1919 - 1919 - 1919	1 S	n ser crea		i de destre de			100,000			

For more information, email SQuiRT@NOAA.gov

Pg 23

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS		JND WAT	ER		SURFACE		saledistri (Fr. 1		S O	L	
All concentrations in parts per billion	Number	side the trans	<u>tch</u> i	MCL 2		resh	Mar		Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³	145-crontalit			
Pentachlorobenzene	608935	0.003	1		8.4 T	0.47 T 0.019 V	160 *C	129 *C	20,000	497		< 30 D
Pentachloroethane Pentachloronitrobenzene	76017 82688			· · · · · ·	7,240 *	1,100 *	390 *	281 *	a di Managaran di Karana Managaran di Karana	10,700 7,090		n de la compañía Reception de la compañía Reception de la compañía
Pentachlorophenol [PCP: at рн 7.8] Pentanol, 1-	87865 71410	0.04	3	1.0	19 ph 2,000 Т	15 Ph 110 T	13 13	. 7.9	6,000		3,000	2,100 A
Permethrin Phenacetin	52645531 62442					0.004 CA	· · · · · · · · · · · · · · · · · · ·	0,001 CA		11,700		
Phenanthrene	85018	0.003	5		30 p	6.3 p Eco 3.6 V	7.7 p	4.6 p		45,700		
Phenol	108952	0.2	2,000		10,200 *	320 NZ 180 V	5,800 *	400 NZ	30,000	120,000	70,000	1,000,000 M 500 D
Phenylenediamine [p-] Phorate	106503 298022			2 C						6,160 0.496		
Phthalates (sum) Picloram	na 1918021	0.5	· 5	500	· · · · · ·	29 CA						100 D
Picoline, 2-	109068	e e Statisticae Statisticae			. 1997	23 04		·		9,900		
Polychlorinated dibenzofurans Pronamide	51207319 23950585	. ::		l an agustin						0.0386	13.6 v	
Propanol, 2- (Isopropanol) Propionitrile	67630 107120		31,000 S	5	130 T	7.5 T			· ·	49.8		
Ргоруlеле glycol	57556					500,000 CA						
Pyrene Pyridine	129000 110861	0.5	30	adara a sa	11 - 11 - 1 11 - 11 - 11 - 11	0.025 CA	300°*C		an a	78,500 1,030		100 D
Quinoline	91225					3.4 CA						na an an an Anna an Anna. An an Anna an Anna Anna Anna Anna Anna
Resorcinol (m-dihydroxybenzene) Safrole	108463 94597	0.2	600				· · ·	·		404		50 D
Silvex (2,4,5-TP)	93721	·	Aller til gebige	50		10 CA					109 v	
Simazine	122349		and a duaring Tanan si si si si si	1997 4 11 1997-1997 (1		3.2 NZ		1 EU				
Styrene (Vinyl benzene)	100425	6	300	100		72 CA 32 V				4,690	300,000	300 D

7: M – microbes, A – avian

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROUND WATER				SURFACE	WATER	8		S 0		
All concentrations in parts per billion	Number	<u>Du</u>	<u>tch</u>	MCL ²	Fr	esh	Mar	'ine	Invertebrates ⁴	Mammals ⁵	Plants 6	Other 7
unless specified otherwise		Target	Intervention		Acute ³	Chronic ³	Acute ³	Chronic ³				
Tebuthiuron	34014181			490 BC	_	1.6 CA 2.2 NZ						
Temephos	3383968					0.05 NZ		0.05 NZ		n an		
Tetrachloroaniline, 2,3,5,6-	3481207		< 10 S						20,000		20,000	
Tetrachlorobenzene, 1,2,3,4-	634662	< 0.01	< 2.5		250 *C	1.8 CA	160 *C	129 *C	10,000			< 30 D
Tetrachlorobenzene, 1,2,3,5-	634902	< 0.01	< 2.5		250 *C		160 *C	129 *C				< 30 D
Tetrachlorobenzene, 1,2,4,5-	95943	< 0.01	< 2.5		250 *C	50 *C 3 V	160 *C	129 *C		2,020		< 30 D
Tetrachlorobenzenes	na	0.01	2.5		250 *C	< 3 V	160 *C	129 *C	< 10,000	< 2,020		< 30 D
Tetrachloroethane, 1,1,1,2-	630206									225,000		
Tetrachloroethane, 1,1,2,2-	79345				2,100 T	111 CA	9,020 *	902 x 0.1		127		
Tetrachloroethylene (Tetrachloroethene; PCE; PER)	127184	0.01	40	5	830 T	98 T 45 V	10,200 *	450 *		9,920		2 D
Tetrachlorophenol, 2,3,4,5-	4901513	< 0.01	< 10			< 1 CA			20,000			< 10 D
Tetrachlorophenol, 2,3,4,6-	58902	< 0.01	< 10	100 C		20 NZ	440 *	44 x o 1		199		< 10 D
Tetrachlorophenols (sum)	25167833	0.01	10			1 CA			< 20,000	< 199		< 10 D
Tetraethyldithiopyrophosphate	3689245									596		
Tetrahydrofuran	109999	0.5	300									100 D
Tetrahydrothiophene	110010	0.5	5,000									100 D
Thiobencarb	28249776					2.8 NZ						
Thiram	137268				nia, singap p provinsia, kal	0.2 NZ	, lager påre språke under der Kræne forske forske forske	0.01 NZ				
Toluene	108883	7	1,000	1,000	120 T	9.8 T 2 CA	6,300 *	215 CA		5,450	200,000	10 D
Toluidine [o-]	95534									2,970		
Toxaphene	8001352			3	0.73	0.0002	0.21	0.0002		119		
Triallate	2303175			l da tar bas di amangi		0.24 CA						
Tributyltinoxide	56359	<0.05E-16 [™] /L	< 0.7		0.46	0.072	0.42	0.0074				< 1 D
Trichloroaniline (multiple isomers)	na		10 S	aniai ani i. A gina ang ila								
Trichloroaniline, 2,4,5-	636306		< 10 S						20,000		20,000	
Trichlorobenzene, 1,2,3-	87616	< 0.10	< 10			8.0 CA			20,000			< 30 D
Trichlorobenzene, 1,2,4-	120821	< 0.10	< 10	70	700 T	24 CA	160 *C	5.4 CA	20,000	11,100		< 30 D
Trichlorobenzenes	12002481	0.01	10	< 70	< 700 T	< 8 CA	160.*C	<5.4 CA	< 20,000	< 11,100		< 30 D
· · · · · · · · ·												•

1: L - Environmental Risk Limit; S - Serious Contamination Level

3: p - proposed; * - LOEL; C - value for chemical class; S - value for summation of isomers; (1/2) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 - chronic value derived by division of acute value by 10 // M - microbes; A - avian

For more information, email SQuiRT@NOAA.gov

Pg 25

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

ANALYTE	CAS	GROI	UND WAT	ER		SURFACE	WATER	S		S O	ΙL	
All concentrations in parts per billion	Number	Du	<u>tch</u> 1	MCL 2	Fr	esh	Mar	ine	Invertebrates*	Mammals ⁵	Plants ⁶	Other 7
unless specified otherwise	an a	Target	Intervention		Acute ³	Chronic ³	Acute 3	Chronic ³		a na sina na sina si s		
Trichloroethane, 1,1,1-	71556	0.01	300	200	200 T	11 T	31,200 *	3,120 x 0.1		29,800		70 D
Trichloroethane, 1,1,2-	79005	0.01	130	5	5,200 T	1,200 T 500 V		1,900 NZ		28,600		400 D
Trichloroethene (TCE)		24	500	5		21 CA	2,000 *	200 x 0.1		12,400		100 D
Trichloroethene, 1,1,1-	71556	< 24	< 500	< 5	< 440 T	< 21 CA	A part of					< 100 D
Trichloroethene, 1,1,2-	79016	< 24	< 500	< 5	< 440 T	< 21 CA						< 100 D
Trichlorofluoromethane	75694				11,000 *C		12,000 *C	6,400 *C		16,400		
Trichlorophenol, 2,3,5-		< 0.03	< 10			< 18 CA						< 10 D
Trichlorophenol, 2,4,5-	95954	< 0.03	< 10		100 p	63 p	240 p	.11 p	9,000	14,100	4,000	< 10 D
Trichlorophenol, 2,4,6-	88062	< 0.03	< 10	5 C		20 NZ 4.9 V			10,000	9,940		< 10 D
Triclorophenols, (sum)	na	0.03	10	1. 		18 CA			< 9,000	<9,940	< 4,000	< 10 D
Trichloropropane, 1,2,3-	96184									3,360		
Triethylphosphorothioate [0,0,0-]	126681	· · · · · ·		· .	· .					818		
Trifluralin	1582098			20 W		0.2 CA		0.1EU				
Trinitrobenzene, 1,3,5-	99354			1 - L-						376		
Trinitrotoluene, 2,4,6-	118967					140 NZ						
Vinyl acetate	108054	dad a g		the state	280 T	16 T				12,700		
Vinyl chloride	75014	0.01	5	2		930 V				646		10 D
Xylene, m-	108383	< 0.2	< 70		32 T	1.8 T Eco						< 100
Xylene, o-	95476	< 0.2	< 70			350 NZ						< 100
Xylene, p-		< 0.2	< 70									< 100
Xylenes	1330207	0.2	70	10,000	230 T	13 T					10,000 v	100 D

1: L – Environmental Risk Limit, S – Serious Contamination Level 3: p - proposed, * - LOEL, C - value for chemical class; S - value for summation of isomers; (½) - CMC is halved to compare to 1985 Guideline derivation; x 0.1 – chronic value derived by division of acute value by 10 7: M – microbes: A – avian

For more information, email SQuiRT@NOAA.gov

These tables were developed for internal use for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Sources

1 – Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. Risk limits are typically divided by 100 to derive the Target value; this computation has been done here. Dutch Target/Intervention: E.M.J. Verbruggen, R. Posthumus and A.P. van Wezel, 2001. Ecotoxicological Serious Risk Concentrations for soil, sediment, and (ground)water: updated proposal for first series of compounds. Nat. Inst. Public Health and the Env., and subsequent updates as published elsewhere.

Min. Housing, Spatial Plan. And the Env., 2000. Annexes Circular on target values and intervention values for soil remediations.

- 2 Primary entry is the US EPA MCL value, followed by the lower of appropriate WHO, Canadian, or British Columbia guidelines. <u>Maximum Contaminant Levels (MCLs): http://www.epa.gov/safewater/index.html</u>
 - W World Health Organization's (WHO) Drinking water guidelines: http://www.who.int/water_sanitation_health/dwg/en/
 - C Canadian Environmental Quality Guidelines for Community Water, Summary Table Update 2002: http://www.ccme.ca
 - BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wa/

3 - Primary entry is the US Ambient Water Quality Criteria, followed by the lowest of <u>Tier II SAVs</u> or available standards or guidelines. <u>Lowest Observable Effect Levels (LOELs)</u> previously published by EPA are also included since these essentially were the basis for many state standards. EPA <u>Ambient water Quality Criteria (AWQC)</u>: <u>http://www.epa.gov/waterscience/criteria/aglife.html</u>

- T Tier II Secondary Acute Value: http://www.esd.ornl.gov/programs/ecorisk/tools.html
- Eco EPA EcoUpdate, Ecotox Thresholds, EPA 540/F-95/038
- CA Canadian water Quality Guidelines: http://www.ec.gc.ca/CEOG-RCQE/English/Cegg/Water/default.cfm
- BC British Columbia Water Quality Guidelines (either working or recommended): http://www.env.gov.bc.ca/wat/wg/
- EU European Union (EU) Environmental Quality Standards: COM(2006) 397 and 398 final.
- V US EPA Region V Ecological Screening Levels: http://www.epa.gov/reg5rcra/ca/edgl.htm
- 4 Toxicological Benchmarks for Effects on Earthworms: <u>http://www.esd.ornl.gov/programs/ecorisk/tools.html</u> EPA – <u>Eco-SSL</u> for Invertebrates: <u>http://www.epa.gov/ecotox/ecossl/</u> Region V Ecological Screening Level for Invertebrates: <u>http://www.epa.gov/reg5rcra/ca/</u>
- 5 Entry is lower of either: Region V Ecological Screening Level for shrew or vole: <u>http://www.epa.gov/reg5rcra/ca/</u> EPA – Eco-SSL for Mammals: http://www.epa.gov/ecotox/ecossl/
- 6 Toxicological Benchmarks for Effects on Terrestrial Plants: <u>http://www.esd.ornl.gov/programs/ecorisk/tools.html</u> V – EPA Region V Ecological Screening Level for Plants: http://www.epa.gov/reg5rcra/ca/
- 7 Entry is lower of either:
 - M Toxicological Benchmarks for Effects on Microbes: http://www.esd.ornl.gov/programs/ecorisk/tools.html
 - A Eco-SSL for Avian Receptors: http://www.epa.gov/ecotox/ecossl/
 - D Entry is lower of current VROM Environmental Quality standards or the updated RIVM Environmental Risk Limits. See #1 above for sources.

Screening Quick Reference Table for PCB Composition

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Degree of Chlorination	A1221	A1232	A1016	A1242	A1248	A1254	A1260	A1262
	Wt %	Wt %	Wt %	Wt %	Wt %	Wt %	Wt %	Wt %
Biphenyl	11.7 a	6.2 ^a						
∑1 Cl	65.5	31.3	Tr (#1, 3)	Tr (#1, 3)				
∑2 CI	30.0	26,1	15.2	11.5	Tr (#7, 8)	· · · ·		
∑3 CI	3.5	² 21.7	58.2	51.0	21.8	2.1		
∑4 Cl	Tr	15.0	26.5	29.0	60.2	14.3	Tr (#52, 70, 74)	Tr (#52, 70, 74)
∑5 CI	⊤r (#95)	5.8	Tr (#91, 95, 102)	8.5	17.1	53.2	8.2	3.5
∑6 CI				Tr (#136, 138)		26.6	47.2	31.6
∑7 CI					Tr	3.8	37.6	45.8
∑8 Cl						Tr (#202)	6.3	17.7
∑9 CI							0.7	1.3
Total	99.1%	99.94%	99.95%		99.93%	99.95%	100.01%	99.98%
Prominent congeners ^b	1384156	1 8 3 4 15 28	18 28 8 31 33 16	18 28 31 8 33 16	66 70 64 28 52 60	118 110 101 95 138 153	180 138 149 187 174 170	180 153187 149 174 203
Unique congener	#11 Tr					#137	#189 ⊤r	
Peak Range °	1-48	1-74	2-50	2-82	8-106	8-107	31.1-117	31.1-117
Ratio #118:203 d	···· Neither	No #203	Neither	No #203	73	370 - 1230	0.3 – 0.5	0.1
Ratio #31:118 °	No #118	4.3	No #118	8.5 - 9.2	2.1	0.01 - 0.04	0.1	No #31
Wt % of #153 '				0.1 - 0.14	Tr - 0.52	4.7-6.1	11.0 - 12.2	
Additional Information		~ 1:1 mix of 1221-1242	Distillation of 1242					

Notes

Commercial PCBs were manufactured by chlorination of biphenyl to produce complex mixtures (Aroclors in the USA and Great Britain, Clophens in Germany, or Kanechlors in Japan), each containing 60 to 90 different molecular species (congeners) and a specified weight percent of chlorine (for example, 54% in Aroclor 1254). There are 209 distinct congener structures possible, of which about 140 to 150 have been detected at significant levels in commercial PCBs.

Congener distributions in environmental samples roughly resemble those of the parent commercial mixtures, but are often modified due to evaporation, water extraction, microbial oxidation or dechlorination, photochemical dechlorination or differential biological uptake and metabolism. Compositional modification from original Aroclor patterns increases in biotic samples with trophic level. Still, it is often useful or necessary to attempt distinguishing the parent mixture released. The following information is presented to provide assistance with initial, preliminary evaluation of Aroclor. Aroclor assignment should be conducted only by qualified chemists.

Total PCBs can be characterized by two primary methods – the sum of congeners, or, the sum of estimates of individual Aroclor concentrations. In lower trophic level samples, these two methods provide approximately equal estimates of total PCBs. At higher trophic levels, analyses of samples tend to overestimate total PCBs by as much as 2-fold using the sum of Aroclor method, due to an overestimation of Aroclor 1254.

	e - This ratio is often used as an indicator for Aroclor 1248.	
# - Refers to IUPAC congener number. IUPAC #s 107, 108, 109, 199, 200, 201 correspond to BZ#s	f - Congener 153 is persistent in biota and abundantly present in higher chlorinated Aroclors and	d so provides a degree of
108, 109, 107, 201, 199, and 200, respectively,	modification estimate for biotic samples (increasing modification with decreasing PD values)
a - Biphenyl figures are not reflected in congener weight percentages.		
b - The six most prominent peaks listed by IUPAC congener number.	$PD_{137} = \left[\frac{\#153_{herey} - \#153_{margh}}{\#153_{margh}}\right] + 100$	
ro-in the rib beak unitering system, beak i is philenys.		1. Marine di anno 1971 - Carlo Ca
d - This ratio is often used as an indicator for Aroclor 1260.		

Screening Quick Reference Table for Toxic Equivalency Factors

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Compound	2005 Mammals / human TEF	1998 Fish TEF	1998 Avian TEF
CHLORINATED DIBENZO-P-DIOXINS			
2,3,7,8-TCDD	1	1	1
1,2,3,7,8-PeCDD	1	. 1	1
1,2,3,4,7,8-HxCDD	0.1	0.5	0.05
1,2,3,6,7,8-HxCDD	0.1	0.01	0.01
1,2,3,7,8,9-HxCDD	0.1	0,01	0.1
1,2,3,4,6,7,8-HpCDD	0.01	0.001	<0.001
	0,0003	<0.0001	< 0.0001
CHLORINATED DIBENZOFURANS	r Alter och etter spillet starte spillet	landa ar an	
2,3,7,8-TCDF	0.1	0.05	1
1,2,3,7,8-PeCDF	0.03	0.05	0,1
2,3,4,7,8-PeCDF	0.3	0.5	1
1,2,3,4,7,8-HxCDF	0.1	0.1	0.1
1,2,3,6,7,8-HxCDF	0.1	0.1	0.1
1,2,3,7,8,9-HxCDF	0.1	0.1	electric 0.1 million
2,3,4,6,7,8-HxCDF	0.1	0.1	0.1
1,2,3,4,6,7,8-HpCDF	0.01	0.01	
1,2,3,4,7,8,9-HpCDF	0.01	0.01	0.01
OCDF	0.0003	<0.0001	0.0001
NON-ORTHO-SUBSTITUTED PCBS			
3,3#,4,4#-tetraCB (PCB 77)	0.0001	0.0001	0.05
3,4,4#,5-tetraCB (PCB 81)	0.0003	0.0005	0,1
3,3#,4,4#,5-pentaCB (PCB 126)	0.1	0.005	0.1
3,3#,4,4#,5,5#-hexaCB (PCB 169)	0.03	0.00005	0.001
MONO-ORTHO-SUBSTITUTED PCBs			
2,3,3#, 4,4#-pentaCB (PCB 105)	0.00003	<0.000005	0.0001
2,3,4,4#,5-pentaCB (PCB 114)	0.00003	<0.00005	0.0001
2,3#,4,4#,5-pentaCB (PCB 118)	0.00003	<0.000005	0.00001
2# ,3,4,4# ,5-pentaCB (PCB 123)	0.00003	<0.000005	0.00001
2,3,3#, 4,4#,5-hexaCB (PCB 156)	0.00003	<0.00005	0.0001
2,3,3#,4,4#,5#-hexaCB (PCB 157)	0.00003	<0.000005	0.0001
2,3#,4,4#,5,5#-hexaCB (PCB 167)	0.00003	<0.000005	0.00001
2,3,3#, 4,4#, 5,5#-heptaCB (PCB 189)	0.00003	<0.000005	0.00001

It has been well established that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and other chlorinated dioxins, furans, and even PCBs with a similar planar chemical structures are capable of inducing similar toxicity, such as carcinogenicity. Since these compounds generally are observed in mixtures, it is desirable to be able to express the cumulative, overall toxicity of the mixture. However, since each of these congeners does not exhibit the same degree, or potency, of toxicity, some manipulations of raw concentrations are required to express total toxicity.

A number of systems have been developed to express the total, overall toxicity from mixtures of these chemicals. Most commonly, the potency of each congener is weighted relative to a standard, generally the most potent congener. For dioxins and furans, 2,3,7,8-TCDD is the common standard which is given a reference value of one. The weighting, or potency factor, is called a Toxic Equivalency Factor (TEF). When cumulative results are reported, the absolute concentration of each congener is multiplied by its corresponding TEF to derive a TCDD-equivalency. These values are then summed together to give a total Toxic Equivalency Quotient, or TEQ.

The TEQ scheme refers **only** to adverse effects (e.g., cancer) following interactions with certain cellular enzyme systems (the Ah receptors). Other toxic effects of dioxins and dioxin-like compounds are not quantified by this method. Because they involve potency to specific enzyme systems, TEF values vary for different animal species.

There are two main schemes:

The two most common systems for determining TEQs are:

- I-TEF and I-TEQ: The older International Toxic Equivalent (I-TEQ) scheme by the North Atlantic Treaty Organization (NATO) initially set up in 1989 and later extended and updated.
- WHO-TEF and WHO-TEQ (also referred to as TEF or TEQ): More recently, the World Health Organization (WHO) suggested modified Toxic Equivalency Factor (TEF) values for human risk assessment.

ITEQs are most common in North America, while Asia and Europe tend to use WHO-TEQs. On average, the result of TEQ-calculations is about 10% higher when I-TEFs are used compared to when WHO-TEFs are used.

Potency in fish reflects mainly rainbow trout: potency for birds is mainly derived from chickens.

Sources

Van den Berg, M., and others. 1998. "Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, and PCDFs for Humans and Wildlife." *Environmental Health Perspectives.* Volume 106. Pages 775 - 792.

Van den Berg, M., and others. 2006. "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds." *Toxicological Sciences* 93(2):223-241.

Screening Quick Reference Tables for Composition by Carbon Range

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

GAS	5	VAP	OR	Ľ	IQI	JID			Q)IL					Tŀ	łICI	(O	L			SEA	/1 1-	SO		D				SO	LID	
											C	arl	oor	n N	un	ıbe	r														
	 2 3 	1 4 5 1	1 6 7 1 BTEX	1 8 1	 9 1 		 12 	 13 	 14 1 Num	 5 10 ber 4	6 17 17 1 1 Die	' 18 1 1 sel R	 19 ang	 20 8	 21 	 22 : 	 23 24 	 4 25 	 26 	 27 	 28 	 29 	 .30 	 31 	 32 	 33 	 34 	1 35 3	 36 33 	1 7 38	 39 40
2	1997 Star & Articlas Second	ijiki ili				N	umbe	897417286724867 57126788774(*)1)iesel	1412013645546 - 	eeronisoos Riisessoos	n ata ing mata ing Mata ing Mata ing		ALEO VILO VESTO ALEO VILO VESTO VILO VESTO VILO VESTO	NER OLD PETER STEPPEE STEPPEE STEPPEE			-									A. T. Hand Tarte and		An	aly	tes
		n an an an An Christofichean	Gasol	ine				J	P-5,7	',8			:									:		-	-						
Chlorin	nated S	olvents	S	todda	ird S	olven		K	erose	ene	nno. Marti		-			·										::					
- 1 var grave i transforme					JP	-4				Fue	l Oil			Lub	ricat	ing O	ils		india Bailin	Cre	osol	te/G	reas	es/V	Vaxe	s/Pi	itch/	Asph	alt		
	U.S.E	PA 8015	(modi	fied)												Ú	.S. EP	'A 41	8.1:	IPH	in w	atei	ninini Radiologi Radiologi	i i biji Distato Utato M Utato M							
							U.	.S. EP	A 801.	5 (mo	odifie	d) by	extr	actio	n:nc	nhalo	igena	ted o	rgani	cs											
		U.S.	EPA me	ethod	801	5 (mo	difie	d)																		Δ		lvrti	- M	oth	ods
U.S	5. EPA 8	260B:V	OCs						U.	S. EP	A 82	70C:	SVO	Cs 🛛														i y ci	e 141		UUS
	1	U.S	EPA 802	218; Ai	roma	tic & H	alogei	nated	volat	iles		1	1								A second se										
	2 3	4 5	6 7	8	9 1		12	13	14 1	5 10	6 17	18	19 	20	21	22 :	23 24	4 25	26	27	28 	29	30	31 	32	33	34	35 3	1 1 36 37	7 38	 39 40

Carbon ranges are approximate: actual carbon ranges for a specific product are dependent upon the distillation process of the exact source.

Analytic Methods generally refer to EPA SW-846 methods (www.epa.gov/SW-846/index.htm)

Screening Quick Reference Tables for Sample Collection and Storage

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

MATERIAL	CONTAINER	PRESERVATION	MAXIMUM HOLDING TIME	SAMPLE SIZE
INORGANICS				
Chromium ⁺⁶ (Cr ⁺⁶)	P,G	Cool, 4ºC	24 hours	400 mL/200 g
Mercury (Hg)	P,G	HNO3, to pH <2	28 days	400 mL/200 g
Metals, except Cr ⁺⁶ and Hg	P,G	HNO3, to pH <2	6 months	600 mL/200 g
Cyanide by method no. 9010	P,G	Cool 4°C, pH >12 See method 9010	14 days	1,000 mL
Alpha, Beta, and Radium Radiation	P,G	HNO ₃ to pH <2	6 months	1,000 mL
ORGANICS].			
Benzidines	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL
Chlorinated Hydrocarbons	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
Dioxins and Furans	G, TLC	Cool, 4°C ³	30 days until extraction, 45 days after extraction	1,000 mL
Haloethers .	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
Nitrites	G, TLC	Cool, 4°C ³	14 days	
Nitrosamines	G <u>,</u> TLC	Cool, 4ºC ³	7 days until extraction, 40 days after extraction	1,000 mL
Nitroaromatics and Cyclic Ketones	G, TLC	Cool, 4°C ³	7 days until extraction, 40 days after extraction	1,000 mL
OIL And GREASE	G	Cool, 4°C ²	28 days	1,000 mL
TOTAL Organic Carbon, By Method No. 9060	P,G	Cool, 4°C ² store in the dark	28 days	100 mL
TOTAL Organic Halides By Method No. 9020/9021	G, TLC	Cool, 4ºC ²	28 days	500 mL
PCBs	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Pesticides	G, TLC	Cool 4°C,	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Phenols	G, TLC	Cool, 4ºC ³	7 days until extraction, 40 days after extraction	1,000 mL
Phthalate Esters	G, TLC	Cool, 4°C	7 days until extraction, 40 days after extraction	1,000 mL
Polynuclear Aromatic Hydrocarbons	G, TLĆ	Cool, 4ºC ³ store in the dark	7 days until extraction, 40 days after extraction	1,000 mL/250 mL
Purgeable Aromatic Hydrocarbons	VOA	Cool, 4°C ^{2,3}	14 days	40 mL
Purgeable Halocarbons	VOA	Cool, 4°C ³	14 days	40 mL

Sources

EPA SW846

1. P - Polyethylene; G - Amber glass containers; TLC - Teflon-lined cap; VOA - Volatile organic analyte vial of amber glass with teflon-lined septum; 2. Adjust to pH <2 with H2SO4, HCI, or solid NaHSO4.</p>

3 Free chlorine must be removed before addition of HCI by exact addition of Na2S2O3

For more information, email SQuiRT@NOAA.gov

Pg 31

Screening Quick Reference Table **Options for Selection of Analytical Methods: Inorganics**

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

TRACE ELEMENT	ΟΤΗΕΡ	FLAMEAA	FURNANCEAA	I C P	EXTRACT	ON METHODS
I RACE ELEMENT	MAPE NAME	FLAME AA			WATER	SOILISEDIMENT
Aluminum (Al)	6800	7020		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Antimony (Sb)	6200(55) 6800	7040	7041 7062 ³	6010B 6020A	3005A 3015A	3050B_3051A
Arsenic (As)	6200(60) 7063 7061A 3		7060 7062 ³	6010B 6020A	3005A 3010A 3015A 7063	3050B 3051A
Barium (Ba)	6200(60) 6800 6800 6800 6800 6800 6800 6800 6	7080A	7081 3	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Beryllium (Be)		7090	7091	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Cadmium (Cd)	6200_6800	7130	naria na da 7131A (1997) (1977)	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Calcium (Ca)	6200 6800	7140		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Chromium (CR), total	6200(200) 6800	7190	7.191	6010B 6020A	3005A 3010A 3015A 3020A	3050B_3051A
Chromium+6 (Cr+6)	7195 7199 ³				7195 - 7199	3060A
Cobalt (Co)	6200(330)	7200	7201	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Copper (Cu)	6200(85) 6800	7210	7211 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Iron (Fe)	6200 6 800	7380	······7381 ³	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Lead (Pb)	6200(45) 6800	7420	7421	6010B 6020A	3005A 3010A 3015A 3020A	3051A
Magnesium (Mg)	and the second	7450		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Manganese (Mn)	6200(240)	7460	7461	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Mercury (Hg)	4500(0.5) 6200 6800 7470A 7471B 7472 7473 7474 3			6020A	7470A, 7472 3015A	3051A 7471B 7473 7474
Molybdenum (Mo)	6200(25) 6800	7480	7481	6010B	3005A 3010A 3015A 3020A	3050B 3051A
Nickel (Ni)	6200(100) 6800	7520	7521	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Potassium (K)	6200 6800	7610		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Selenium (Se)	6200 6800 7741A 7742 3		7740	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Silver (Ag)	6200 6800	7760A	7761 ³	6010B 6020A	3005A 3015A	3051A 7760 7761
Sodium (Na)		7770 ··· ·		6010B 6020A	3005A 3010A 3015A	3050B 3051A
Strontium (Sr)	6200(30) 6800	7780		6010B	3015A	3050B 3051A
Thallium (TI)	6200 6800	7840	7841	6010B 6020A	3005A 3010A 3015A 3020A	3050B 3051A
Tin (Sn)	6200(85)	7870				
Vanadium (V)	6200 6800	7910	7911	6010B 6020A		3050B 3051A
Zinc (Zn)	6200(80) 6800	7950	7951 3	6010B 6020A	3005A 3010A 3015A	3050B 3051A
Cyanide (HCN)	9010B — 90143 (action of a state	i atradi a tra		la ta sa prite su		

Sources

All method numbers refer to EPA SW-846, Volume III with changes as proposed for Volume IV.

ICP's advantage is that it allows simultaneous or rapid sequential determination of many elements, but suffers from interferences. AA determinations are normally completed as single element analyses. ICP and Flame AA have comparable detection limits (within a factor of 4), but ICP-MS (6020A) can drastically improve the detection limits (e.g., an order of magnitude lower). Furnace AA generally exhibits lower detection limits than ICP or Flame-AA, and offers more control over unwanted matrix components. X-RAY and immunoassays allow field determinations.

Method 6200 is Portable X-Ray, 6800 is Elemental/Isotope Mass Spec.; 4500 is Immunoassay, 7063 is ASV; where available, soil detection limits in ppm are in parentheses. 1

2 Except as noted, most individual procedures are proposed to be integrated into Method 7000B of 7010. 3

Includes various methods. Follow the extraction procedure detailed in the individual determinative method

Screening Quick Reference Table Options for Selection of Analytical Methods: Organics

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

IC O M P O U N D S	FIELD	OC/MS	SPECIFIC	HPLC	EXTRACTIC	NMETHODS	CLEANUP
	METHODS	METHOD	DETECTION METHOD	METHOD	WATER	SOIL/SEDIMENT	METHOD
Aromatic and Halogenated Volatiles		8260B	8021B		5021 5030B 5032	5021 5032 5035	
Carbamates				8318 8321B	8318 8321B	8318 8321B	8318
Chlorinated Dioxins and Furans			8280B 8290A		8280B 8290A	8280B 8290A 3545A	8280B 8290A
Chlorinated Hydrocarbons		8270D	8121		3510C 3520C 3535A	3540C 3550B	3620B 3640A
Chlorinated Phenoxyacids	4015 (0,1 ppm)	8270D 2	8151A	8321B	8151A 8321B 3535A	8321B 8151A 3545A 3580A	8151A 3620B
Haloethers		8270D	8111		3510C 3520C	3540C 3545 3550B	3620B 3640A
Nitriles and Amides		8260B	8031 8032A 8033	8315 8316	5030B - 5032 8031 8032A 8316	5031 5032 5035	8032A
Nitroaromatics and Ketones		8270D	8091	8330A	3510C 3520C 3535A	3540C 3545 3550B	3620B 3640A
Nitroaromatics (Explosives)	4050 (0.5 ppm) 4051 8515 (1 ppm)			8330A - 8332	8330A — 8332	8330A 8332	8330A — 8332 3620B
Nitrosamines		8270D	8070A		3510C 3520C 8070A	3540C 3545 3550B 8070A	3610B 3620B 3640A 8070A
Non-Halogenated Volatiles		8260B	8015B		5030B — 5032	5021 5031 5032 5035	
Organochlorines	4040 — 4042 (0.2 to 20 ppm)	8270D 2	8081B 8275A		3510C 3520C 3535A	3540C 3545A 3550B 3562	3620B 3630C 3640A 3660
Organophosphates		8270D 2	8141B	8321B	3510C 3520C 3535A	3540C 3545A 3550B	3620B
PAHs	4035 (1 ppm)	8270D	8100 8275A	8310	3510C 3520C	3540C 3545 3550B 3561	3610B 3630 3640A 3650B
PCBs	4020 (5 ppm) 9078 (2 ppm)	8270D 2	8082A 8275A		3510C 3520C 3535A	3540C 3545A 3550B 3665A 3562	3620B 3630C 3640A 3660 3665A
Phenolics	4010A (0.5 ppm)	8270D	8041		3510C 3520C	3540C 3545 3550B	3630 3640A 3650B 8041
Phthalates		8270D	8061A		3510C 3520C 3535A	3540C 3545 3550B	3610B 3620B 3640A
Semi-Volatile Organics		8270D			3510C 3520C 3535A	3540C 3545A 3550B	3640A 3650B 3660
Total Organic Halides (TOX)			9020B 9022		9020B 9022		
Total Petroleum Hydrocarbons	4030 (5 ppm) 9074		8015B				
Volatile Organics		8260B	8015B 8021B		5030B 5032	5021 5031 5032 5035	

Sources

All method numbers refer to EPA SW-846, Update III, with changes as proposed in Update IV.

Options shown are generally for chemical classes; more detailed information may be available for specific compounds

GC/MS methods allow for scanning a broad range of volatile and semi-volatile compounds, but suffer from interference and higher detection limits.

Specific determination methods and HPLC methods allow for more precise determinations of specific compounds of interest.

Series 4000 are immunoassays and are for specific compounds within these classes (i.e., 2,4-D, TNT, RDX, and PCP). Soil detection limits are in parentheses.
 This is not a method of choice, but rather a confirmatory method.

Screening Quick Reference Tables

These tables were developed for screening purposes only: they do not represent official NOAA policy and do not constitute criteria or clean-up levels. All attempts have been made to ensure accuracy; however, NOAA is not liable for errors. Values are subject to changes as new data become available.

Because trace elements are naturally occurring compounds, concentrations reflective of non-anthropogenically impacted, or "background," are provided in addition to toxicological benchmarks. For screening, trace element levels may be compared to the geometric mean (and range) observed in natural soils in the U.S. Further comparisons to regional values is encouraged.

Promulgated criteria or standards for sediments or soils are generally not available in the U.S. For screening purposes, contaminant levels in solids (sediment or soil) may be compared to benchmarks representative of different characterizations of ecological risk. They should *not* be applied without a reasonable understanding of their development, their performance, and their limitations.

The NOAA SQuiRTs include multiple sediment screening values to help portray a spectrum of concentrations which have been associated with various probabilities of adverse biological effects. This spectrum ranges from presumably nearly non-toxic to toxic levels. For instance, if all analytes screen below lower-threshold values (for example, TELs), this suggests, with a high degree of confidence, that a sample with these levels of contaminants has a low probability of being toxic, as tested through standard bioassays. Conversely, exceeding lower thresholds does *not* necessarily predict toxicity. Comparison to higher toxicity thresholds (for example, PELs) identifies compounds which are more probably present at elevated, toxic levels.

Sources of benchmarks for sediment were chosen primarily on the basis of representing a fairly unique approach for their derivation. A major exception is the "Consensus TEC/PEC" values: these values are simply averages of other existing benchmarks (mostly those appearing in the SQuiRT cards). The consensus TEC/PECs are provided here merely as a service.

For soil- and sediment-associated contaminants, dry weight concentrations are screened directly against published benchmarks. Some benchmarks are available only on a Total Organic Carbon (TOC) normalized basis, and are footnoted as such. Separate values are provided for either freshwater and estuarine or marine sediments.

For freshwater sediments, the Upper Effects Threshold (UET) was derived by NOAA as the lowest AET from a compilation of endpoint analogous to the

marine AET endpoints. The UETs for organic contaminants are generally listed for a sediment containing 1% TOC.

This version of the SQuiRT cards adds a section on the composition of PCBs. A characterization of Aroclors by their degree of chlorination and congener patterns may aid in *preliminary* exploration of source type. Definitive Aroclor assignment should only be conducted by a qualified chemist.

To express cumulative toxicity from mixtures of dioxins and furans, Toxic Equivalency Factors are included in this version of the SQuiRT cards. Absolute concentrations can be multiplied by the TEF potency factors and the products then summed to derive total toxicity.

Every effort has been made to ensure accuracy in these SQuiRT cards. However, NOAA is not liable for errors in original sources or revision of values. These screening values are subject to change as new data become available. The SQuiRT cards may be freely reproduced and distributed, if they are distributed in their entirety, without modification, and properly credited to NOAA.

The SQuiRT cards should be cited as:

"Buchman, M. F., 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, 34 pages."

Appendix D.2: Field Sampling Documentation

Date: 6/23/20	Notes Taken By: Auk
Place: Mill Pond	
Project No.: 52633	Re:

Field Sampling Data Sheet

Date and Time: 6/23/20 / 1200	VHB Project #: 52633
Location (Town/City): Durham, N.H.	Project Name: M.11 Pond
Field Sampler: Aw R ightarrow Pw hoto #(s) and Direction:	Project Manager: Peter Walker

Weather Conditions:

U

1

Current Weather and Temperature:	
Weatherwith - 80°	
Weather within previous 72 hrs:	
Sunny - Warn	
Sample lat	

Sample Information:

Sample ID #: SED - 13	
Sample Location (GPS Coordinates or field ties):	
Water Depth: 1	
Probing Depth:	

Organ	c SiH and	class			ALL ENTRE
ediment Descrip	tion	0			
Dark Bron	~/Black	Droquir		oy, tr. f-So.	and the second
ample Type (con	posite, grab, etc):	50 H and CI	oy, tr. f-Sa	nd
C	mposite				
oprox. Length of	Sediment Core:				
		~ 80%	-		
		~ ~ ~ ~	RAL	ment recovery:	

Additional Comments / Observations:

0

υ

Date: 6/23/20 Place: Mill Pond

Project No.: 52633

Notes Taken By: Aw R

Re:

Field Sampling Data Sheet

General Information:

Date and Time:	VHB Project #:	٦
6/23/20 / 1100	52633	
Location (Town/City):	Project Name:	
Durhamy NH	Mill Pord	
Field Sampler: AwR / PW	Project Manager: Peter walker	
Photo #(s) and Direction:		

Weather Conditions:

Current Weather and Temperature: Sung - 75° Weather within previous 72 hrs: warm / Sung

Sample Information:

Sample ID #: SE	5-14	
Sample Location (GI	25 Coordinates or field ties):	
1 On	Tablet	
Water Depth:		
Probing Depth:		

	Sediment Type:
1	organic silf and clay
	sediment Description:
	Brown/Dark Brown/Black organics with sitt ad clay tr. f-Sand Sample Type (composite, grab, etc.): Composite
1	pprox. Length of Sediment Core:
	2 Cares - ~ 20% D.
D	epth of penetration of the core into the sediment / amount of sediment recovery:
	annount of sediment recovery:

Additional Comments / Observations:

Notes Taken By: Au R

Date: 6/23/2020 Place: Mill Pond

Project No.: 52633

Re:

Field Sampling Data Sheet

General information:	
Date and Time: /	VHB Project #:
6/23/20 / 1000	52633
Date and Time: 6/23/20 / 1000 Location (Town/City): Durham, N.H. Field Sampler:	Project Name: M, 1) Pond
Durham, N.H.	Mill tond
Field Sampler: AwR/PW	Project Manager: Peter Walker
	Peter Walker
Photo #(s) and Direction:	
Weather Conditions:	
Current Weather and Temperature:	
Sunny - 75°	
Weather within previous 72 hrs:	
Sunny - warm	
Sample Information:	
ample ID #: SEA - 15	
ample Location (GPS Coordinates or field ties):	
on Tablet	
ter Depth: /	
bing Depth:	
In Booken V	

organic sitt ad clay	
	E Parati A Tables And
Bark Brun / Black clay and sith with organic sec sample Type (composite, grab, etc.):	Sment little frand
Composite, grab, etc.):	trigrave)
pprox. Length of Sediment Core:	
2 Cores - ~ 80% recovery	
epth of penetration of the core into the sediment / amount of sediment recover	

Additional Comments / Observations:

ó

Date: 6/23/20 Place: M.:11 Pond

Notes Taken By: Au R

Project No.: 52633

Re:

Field Sampling Data Sheet

General Information:

Location (Town/City): Durhan, N.H. Field Sampler: VHB Project #: 52633 Project Name: Mill Pond Project Manager: Peter walker Aur Pu Photo #(s) and Direction:

Weather Conditions:

Current Weather and Temperature:	
Weather within previous 72 hrs:	
Sunny - warm	

Sample Information:

Sample ID #: SES-16 MS/MSD	SEA-DP	
Sample Location (GPS Coordinates or field ties):		
On Tablet		
Water Depth:	· · · · · · · · · · · · · · · · · · ·	
Probing Depth:		

Sediment Type:	
Organic sitted clay	
Sediment Description:	
Black / Dark Brun, organic sit a clay tr. f- Sand- Sample Type (composite, grab, etc.):	
Sample Type (composite, grab, etc.):	
Composite	
Approx. Length of Sediment Core:	
4 Cores - ~ 75 - 80% Recovery	
Depth of penetration of the core into the sediment / amount of sediment recovery:	

Additional Comments / Observations:

Matrix Spike Matrix Spike Duplicate Duplicate Sample Confected.

Date: 6/23/20 Place: Mill Pond

Notes Taken By: Aw A

Project No.: 52633

Re:

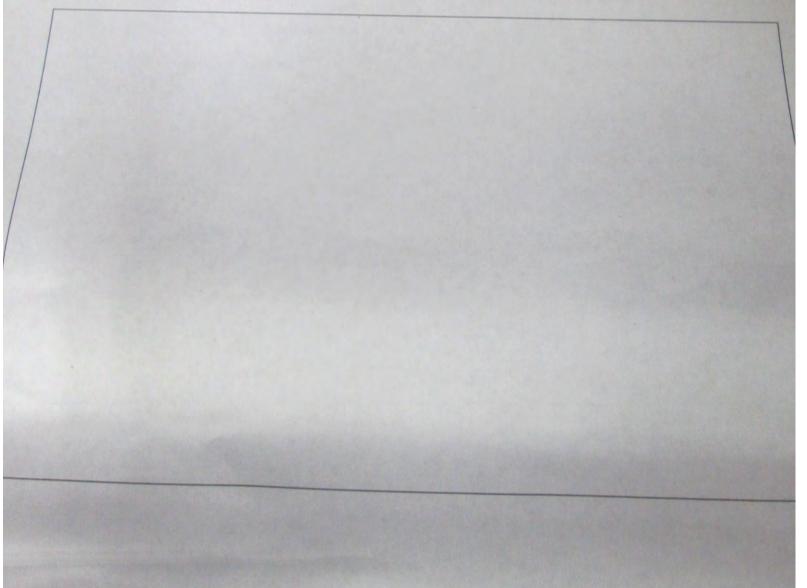
Field Sampling Data Sheet

General Information:

Date and Time:	VHB Project #:	
6/23/20 / 1600	52633	
Location (Town/City): Durham, N.H.	Project Name: Mill fond	
Field Sampler: AwR) PW	Project Manager: Peter Walker	
Photo #(s) and Direction:		-

Weather Conditions:

Current Weather and Temperature:	
Sunny - 90°	
Weather within previous 72 hrs:	
warm, Sunny	


Sample Information:

Sample ID #: SED-17	
Sample Location (GPS Coordinates or field ties):	
Water Depth:	
Probing Depth:	

Sediment Type:	
Organic Sediment Descriptio	
Brown/ Dark .	rown organic sitt, some f-m sand, tr. gravel, few clam shells
ample Type (compo	te, grab, etc.):
Composite - 3	- Locations (A-E) - 1 core at Each
pprox. Length of Sea	ment Core:
epth of penetration	f the core into the sediment / amount of sediment recovery:
pener pener anon	the core into the sedment / amount of sediment recovery:

Additional Comments / Observations:

Date: 6 / 23 / 20 Place: Mill Pond

Notes Taken By: Aw R

Project No.: 52633

Re:

Field Sampling Data Sheet

General Information:

0

Date and Time; /	VHB Project #:
6/23/20 / 1500	52633
Location (Town/City):	
Durham N.H.	Project Name: Mill Pond
ield Sampler:	Project Manager:
AWR/PW	Project Manager: Peter Walker

Weather Conditions:

Current Weather and Temperature: Sunny - 90 Weather within previous 72 hrs: Warm, Sunny Sample Information: Sample ID #: SED - 18Sample Location (GPS Coordinates or field ties): ON Tablet Water Depth: Probing Depth:

Sediment Descriptio	sitt of clay n:
Brun / Dark Br	own organic sitt, 1. All C-Sund tr. Reat and wand, for clam
Sample Type (compo	-S Locations (A-E) I core at Each
Approx. Length of See	

Additional Comments / Observations:

Appendix D.3: Sediment Sample Analytical Results and Screening Analyses

								Durham, Nev	v Hampshire									
	Field Sample Data Sample Date		SED2 10/30/2009	SED3 10/31/2009	SED4 10/31/2009	SED5 10/31/2009	SED6 10/31/2009	SED7 10/31/2009	SED8 10/31/2009	SED9	SED10a 11/2/2009	SED10b 11/2/2009	SED11a 11/2/2009	SED11b	SED12 11/2/2009	SED-13 06/23/2020	SED-14 06/23/2020	SED-15 06/23/2020
Si	eve - Grain Description		0% G	0.2% G	0% G	N/A	0% G	(0-2')	1% G	10/31/2009 0.5% G	0.1% G	N/A	0% G	11/2/2009 N/A	33% G	0% G	0.1% G	0.1% G
		54% S	13% S	43% S	10% S		3% S	0.7% G; 29% S;	24% S	12% S	39% S		10% S		30% S	42.7% S 57.3% F	58.9% S 41.1% F	28.4% S 71.5% F
		45% S/C	87% S/C	57% S/C	90% S/C		97% S/C	70% S/C (2-3')	75% S/C	88% S/C	69% S/C		90% S/C		35% S/C	57.5% F	41.1% F	/ 1.5% F
								0.5% G; 22% S										
	CAS #	Result QL (RL) Result QL (R) Result QL (R		Result QL (RL)	Result QL (RL)	77% S/C Result QL (RL)	Desult OL (DL)	Desult OL (DL)	Desult OL (DL)	Result QL (RL)	Result QL (RL)			Desult OL (MDL)		
Analyte		-	RESULT QL (R	.) Result QL (R	L) Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)	Result QL (RL)) Result QL (MDL)	Result QL (MDL)	Result QL (MDL)
Polycyclic Aromatic Hydrocarbons (PAHs) by Naphthalene	91-20-3	0.640	U 0.700 U	0.72	U 1.10 U	0.800 U	1.00 U	0.740 U	0.810 U	0.860 U	0.990 U	0.890 U	0.670 U	0.680 U	0.990 U	0.0064 U	0.0057 U	0.050
2-methylnaphthalene	91-57-6	0.640	U 0.700 U		U 1.10 U	0.800 U	1.00 U	0.740 U	0.810 U	0.860 U	0.990 U	0.890 U	0.670 U	0.680 U	0.990 U	0.0053 U	0.0047 U	0.034
Acenaphthylene Acenaphthene	208-96-8 83-32-9	0.640 0.640	U 0.700 U 0.700 U		U 1.10 U U 1.10 U		1.00 U 1.00 U	0.740 U 0.740 U	0.810 U 0.810 U		0.990 U 0.990 U	0.890 U 0.890 U	0.670 U 0.670 U	0.680 U 0.680 U	0.990 U 0.990 U	0.0050 J 0.0035 U	0.016 0.0031 U	0.17 0.023
Dibenzofuran	132-64-9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0041 U	0.0036 U	0.021
Fluorene Phenanthrene	86-73-7 85-01-8	0.640 0.640	U 0.700 U U 0.847	0.72 1.1	U 1.10 U 1.10 U		1.00 U 1.00 U	0.740 U 0.463 J	0.810 U 0.623 J	0.860 U 0.860 U	0.990 U 0.630 J	0.890 U 0.508 J	0.670 U 0.670 U	0.680 U 0.680 U	0.990 U 0.990 U	0.0022 U 0.022	0.0019 U 0.031	0.055 0.72
Anthracene	120-12-7	0.640	U 0.700 U	0.72	U 1.10 U	0.800 U	1.00 U	0.740 U	0.81 U	0.860 U	0.990 U	0.890 U	0.670 U	0.680 U	0.990 U	0.0030 J	0.010 J	0.15
Fluoranthene Pyrene	206-44-0 129-00-0	0.640 0.640	U 1.53 U 1.33	2.21 1.97	0.639 J 0.588 J		1.22 1.10	0.774 0.730 J	1.09 1.06	0.860 U 0.860 U	1.24 1.14	0.982 0.901	0.670 U 0.670 U	0.680 U 0.680 U	0.990 U 0.990 U	0.040 0.040	0.076 0.079	1.1 1.1
Benzo(a)anthracene	56-55-3	0.640	U 0.583	0.91	1.10 U		1.00 U	0.740 U	0.434 J	0.860 U	0.990 U	0.890 U	0.670 U	0.680 U		0.040 J	0.039	0.4
Chrysene	218-01-9	0.640	U 0.798	1.14	1.10 U		0.668 J	0.451 J	0.593 J	0.860 U	0.673 J	0.546 J	0.670 U	0.680 U	0.990 U	0.015	0.042	0.55
Benzo(b)fluoranthene Benzo(k)fluoranthene	205-99-2 207-08-9	0.640 0.640	U 1.06 U 0.799 U	1.54 0.434	1.10 U J 1.10 U		0.945 J 1.00 U	0.658 J 0.740 U	0.809 J 0.810 U		0.983 J 0.990 U	0.809 J 0.890 U	0.670 U 0.670 U	0.680 U 0.680 U	0.990 U 0.990 U	0.015 0.010 J	0.046 0.048	0.49 0.48
Benzo(a)pyrene	50-32-8	0.640	U 0.661	0.992	1.10 U	0.800 U	0.616 J	0.740 U	0.516 J	0.860 U	0.594 J	0.890 U	0.670 U	0.680 U	0.990 U	0.027	0.058	0.54
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	193-39-5 53-70-3	0.640 0.640	U 0.698 U 0.700 U	0.901	0.602 J J 1.10 U		0.806 J 1.00 U	0.532 J 0.740 U	0.659 J 0.810 U	0.860 U 0.860 U	0.767 J 0.990 U	0.665 J 0.890 U	0.670 U 0.670 U	0.680 U 0.680 U	0.990 U 0.990 U	0.014 0.0020 J	0.041 0.010 J	0.38 0.12
Benzo(g,h,i)perylene	191-24-2	0.640	U 0.453	0.617	J 1.10 U		1.00 U	0.740 U	0.810 U	0.860 U	0.990 U	0.890 U	0.670 U	0.680 U	0.990 U	0.010 J	0.040	0.42
Pesticides by EPA Method 8081 (mg/kg)																		
alpha-BHC	319-84-6	0.017	U 0.180 U	0.200	U 0.028 U	0.021 U	0.270 U	0.200 U	0.210 U	0.240 U	0.026 U	0.240 U	0.018 U	0.017 U	0.560 U	0.0085 U	0.0074 U	0.0062 U
beta-BHC	319-85-7	0.017	U 0.180 U		U 0.028 U		0.270 U	0.200 U	0.210 U		0.026 U	0.240 U 0.240 U	0.018 U	0.017 U	0.560 U	0.011 U	0.0098 U	0.0082 U
delta-BHC gamma-BHC (Lindane)	319-86-8 58-89-9	0.017 0.017	U 0.180 U 0.180 U		U 0.028 U U 0.028 U		0.270 U 0.270 U	0.200 U 0.200 U	0.210 U 0.210 U	0.240 U 0.240 U	0.026 U 0.026 U	0.240 U 0.240 U	0.018 U 0.018 U	0.017 U 0.017 U	0.560 U 0.560 U	0.011 U 0.011 U	0.0098 U 0.0098 U	0.0082 U 0.0082 U
Heptachlor	76-44-8	0.017	U 0.180 U	0.200	U 0.028 U	0.021 U	0.270 U	0.200 U	0.210 U	0.240 U	0.026 U	0.240 U	0.018 U	0.017 U	0.560 U	0.011 U	0.0098 U	0.0082 U
Aldrin Heptachlor Epoxide	309-00-2 1024-57-3	0.017 0.017	U 0.180 U 0.180 U		U 0.028 U U 0.028 U		0.270 U 0.270 U	0.200 U 0.200 U	0.210 U 0.210 U		0.026 U 0.026 U	0.240 U 0.240 U	0.018 U 0.018 U	0.017 U 0.017 U	0.560 U 0.560 U	0.014 U 0.020 U	0.012 U 0.017 U	0.010 U 0.014 U
Endosulfan I	959-98-8	0.017	U 0.180 U	0.200	U 0.028 U	0.021 U	0.270 U	0.200 U	0.210 U	0.240 U	0.026 U	0.240 U	0.018 U	0.017 U	0.560 U	0.014 U	0.012 U	0.010 U
Dieldrin 4,4'-DDE	60-57-1 72-55-9	0.017 0.017	U 0.180 U 0.180 U		U 0.028 U U 0.028 U		0.270 U 0.270 U	0.200 U 0.200 U	0.210 U 0.210 U		0.026 U 0.026 U	0.240 U 0.240 U	0.018 U 0.018 U	0.017 U 0.017 U	0.560 U 0.560 U	0.014 U 0.020 U	0.012 U 0.017 U	0.010 U 0.014 U
Endrin	72-20-8	0.017	U 0.180 U		U 0.028 U		0.270 U	0.200 U	0.210 U		0.026 U	0.240 U	0.018 U	0.017 U		0.020 U	0.017 U	0.014 U
Endosulfan II	33213-65-9	0.017 0.017	U 0.180 U		U 0.028 U		0.270 U	0.200 U	0.210 U		0.026 U	0.240 U 0.240 U	0.018 U	0.017 U		0.017 U 0.017 U	0.015 U	0.012 U 0.012 U
4,4'-DDD Endosulfan Sulfate	72-54-8 1031-07-8	0.017	U 0.180 U 0.180 U		U 0.028 U U 0.028 U		0.270 U 0.270 U	0.200 U 0.200 U	0.210 U 0.210 U		0.026 U 0.026 U	0.240 U 0.240 U	0.018 U 0.018 U	0.017 U 0.017 U	0.560 U 0.560 U	0.0085 U	0.015 U 0.0074 U	0.012 U
4,4'-DDT	50-29-3	0.017	U 0.180 U	0.200	U 0.028 U	0.021 U	0.270 U	0.200 U	0.210 U	0.240 U	0.026 U	0.240 U	0.018 U	0.017 U		0.017 U	0.015 U	0.012 U
Methoxychlor Endrin Ketone	72-43-5 53494-70-5	0.026 0.017	U 0.270 U 0.180 U		U 0.042 U U 0.028 U		0.410 U 0.270 U	0.300 U 0.200 U	0.320 U 0.210 U	0.360 U 0.240 U	0.039 U 0.026 U	0.360 U 0.240 U	0.027 U 0.018 U	0.026 U 0.017 U	0.840 U 0.560 U	0.031 U 0.020 U	0.027 U 0.017 U	0.023 U 0.014 U
Endrin Aldehyde	7421-93-4	0.017	U 0.180 U		U 0.028 U		0.270 U	0.200 U	0.210 U	0.240 U	0.026 U	0.240 U	0.018 U	0.017 U	0.560 U	0.043 U	0.037 U	0.031 U
Chlordane alpha-Chlordane	57-74-9 5103-71-9	0.056 NA	U 0.590 U NA	0.660 NA	U 0.092 U NA	0.069 U NA	0.890 U NA	0.660 U NA	0.690 U NA	0.790 U NA	0.086 U NA	0.790 U NA	0.059 U NA	0.056 U NA	1.85 U NA	NA 0.014 U	NA 0.012 U	NA 0.010 U
gamma-Chlordane	5103-74-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.014 U	0.012 U	0.010 U
Toxaphene	8001-35-2	0.11	U 1.19 U	1.32	U 0.180 U	0.140 U	1.78 U	1.32 U	1.39 U	1.58 U	0.17 U	1.58 U	0.12 U	0.11 U	3.70 U	0.11 U	0.098 U	0.082 U
Polychlorinated Biphenols (PCBs) by EPA Met	hod 8082 (mg/kg)																	
PCB-1016	12674-11-2 11104-28-2	0.026 U	0.270 U 0.270 U	0.300 U 0.300 U	0.042 U	0.032 U	0.410 U	0.300 U	0.320 U	0.360 U	0.039 U 0.039 U	0.360 U	0.027 U	0.026 U	0.840 U	0.030 U	0.021 U 0.021 U	0.017 U 0.017 U
PCB-1221 PCB-1232	11104-28-2	0.026 U 0.026 U		0.300 U 0.300 U	0.042 U 0.042 U	0.032 U 0.032 U	0.410 U 0.410 U	0.300 U 0.300 U	0.320 U 0.320 U	0.360 U 0.360 U	0.039 U 0.039 U	0.360 U 0.360 U	0.027 U 0.027 U	0.026 U 0.026 U	0.840 U 0.840 U	0.030 U 0.030 U	0.021 U 0.021 U	0.017 U 0.017 U
PCB-1242	53469-21-9	0.026 U		0.300 U	0.042 U	0.032 U	0.410 U	0.300 U	0.320 U	0.360 U	0.039 U	0.360 U	0.027 U	0.026 U	0.840 U	0.030 U	0.021 U	0.017 U
PCB-1248 PCB-1254	12672-29-6 11097-69-1	0.026 U 0.026 U		0.300 U 0.300 U	0.042 U 0.042 U	0.032 U 0.032 U	0.410 U 0.410 U	0.300 U 0.300 U	0.320 U 0.320 U	0.360 U 0.360 U	0.039 U 0.039 U	0.360 U 0.360 U	0.027 U 0.027 U	0.026 U 0.026 U	0.840 U 0.840 U	0.030 U 0.030 U	0.021 U 0.021 U	0.017 U 0.017 U
PCB-1260	11096-82-5	0.026 U		0.300 U		0.032 U	0.410 U	0.300 U	0.320 U	0.360 U	0.039 U	0.360 U	0.027 U	0.026 U	0.840 U	0.030 U	0.021 U	0.017 U
Metals by EPA Methods 6010/6020, 7471 (mg	/kg)																	
Chromium	7440-47-3	32	38	11	53	36	39	37	40	41	43	44	33	33	64	39	30	33
Lead Cadmium	7439-92-1 7440-43-9	83 3.6	64 0.9	6 2	17 U 0.9 U	45 2.2 U	48 0.8	21 2.1 U	36 2.2 U	9 2.4 U	54 1.1	52 0.8	17 1.9 U	15 1.8 U	14 2.8 U	17 0.2 J	18 0.3 J	71 0.6 J
Silver	7440-22-4	1.7 U	1.9 U		U 2.9 U	2.2 U	2.7 U	2.1 U	2.2 U	2.42 U	2.7 U	2.5 U	1.9 U	1.8 U	2.8 U		0.2 J	1.3
Arsenic Selenium	7440-38-2 7782-49-2	12 3.4 U	10.4 3.7 U	9.1 2	11.4 U 5.9 U	12.8 4.4 ∪	16.1 5.5 U	11.8 4.2 U	13.5 4.4 U	12.4 4.8 U	17.6 5.4 U	15.3 5 U	9.1 3.9 U	9 3.7 U	14.6 5.6 U	7 J 4 J	8.9 3 J	13 4 J
Barium	7440-39-3	103	101	32	163	115	130	4.2 U 99	101	116	120	122	98	102	86	110	110	120
Mercury	7439-97-6	0.09 U	0.09 U	0.14	0.29	0.35	0.49	0.53	0.92	0.07	0.86	1	0.19	0.18	0.14	0.083 U	0.088 U	1.4
Volatile Organic Compounds (VOCs) by EPA N	lethod 8260								1	1								
VOCs	7440-47-3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Wet Chemistry (mg/kg)									1	1								
Total Phosphorus as P	14265-44-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1500	540	910
Nitrate-N	14797-55-8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.0 U	2.7 U	2.2 U
Nitrite-N Total Kjeldahl Nitrogen (TKN)	14797-65-0 DEP1013	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	3.0 U 5000	2.7 U 4200	2.2 U 1600
Nitrogen, total	NITROGENTO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5000	4200	1600
TOC Percent Solids (%)	7440-44-0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	68000 32.8	61000 37.1	53000 45.4
Percent Solids (%)		INA	NA	INA	INA	NA	IVA	INA	INA	INA	NA	INA	INA	NA	NA	32.0	57.1	45.4

	Field Sample Data Sample Date		D-16 3/2020		D-DP 3/2020	-	D-17 3/2020		D-18 3/2020
Sieve -	Grain Description	39.	% G 5% S 5% F	Ν	J/A	46	2% G 9% S 8% F	47	7% G 7% S 3% F
Analyte	CAS #	Result	QL (MDL)	Result	QL (MDL)	Result	QL (MDL)	Result	QL (MDL)
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA I									
Naphthalene	91-20-3	0.055		0.039		0.0060	J	0.012	
2-methylnaphthalene	91-57-6 208-96-8	0.035 0.15		0.025 0.14		0.0045 0.025	U	0.0050 0.067	J
Acenaphthylene Acenaphthene	208-96-8 83-32-9	0.15		0.14		0.025	U	0.067	U
Dibenzofuran	132-64-9	0.017		0.013	J	0.0030	U	0.0027	U
Fluorene	86-73-7	0.048		0.034	,	0.0019	U	0.0060	J
Phenanthrene	85-01-8	0.6		0.57		0.10	0	0.30	,
Anthracene	120-12-7	0.14		0.13		0.028		0.084	
Fluoranthene	206-44-0	1.0		0.97		0.26		1.1	
Pyrene	129-00-0	0.94		0.94		0.27		0.95	
Benzo(a)anthracene	56-55-3	0.34		0.37		0.11		0.54	
Chrysene	218-01-9	0.50		0.52		0.14		0.56	
Benzo(b)fluoranthene	205-99-2	0.44		0.47		0.16		0.46	
Benzo(k)fluoranthene	207-08-9	0.44		0.46		0.13		0.42	
Benzo(a)pyrene	50-32-8	0.47		0.52		0.17		0.51	
Indeno(1,2,3-cd)pyrene	193-39-5	0.34		0.37		0.12		0.30	
Dibenzo(a,h)anthracene	53-70-3	0.11		0.13		0.039		0.11	
Benzo(g,h,i)perylene	191-24-2	0.38		0.41		0.13		0.27	
Pesticides by EPA Method 8081 (mg/kg)									
alpha-BHC	319-84-6	0.0083	U	0.008	U	0.0069	U	0.007	U
beta-BHC	319-85-7	0.011	U	0.011	U	0.0092	U	0.0093	U
delta-BHC	319-86-8	0.011	U	0.011	U	0.0092	U	0.0093	U
gamma-BHC (Lindane)	58-89-9	0.011	U	0.011	U	0.0092	U	0.0093	U
Heptachlor	76-44-8	0.011	U	0.011	U	0.0092	U	0.0093	U
Aldrin	309-00-2	0.014	U	0.013	U	0.012	U	0.012	U
Heptachlor Epoxide	1024-57-3	0.019	U	0.019	U	0.016	U	0.016	U
Endosulfan I	959-98-8	0.014	U	0.013	U	0.012	U	0.012	U
Dieldrin 4,4'-DDE	60-57-1 72-55-9	0.014 0.019	U U	0.013 0.019	U U	0.012 0.016	UU	0.012 0.016	U U
4,4 -DDE Endrin	72-55-9	0.019	U	0.019	U	0.016	U	0.016	U
Endosulfan II	33213-65-9	0.019	U	0.019	U	0.018	U	0.018	U
4,4'-DDD	72-54-8	0.017	U	0.020	J	0.014	U	0.014	U
Endosulfan Sulfate	1031-07-8	0.0083	U	0.008	U	0.0069	U	0.007	U
4,4'-DDT	50-29-3	0.017	U	0.016	Ŭ	0.014	Ŭ	0.014	Ŭ
Methoxychlor	72-43-5	0.031	Ŭ	0.029	U	0.025	Ū	0.025	U
Endrin Ketone	53494-70-5	0.019	U	0.019	U	0.016	Ū	0.016	U
Endrin Aldehyde	7421-93-4	0.042	U	0.040	U	0.035	U	0.035	U
Chlordane	57-74-9	NA		NA		NA		NA	
alpha-Chlordane	5103-71-9	0.014	U	0.013	U	0.012	U	0.012	U
gamma-Chlordane	5103-74-2	0.014	U	0.013	U	0.012	U	0.012	U
Toxaphene	8001-35-2	0.11	U	0.11	U	0.092	U	0.093	U
Polychlorinated Biphenols (PCBs) by EPA Method 8									
PCB-1016	12674-11-2	0.023	U	0.026	U	0.020	U	0.018	U
PCB-1221 PCB-1232	11104-28-2	0.023	U	0.026	U	0.020	U	0.018	U
PCB-1232 PCB-1242	11141-16-5 53469-21-9	0.023 0.023	U U	0.026 0.026	U U	0.020 0.020	U U	0.018 0.018	U U
PCB-1242 PCB-1248	12672-29-6	0.023	U	0.026	U	0.020	U	0.018	U
PCB-1254	11097-69-1	0.023	U	0.020	U	0.020	U	0.018	U
PCB-1260	11096-82-5	0.023	U	0.026	U	0.020	U	0.018	U
Metals by EPA Methods 6010/6020, 7471 (mg/kg)									
Chromium	7440-47-3	32		37		73		76	
Lead	7439-92-1	59		68		43		44	
Cadmium	7440-43-9	0.7	J	2.1		0.1	J	0.1	J
Silver	7440-22-4	0.89		1.6		0.46		0.52	
Arsenic	7440-38-2	13		15		12		10	
Selenium	7782-49-2	4	J	4	J	2	J	3	J
Barium	7440-39-3	120		130		47		48	
Mercury	7439-97-6	1.1		1.2		0.33		0.47	
Volatile Organic Compounds (VOCs) by EPA Metho VOCs	od 8260 7440-47-3	NA		NA		NA		NA	
	/440-4/-3	NA		NA		NA		NA	
Wet Chemistry (mg/kg)									
Total Phosphorus as P	14265-44-2	1100		1000		780		790	
Nitrate-N	14797-55-8	2.8	U	3	U	2.7	U	2.3	U
Nitrite-N Total Kieldahl Nitrogon (TKN)	14797-65-0 DEP1012	2.8	U	3	U	2.7	U	2.3	U
Total Kjeldahl Nitrogen (TKN) Nitrogen total	DEP1013	3400		3200		2500		2400	
Nitrogen, total TOC	NITROGENTO 7440-44-0	3400 63000		3200 65000		2500 41000		2400 59000	

Table Notes:

All concentrations are expressed in micrograms per kilogram (mg/kg), unless otherwise noted.
 "U" indicates target analyte not detected at a concentration greater than the quatitation limit (QL) shown. The QL for samples collected in 2009 represents the laboratory reporting limit (RL); the QL for the samples collected in 2020 represents the method detection limit (MDL).
 "J" indicates an estimated concentration.

				Field Sa	ample Data			SE	D1					SE	D2			SED3						
				Sa	ample Date			10/31	1/2009					10/30	0/2009			10/31/2009						
Analista	CAS #	NHDES-F	reshwater	ECO-	Marine		HQ-PEC	Risk-		HQ-PEL	Risk-	HQ-TEC		Risk-	HQ-TEL		Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-	
Analyte	CAS #	TEC	PEC	TEL	PEL	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	thod 8270/827	0 SIM (mg/	kg)																					
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391																			
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201																			
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128																			
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889																			
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144																			
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544							4.2	0.7	Mod	9.8	1.6	High	5.4	0.9	Mod	12.7	2.0	High	
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245																			
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494							3.6	0.7	Mod	13.5	1.0	High	5.2	1.0	Mod	19.6	1.5	High	
Pyrene	129-00-0	0.195	1.52	0.153	1.398							6.8	0.9	Mod	8.7	1.0	Mod	10.1	1.3	High	12.9	1.4	High	
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693							5.4	0.6	Mod	7.8	0.8	Mod	8.4	0.9	Mod	12.2	1.3	High	
Chrysene	218-01-9	0.166	1.29	0.108	0.846							4.8	0.6	Mod	7.4	0.9	Mod	6.9	0.9	Mod	10.6	1.3	High	
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107							39.0	0.1	Mod	8.2	1.0	Mod	56.6	0.1	Mod	11.8	1.4	High	
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537													16.0	0.0	Mod	6.2	0.8	Mod	
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763							4.4	0.5	Mod	7.4	0.9	Mod	6.6	0.7	Mod	11.2	1.3	High	
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488							40.3	2.1	High	10.3	1.4	High	52.0	2.7	High	13.3	1.8	High	
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135									0				13.2	4.4	High	70.3	3.2	High	
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497							2.7	1.5	High	6.8	0.9	Mod	3.6	2.1	High	9.2	1.2	High	
Pesticides by EPA Method 8081 (mg/kg)																								
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																			
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																								
Chromium	7440-47-3	43.4	111	52.3	160	0.7	0.3	Low	0.6	0.2	Low	0.9	0.3	Low	0.7	0.2	Low	0.3	0.1	Low	0.2	0.1	Low	
Lead	7439-92-1	35.8	128	30.24	112	2.3	0.6	Mod	2.7	0.7	Mod	1.8	0.5	Mod	2.1	0.6	Mod	0.2	0.0	Low	0.2	0.1	Low	
Cadmium	7440-43-9	0.99	4.98	0.68	4.21	3.6	0.7	Mod	5.3	0.9	Mod	0.9	0.2	Low	1.3	0.2	Mod							
Silver	7440-22-4	0.5	4.5	0.73	1.77																			
Arsenic	7440-38-2	9.79	33	7.24	41.6	1.2	0.4	Mod	1.7	0.3	Mod	1.1	0.3	Mod	1.4	0.3	Mod	0.9	0.3	Low	1.3	0.2	Mod	
Barium	7440-39-3	20	60	130.1	48	5.2	1.7	High	0.8	2.1	High	5.1	1.7	High	0.8	2.1	High	1.6	0.5	Mod	0.2	0.7	Low	
Mercury	7439-97-6	0.18	1.06	0.13	0.7			<u> </u>			5.			<u> </u>			<u>J</u> ·	0.8	0.1	Low	1.1	0.2	Mod	
·	-																							

				Field Sa	ample Data			SE	D4					SE	D5			SED6						
				Sa	ample Date			10/31	/2009					10/31	/2009					10/31	/2009			
And the		NHDES-F	reshwater	ECO-I	Marine			Risk-			Risk-			Risk-			Risk-			Risk-			Risk-	
Analyte	CAS #	TEC	PEC	TEL	PEL	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	HQ-TEC	HQ-PEC	Fresh	HQ-TEL	HQ-PEL	Marine	
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	thod 8270/827	0 SIM (mg/	kg)																					
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391																			
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201																			
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128																			
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889																			
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144																			
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544																			
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245																			
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494	1.5	0.3	Mod	5.7	0.4	Mod							2.9	0.5	Mod	10.8	0.8	Mod	
Pyrene	129-00-0	0.195	1.52	0.153	1.398	3.0	0.4	Mod	3.8	0.4	Mod							5.6	0.7	Mod	7.2	0.8	Mod	
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693		'																	
Chrysene	218-01-9	0.166	1.29	0.108	0.846													4.0	0.5	Mod	6.2	0.8	Mod	
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107													34.7	0.1	Mod	7.3	0.9	Mod	
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537																			
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763													4.1	0.4	Mod	6.9	0.8	Mod	
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488	34.8	1.8	High	8.9	1.2	High							46.5	2.4	High	11.9	1.7	High	
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135		'	-			-									-				
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497																			
Pesticides by EPA Method 8081 (mg/kg)																								
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																			
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																								
Chromium	7440-47-3	43.4	111	52.3	160	1.2	0.5	Mod	1.0	0.3	Mod	0.8	0.3	Low	0.7	0.2	Low	0.9	0.4	Low	0.7	0.2	Low	
Lead	7439-92-1	35.8	128	30.24	112	0.5	0.1	Low	0.6	0.2	Low	1.3	0.4	Mod	1.5	0.4	Mod	1.3	0.4	Mod	1.6	0.4	Mod	
Cadmium	7440-43-9	0.99	4.98	0.68	4.21											I		0.8	0.2	Low	1.2	0.2	Mod	
Silver	7440-22-4	0.5	4.5	0.73	1.77																			
Arsenic	7440-38-2	9.79	33	7.24	41.6	1.2	0.3	Mod	1.6	0.3	Mod	1.3	0.4	Mod	1.8	0.3	Mod	1.6	0.5	Mod	2.2	0.4	Mod	
Barium	7440-39-3	20	60	130.1	48	8.2	2.7	High	1.3	3.4	High	5.8	1.9	High	0.9	2.4	High	6.5	2.2	High	1.0	2.7	High	
Mercury	7439-97-6	0.18	1.06	0.13	0.7	1.6	0.3	Mod	2.2	0.4	Mod	1.9	0.3	Mod	2.7	0.5	Mod	2.7	0.5	Mod	3.8	0.7	Mod	

				Field Sa	mple Data			SE	D7						D8			SED9							
				Sa	mple Date			10/31	1/2009					10/31	/2009					10/31	/2009				
Analyte	CAS #	NHDES-F		ECO-I	Marine	HQ-TEC		Risk-		HQ-PEL	Risk-	HQ-TEC		Risk-	HQ-TEL		Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-		
Analyte	CAS #	TEC	PEC	TEL	PEL	HQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine	HQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine	HQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine		
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	hod 8270/827	0 SIM (mg/	kg)																						
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391																				
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201																				
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128																				
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889																				
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144																				
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544	2.3	0.4	Mod	5.3	0.9	Mod	3.1	0.5	Mod	7.2	1.1	High								
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245																				
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494	1.8	0.3	Mod	6.8	0.5	Mod	2.6	0.5	Mod	9.6	0.7	Mod								
Pyrene	129-00-0	0.195	1.52	0.153	1.398	3.7	0.5	Mod	4.8	0.5	Mod	5.4	0.7	Mod	6.9	0.8	Mod								
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693							4.0	0.4	Mod	5.8	0.6	Mod								
Chrysene	218-01-9	0.166	1.29	0.108	0.846	2.7	0.3	Mod	4.2	0.5	Mod	3.6	0.5	Mod	5.5	0.7	Mod								
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107	24.2	0.0	Mod	5.1	0.6	Mod	29.7	0.1	Mod	6.2	0.7	Mod								
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537											'									
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763							3.4	0.4	Mod	5.8	0.7	Mod								
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488	30.7	1.6	High	7.8	1.1	High	38.0	2.0	High	9.7	1.4	High								
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135			5			5			5		'	5								
Benzo(g,ĥ,i)perylene	191-24-2	0.17	0.3	0.067	0.497																				
Pesticides by EPA Method 8081 (mg/kg)																									
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																				
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																									
Chromium	7440-47-3	43.4	111	52.3	160	0.9	0.3	Low	0.7	0.2	Low	0.9	0.4	Low	0.8	0.3	Low	0.9	0.4	Low	0.8	0.3	Low		
Lead	7439-92-1	35.8	128	30.24	112	0.6	0.2	Low	0.7	0.2	Low	1.0	0.3	Mod	1.2	0.3	Mod	0.3	0.1	Low	0.3	0.1	Low		
Cadmium	7440-43-9	0.99	4.98	0.68	4.21											1									
Silver	7440-22-4	0.5	4.5	0.73	1.77																				
Arsenic	7440-38-2	9.79	33	7.24	41.6	1.2	0.4	Mod	1.6	0.3	Mod	1.4	0.4	Mod	1.9	0.3	Mod	1.3	0.4	Mod	1.7	0.3	Mod		
Barium	7440-39-3	20	60	130.1	48	5.0	1.7	High	0.8	2.1	High	5.1	1.7	High	0.8	2.1	High	5.8	1.9	High	0.9	2.4	High		
Mercury	7439-97-6	0.18	1.06	0.13	0.7	2.9	0.5	Mod	4.1	0.8	Mod	5.1	0.9	Mod	7.1	1.3	High	0.4	0.1	Low	0.5	0.1	Low		

				Field Sa	mple Data			SED	D10a					SED	010b					SED	D11a		
				Sa	mple Date			11/2	/2009					11/2,	/2009					11/2	/2009		
Analyte	CAS #	NHDES-F		ECO-I	Marine	HQ-TEC		Risk-	HQ-TEL		Risk-	HQ-TEC		Risk-	HQ-TEL		Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-
,		TEC	PEC	TEL	PEL	IIQ-ILC	IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine		IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine	IIQ-ILC	IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	thod 8270/827	0 SIM (mg/	kg)																				
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391																		
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201																		
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128																		
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889																		
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144																		
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544	3.1	0.5	Mod	7.3	1.2	High	2.5	0.4	Mod	5.9	0.9	Mod						
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245						_												
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494	2.9	0.6	Mod	11.0	0.8	Mod	2.3	0.4	Mod	8.7	0.7	Mod						
Pyrene	129-00-0	0.195	1.52	0.153	1.398	5.8	0.8	Mod	7.5	0.8	Mod	4.6	0.6	Mod	5.9	0.6	Mod						
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693											'							
Chrysene	218-01-9	0.166	1.29	0.108	0.846	4.1	0.5	Mod	6.2	0.8	Mod	3.3	0.4	Mod	5.1	0.6	Mod						
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107	36.1	0.1	Mod	7.6	0.9	Mod	29.7	0.1	Mod	6.2	0.7	Mod						
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537											'							
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763	4.0	0.4	Mod	6.7	0.8	Mod												
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488	44.3	2.3	High	11.3	1.6	High	38.4	2.0	High	9.8	1.4	High						
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135			-			-			-		'							
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497																		
Pesticides by EPA Method 8081 (mg/kg)																							
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																		
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																							
Chromium	7440-47-3	43.4	111	52.3	160	1.0	0.4	Low	0.8	0.3	Low	1.0	0.4	Mod	0.8	0.3	Low	0.8	0.3	Low	0.6	0.2	Low
Lead	7439-92-1	35.8	128	30.24	112	1.5	0.4	Mod	1.8	0.5	Mod	1.5	0.4	Mod	1.7	0.5	Mod	0.5	0.1	Low	0.6	0.2	Low
Cadmium	7440-43-9	0.99	4.98	0.68	4.21	1.1	0.2	Mod	1.6	0.3	Mod	0.8	0.2	Low	1.2	0.2	Mod						
Silver	7440-22-4	0.5	4.5	0.73	1.77											1							
Arsenic	7440-38-2	9.79	33	7.24	41.6	1.8	0.5	Mod	2.4	0.4	Mod	1.6	0.5	Mod	2.1	0.4	Mod	0.9	0.3	Low	1.3	0.2	Mod
Barium	7440-39-3	20	60	130.1	48	6.0	2.0	High	0.9	2.5	High	6.1	2.0	High	0.9	2.5	High	4.9	1.6	High	0.8	2.0	High
Mercury	7439-97-6	0.18	1.06	0.13	0.7	4.8	0.8	Mod	6.6	1.2	High	5.6	0.9	Mod	7.7	1.4	High	1.1	0.2	Mod	1.5	0.3	Mod
																I							

				Field Sa	mple Data			SED	011b					SE	D12					SED	D-13		г
				Sa	mple Date			11/2,	/2009					11/2	/2009					06/23	/2020		
Analyte	CAS #	NHDES-F	reshwater	ECO-I	Marine		HQ-PEC	Risk-	HQ-TEL		Risk-	HQ-TEC		Risk-		HQ-PEL	Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-
-		TEC	PEC	TEL	PEL	IIQ-ILC	IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine		IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine	IIQ-ILC	IIQ-FLC	Fresh	IIQ-ILL	IIQ-FLL	Marine
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Me	thod 8270/827	0 SIM (mg/	kg)																				
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391																		
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201																		ł
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128													0.9	0.0	Low	0.9	0.0	Low
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889																		
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144																		I
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544													0.1	0.0	Low	0.3	0.0	Low
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245													0.1	0.0	Low	0.1	0.0	Low
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494													0.1	0.0	Low	0.4	0.0	Low
Pyrene	129-00-0	0.195	1.52	0.153	1.398													0.2	0.0	Low	0.3	0.0	Low
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693													0.1	0.0	Low	0.1	0.0	Low
Chrysene	218-01-9	0.166	1.29	0.108	0.846													0.1	0.0	Low	0.1	0.0	Low
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107													0.6	0.0	Low	0.1	0.0	Low
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537													0.4	0.0	Low	0.1	0.0	Low
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763													0.2	0.0	Low	0.3	0.0	Low
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488													0.8	0.0	Low	0.2	0.0	Low
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135													0.1	0.0	Low	0.3	0.0	Low
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497													0.1	0.0	Low	0.1	0.0	Low
Pesticides by EPA Method 8081 (mg/kg)																							
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																		
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																							ł
Chromium	7440-47-3	43.4	111	52.3	160	0.8	0.3	Low	0.6	0.2	Low	1.5	0.6	Mod	1.2	0.4	Mod	0.9	0.4	Low	0.7	0.2	Low
Lead	7439-92-1	35.8	128	30.24	112	0.4	0.1	Low	0.5	0.1	Low	0.4	0.1	Low	0.5	0.1	Low	0.5	0.1	Low	0.6	0.2	Low
Cadmium	7440-43-9	0.99	4.98	0.68	4.21													0.2	0.0	Low	0.3	0.0	Low
Silver	7440-22-4	0.5	4.5	0.73	1.77													0.4	0.0	Low	0.3	0.1	Low
Arsenic	7440-38-2	9.79	33	7.24	41.6	0.9	0.3	Low	1.2	0.2	Mod	1.5	0.4	Mod	2.0	0.4	Mod	0.7	0.2	Low	1.0	0.2	Low
Barium	7440-39-3	20	60	130.1	48	5.1	1.7	High	0.8	2.1	High	4.3	1.4	High	0.7	1.8	High	5.5	1.8	High	0.8	2.3	High
Mercury	7439-97-6	0.18	1.06	0.13	0.7	1.0	0.2	Low	1.4	0.3	Mod	0.8	0.1	Low	1.1	0.2	Mod			<u> </u>			y :
				-											1			1					ł

				Field Sa	mple Data			SED)-14					SED	D-15					SED	D-16		
				Sa	mple Date			06/23	/2020					06/23	8/2020					06/23	/2020		1
Analyte	CAS #	NHDES-Fi	reshwater	ECO-I	Marine	HQ-TEC		Risk-	HQ-TEL		Risk-	HQ-TEC		Risk-	HQ-TEL		Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-
Allalyte	CAS #	TEC	PEC	TEL	PEL	RQ-IEC	nų-Pec	Fresh		ΠQ-PEL	Marine		HQ-PEC	Fresh	NQ-IEL	nų-pel	Marine	RQ-TEC	HQ-PEC	Fresh	nQ-IEL	nų-pel	Marine
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Me	thod 8270/827	0 SIM (mg/	kg)																				
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391							0.3	0.1	Low	1.4	0.1	Mod	0.3	0.1	Low	1.6	0.1	Mod
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201										1.7	0.2	Mod				1.7	0.2	Mod
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128	2.7	0.1	Mod	2.7	0.1	Mod	29.0	1.3	High	29.0	1.3	High	25.6	1.2	High	25.6	1.2	High
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889							3.4	0.3	Mod	3.4	0.3	Mod	2.5	0.2	Mod	2.5	0.2	Mod
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144							0.7	0.1	Low	2.6	0.4	Mod	0.6	0.1	Low	2.3	0.3	Mod
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544	0.2	0.0	Low	0.4	0.1	Low	3.5	0.6	Mod	8.3	1.3	High	2.9	0.5	Mod	6.9	1.1	High
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245	0.2	0.0	Low	0.2	0.0	Low	2.6	0.2	Mod	3.2	0.6	Mod	2.4	0.2	Mod	3.0	0.6	Mod
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494	0.2	0.0	Low	0.7	0.1	Low	2.6	0.5	Mod	9.7	0.7	Mod	2.4	0.4	Mod	8.8	0.7	Mod
Pyrene	129-00-0	0.195	1.52	0.153	1.398	0.4	0.1	Low	0.5	0.1	Low	5.6	0.7	Mod	7.2	0.8	Mod	4.8	0.6	Mod	6.1	0.7	Mod
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693	0.4	0.0	Low	0.5	0.1	Low	3.7	0.4	Mod	5.3	0.6	Mod	3.1	0.3	Mod	4.5	0.5	Mod
Chrysene	218-01-9	0.166	1.29	0.108	0.846	0.3	0.0	Low	0.4	0.0	Low	3.3	0.4	Mod	5.1	0.7	Mod	3.0	0.4	Mod	4.6	0.6	Mod
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107	1.7	0.0	Mod	0.4	0.0	Low	18.0	0.0	Mod	3.8	0.4	Mod	16.2	0.0	Mod	3.4	0.4	Mod
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537	1.8	0.0	Mod	0.7	0.1	Low	17.6	0.0	Mod	6.9	0.9	Mod	16.2	0.0	Mod	6.3	0.8	Mod
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763	0.4	0.0	Low	0.7	0.1	Low	3.6	0.4	Mod	6.1	0.7	Mod	3.1	0.3	Mod	5.3	0.6	Mod
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488	2.4	0.1	Mod	0.6	0.1	Low	21.9	1.2	High	5.6	0.8	Mod	19.6	1.0	High	5.0	0.7	Mod
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135	0.3	0.1	Low	1.6	0.1	Mod	3.6	1.2	High	19.3	0.9	Mod	3.3	1.1	High	17.7	0.8	Mod
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497	0.2	0.1	Low	0.6	0.1	Low	2.5	1.4	High	6.3	0.8	Mod	2.2	1.3	High	5.7	0.8	Mod
Pesticides by EPA Method 8081 (mg/kg)																							ſ
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781																		
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																							ſ
Chromium	7440-47-3	43.4	111	52.3	160	0.7	0.3	Low	0.6	0.2	Low	0.8	0.3	Low	0.6	0.2	Low	0.7	0.3	Low	0.6	0.2	Low
Lead	7439-92-1	35.8	128	30.24	112	0.5	0.1	Low	0.6	0.2	Low	2.0	0.6	Mod	2.3	0.6	Mod	1.6	0.5	Mod	2.0	0.5	Mod
Cadmium	7440-43-9	0.99	4.98	0.68	4.21	0.3	0.1	Low	0.4	0.1	Low	0.6	0.1	Low	0.9	0.1	Low	0.7	0.1	Low	1.0	0.2	Mod
Silver	7440-22-4	0.5	4.5	0.73	1.77	0.4	0.0	Low	0.3	0.1	Low	2.6	0.3	Mod	1.8	0.7	Mod	1.8	0.2	Mod	1.2	0.5	Mod
Arsenic	7440-38-2	9.79	33	7.24	41.6	0.9	0.3	Low	1.2	0.2	Mod	1.3	0.4	Mod	1.8	0.3	Mod	1.3	0.4	Mod	1.8	0.3	Mod
Barium	7440-39-3	20	60	130.1	48	5.5	1.8	High	0.8	2.3	High	6.0	2.0	High	0.9	2.5	High	6.0	2.0	High	0.9	2.5	High
Mercury	7439-97-6	0.18	1.06	0.13	0.7			5			5	7.8	1.3	High	10.8	2.0	High	6.1	1.0	High	8.5	1.6	High
													I	<u> </u>			J			5			

				Field Sa	mple Data			SED	-DP					SED	D-17					SED	D-18		I
				Sa	mple Date			06/23	/2020					06/23	/2020					06/23	/2020		
Analuta	CAS #	NHDES-Fi	reshwater	ECO-N	Marine		HQ-PEC	Risk-	HQ-TEL		Risk-	HQ-TEC		Risk-	HQ-TEL	HQ-PEL	Risk-		HQ-PEC	Risk-	HQ-TEL		Risk-
Analyte	CAS #	TEC	PEC	TEL	PEL	HQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine	RQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine	RQ-IEC	HQ-PEC	Fresh	HQ-IEL	HQ-PEL	Marine
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	thod 8270/827	0 SIM (mg/	kg)																				
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391	0.2	0.1	Low	1.1	0.1	Mod	0.0	0.0	Low	0.2	0.0	Low	0.1	0.0	Low	0.3	0.0	Low
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201				1.2	0.1	Mod				0.2	0.0	Low				0.2	0.0	Low
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128	23.9	1.1	High	23.9	1.1	High	4.3	0.2	Mod	4.3	0.2	Mod	11.4	0.5	Mod	11.4	0.5	Mod
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889	2.2	0.2	Mod	2.2	0.2	Mod												
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144	0.4	0.1	Low	1.6	0.2	Mod							0.1	0.0	Low	0.3	0.0	Low
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544	2.8	0.5	Mod	6.6	1.0	High	0.5	0.1	Low	1.2	0.2	Mod	1.5	0.3	Mod	3.5	0.6	Mod
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245	2.3	0.2	Mod	2.8	0.5	Mod	0.5	0.0	Low	0.6	0.1	Low	1.5	0.1	Mod	1.8	0.3	Mod
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494	2.3	0.4	Mod	8.6	0.6	Mod	0.6	0.1	Low	2.3	0.2	Mod	2.6	0.5	Mod	9.7	0.7	Mod
Pyrene	129-00-0	0.195	1.52	0.153	1.398	4.8	0.6	Mod	6.1	0.7	Mod	1.4	0.2	Mod	1.8	0.2	Mod	4.9	0.6	Mod	6.2	0.7	Mod
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693	3.4	0.4	Mod	4.9	0.5	Mod	1.0	0.1	Mod	1.5	0.2	Mod	5.0	0.5	Mod	7.2	0.8	Mod
Chrysene	218-01-9	0.166	1.29	0.108	0.846	3.1	0.4	Mod	4.8	0.6	Mod	0.8	0.1	Low	1.3	0.2	Mod	3.4	0.4	Mod	5.2	0.7	Mod
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107	17.3	0.0	Mod	3.6	0.4	Mod	5.9	0.0	Mod	1.2	0.1	Mod	16.9	0.0	Mod	3.5	0.4	Mod
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537	16.9	0.0	Mod	6.6	0.9	Mod	4.8	0.0	Mod	1.9	0.2	Mod	15.4	0.0	Mod	6.0	0.8	Mod
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763	3.5	0.4	Mod	5.9	0.7	Mod	1.1	0.1	Mod	1.9	0.2	Mod	3.4	0.4	Mod	5.7	0.7	Mod
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488	21.4	1.1	High	5.4	0.8	Mod	6.9	0.4	Mod	1.8	0.2	Mod	17.3	0.9	Mod	4.4	0.6	Mod
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135	3.9	1.3	High	20.9	1.0	Mod	1.2	0.4	Mod	6.3	0.3	Mod	3.3	1.1	High	17.7	0.8	Mod
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497	2.4	1.4	High	6.1	0.8	Mod	0.8	0.4	Low	1.9	0.3	Mod	1.6	0.9	Mod	4.0	0.5	Mod
Pesticides by EPA Method 8081 (mg/kg)																							
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781	4.1	0.7	Mod	16.4	2.6	High												
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																							
Chromium	7440-47-3	43.4	111	52.3	160	0.9	0.3	Low	0.7	0.2	Low	1.7	0.7	Mod	1.4	0.5	Mod	1.8	0.7	Mod	1.5	0.5	Mod
Lead	7439-92-1	35.8	128	30.24	112	1.9	0.5	Mod	2.2	0.6	Mod	1.2	0.3	Mod	1.4	0.4	Mod	1.2	0.3	Mod	1.5	0.4	Mod
Cadmium	7440-43-9	0.99	4.98	0.68	4.21	2.1	0.4	Mod	3.1	0.5	Mod	0.1	0.0	Low	0.1	0.0	Low	0.1	0.0	Low	0.1	0.0	Low
Silver	7440-22-4	0.5	4.5	0.73	1.77	3.2	0.4	Mod	2.2	0.9	Mod	0.9	0.1	Low	0.6	0.3	Low	1.0	0.1	Mod	0.7	0.3	Low
Arsenic	7440-38-2	9.79	33	7.24	41.6	1.5	0.5	Mod	2.1	0.4	Mod	1.2	0.4	Mod	1.7	0.3	Mod	1.0	0.3	Mod	1.4	0.2	Mod
Barium	7440-39-3	20	60	130.1	48	6.5	2.2	High	1.0	2.7	High	2.4	0.8	Mod	0.4	1.0	Low	2.4	0.8	Mod	0.4	1.0	Low
Mercury	7439-97-6	0.18	1.06	0.13	0.7	6.7	1.1	High	9.2	1.7	High	1.8	0.3	Mod	2.5	0.5	Mod	2.6	0.4	Mod	3.6	0.7	Mod

					mple Dat
				Sa	mple Date
Analyte	CAS #	NHDES-F	reshwater	ECO-I	Marine
,		TEC	PEC	TEL	PEL
Polycyclic Aromatic Hydrocarbons (PAHs) by	EPA Method 8270/827	0 SIM (mg/	kg)		
Naphthalene	91-20-3	0.176	0.561	0.0346	0.391
2-methylnaphthalene	91-57-6	NS	NS	0.0202	0.201
Acenaphthylene	208-96-8	0.00587	0.128	0.00587	0.128
Acenaphthene	83-32-9	0.00671	0.0889	0.00671	0.0889
Fluorene	86-73-7	0.0774	0.536	0.0212	0.144
Phenanthrene	85-01-8	0.204	1.17	0.0867	0.544
Anthracene	120-12-7	0.0572	0.845	0.0469	0.245
Fluoranthene	206-44-0	0.423	2.23	0.113	1.494
Pyrene	129-00-0	0.195	1.52	0.153	1.398
Benzo(a)anthracene	56-55-3	0.108	1.05	0.0748	0.693
Chrysene	218-01-9	0.166	1.29	0.108	0.846
Benzo(b)fluoranthene	205-99-2	0.0272	13.4	0.13	1.107
Benzo(k)fluoranthene	207-08-9	0.0272	13.4	0.07	0.537
Benzo(a)pyrene	50-32-8	0.15	1.45	0.0888	0.763
Indeno(1,2,3-cd)pyrene	193-39-5	0.01732	0.33	0.068	0.488
Dibenzo(a,h)anthracene	53-70-3	0.033	0.1	0.00622	0.135
Benzo(g,h,i)perylene	191-24-2	0.17	0.3	0.067	0.497
Pesticides by EPA Method 8081 (mg/kg)					
4,4'-DDD	72-54-8	0.00488	0.028	0.00122	0.00781
Metals by EPA Methods 6010/6020, 7471 (m	g/kg)				
Chromium	7440-47-3	43.4	111	52.3	160
Lead	7439-92-1	35.8	128	30.24	112
Cadmium	7440-43-9	0.99	4.98	0.68	4.21
Silver	7440-22-4	0.5	4.5	0.73	1.77
Arsenic	7440-38-2	9.79	33	7.24	41.6
Barium	7440-39-3	20	60	130.1	48
Mercury	7439-97-6	0.18	1.06	0.13	0.7

Table Notes:

1.) All concentrations are expressed in micrograms per kilogram (mg/kg); only analytes detected in at least one sample are shown in the table. 2.) "U" indicates target analyte not detected at a concentration greater than the quatitation limit (QL) shown. The QL for samples collected in 2009 represents the laboratory reporting limit (RL); the QL for the samples collected in 2020 represents the method detection limit (MDL).

- 3.) "J" indicates an estimated concentration.
- 4.) "NA" indicates target analyte not analyzed during sampling event.
- 5.) New Hampshire Department of Environmental Services (NHDES) freshwater and marine screening thresholds were obtain from from a Draft NHDES Memorandum dated January 8, 2016 (Subject: Updated TEC and PEC sediment threshold) as provided to VHB via email on April 17, 2020:
- "TEC" indicates threshold effect concentration;
- "PEC" indicates probable effect concentration;
- "TEL" indicates threshold effect level; and
- "PEL" indicates probable effect level.

6.) Hazard quotients (HQs) were calculated for all detected constituents in each sample by dividing the constituent concentration by the screening threshold value. Based on

the calculated HQs, each constituent was assigned a risk classification as follows:

▹ HQ-TEC (TEL) <1 was gualified as low risk;</p>

▶ HQ-TEC (TEL) >1 was qualified as moderate (mod) risk; and

		Sample Data				D2		D3	SE			D5		D6		D7		D8		D9		010a
	9	Sample Date	10/31	/2009	10/30	0/2009	10/31	1/2009	10/31	/2009	10/31	/2009	10/31	/2009	10/31	/2009	10/31	/2009	10/3	1/2009	11/2	/2009
	Sieve - Grain	Description	1%	6 G		6 G		% G	0%	G	N,	/A	0%	6 G	(0-	-2')	19	6 G		% G		% G
				% S	13	% S		% S	109	% S				6 S	0.7% G;	29% S;	24	% S	12	% S		% S
			45%	S/C	87%	6 S/C	57%	6 S/C	90%	S/C			97%	S/C		5 S/C	75%	S/C	88%	6 S/C	69%	6 S/C
															-	-3')						
																; 22% S						
		NHDES													77%	s/C						
Analyte	CAS #	S-1/SRS	Result	QL (RL)	Result	QL (RL)	Result	QL (RL)	Result	QL (RL)	Result	QL (RL)										
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Met	hod 8270/8270)																			
Naphthalene	91-20-3	5	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
2-methylnaphthalene	91-57-6	96	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Acenaphthylene	208-96-8	490	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Acenaphthene	83-32-9	340	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Dibenzofuran	132-64-9	NS	NA		NA		NA		NA		NA											
Fluorene	86-73-7	77	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Phenanthrene	85-01-8	NS	0.640	U	0.847		1.1		1.10	U	0.800	U	1.00	U	0.463	J	0.623	J	0.860	U	0.630	J
Anthracene	120-12-7	1000	0.640	U	0.700	U	0.72	U	1.10	U	0.800	U	1.00	U	0.740	U	0.81	U	0.860	U	0.990	U
Fluoranthene	206-44-0	960	0.640	U	1.53		2.21		0.639	J	0.800	U	1.22		0.774		1.09		0.860	U	1.24	
Pyrene	129-00-0	720	0.640	U	1.33		1.97		0.588	J	0.800	U	1.10		0.730	J	1.06		0.860	U	1.14	
Benzo(a)anthracene	56-55-3	1	0.640	U	0.583	J	0.91		1.10	U	0.800	U	1.00	U	0.740	U	0.434	J	0.860	U	0.990	U
Chrysene	218-01-9	120	0.640	U	0.798		1.14		1.10	U	0.800	U	0.668	J	0.451	J	0.593	J	0.860	U	0.673	J
Benzo(b)fluoranthene	205-99-2	1.0	0.640	U	1.06		1.54		1.10	U	0.800	U	0.945	J	0.658	J	0.809	J	0.860	U	0.983	J
Benzo(k)fluoranthene	207-08-9	12	0.640	U	0.799	U	0.434	J	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Benzo(a)pyrene	50-32-8	0.7	0.640	U	0.661	J	0.992		1.10	U	0.800	U	0.616	J	0.740	U	0.516	J	0.860	U	0.594	J
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.640	U	0.698	J	0.901		0.602	J	0.800	U	0.806	J	0.532	J	0.659	J	0.860	U	0.767	J
Dibenzo(a,h)anthracene	53-70-3	0.7	0.640	U	0.700	U	0.437	J	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Benzo(g,h,i)perylene	191-24-2	NS	0.640	U	0.453	J	0.617	J	1.10	U	0.800	U	1.00	U	0.740	U	0.810	U	0.860	U	0.990	U
Pesticides by EPA Method 8081 (mg/kg)																						
4,4'-DDD	72-54-8	6	0.017	U	0.180	U	0.200	U	0.028	U	0.021	U	0.270	U	0.200	U	0.210	U	0.240	U	0.026	U
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																						
Chromium	7440-47-3	1000	32		38		11		53		36		39		37		40		41		43	
Lead	7439-92-1	400	83		64		6		17		45		48		21		36		9		54	
Cadmium	7440-43-9	33	3.6		0.9		2	U	0.9	U	2.2	U	0.8		2.1	U	2.2	U	2.4	U	1.1	
Silver	7440-22-4	89	1.7	U	1.9	U	2	U	2.9	U	2.2	U	2.7	U	2.1	U	2.2	U	2.42	U	2.7	U
Arsenic	7440-38-2	11	12		10.4		9.1		11.4		12.8		16.1		11.8		13.5		12.4		17.6	
Selenium	7782-49-2	180	3.4	U	3.7	U	2	U	5.9	U	4.4	U	5.5	U	4.2	U	4.4	U	4.8	U	5.4	U
Barium	7440-39-3	1000	103		101		32		163		115		130		99		101		116		120	
Mercury	7439-97-6	7	0.09	U	0.09	U	0.14		0.29		0.35		0.49		0.53		0.92		0.07		0.86	
	-																					

		Sample Data Sample Date		010b /2009		011a /2009		011b /2009		012 /2009	SED 06/23	D-13		D-14 3/2020		D-15 3/2020		D-16 B/2020		D-DP 3/2020		D-17 3/2020
										% G		% G		% G		% G		% G		3/2020 \/A		2% G
	Sieve - Grain	n Description	IN,	/Α	10	% G % S 6 S/C	IN	/A		% S	42.7	。G 7% S 3% F	58.9	% G 9% S 1% F	28.4	% G 4% S 5% F	39.5	% G 5% S 5% F	ľ	N/A	46	.9% S .8% F
					507	, c				, o, c				-								
Analyte	CAS #	NHDES S-1/SRS	Result	QL (RL)	Result	QL (RL)	Result	QL (RL)	Result	QL (RL)	Result	QL (MDL)	Result	QL (MDL)	Result	QL (MDL)	Result	QL (MDL)	Result	QL (MDL) Result	QL (MDL
Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Me	ethod 8270/8270	SIM (mg/kg																				
Naphthalene	91-20-3	5	0.890	U	0.670	U	0.680	U	0.990	U	0.0064	U	0.0057	U	0.050		0.055		0.039		0.0060	J
2-methylnaphthalene	91-57-6	96	0.890	U	0.670	U	0.680	U	0.990	U	0.0053	U	0.0047	U	0.034		0.035		0.025		0.0045	U
Acenaphthylene	208-96-8	490	0.890	U	0.670	U	0.680	U	0.990	U	0.0050	J	0.016		0.17		0.15		0.14		0.025	
Acenaphthene	83-32-9	340	0.890	U	0.670	U	0.680	U	0.990	U	0.0035	U	0.0031	U	0.023		0.017		0.015		0.0030	U
Dibenzofuran	132-64-9	NS	NA		NA		NA		NA		0.0041	U	0.0036	U	0.021		0.017		0.010	J	0.0034	U
Fluorene	86-73-7	77	0.890	U	0.670	U	0.680	U	0.990	U	0.0022	U	0.0019	U	0.055		0.048		0.034		0.0019	U
Phenanthrene	85-01-8	NS	0.508	J	0.670	U	0.680	U	0.990	U	0.022		0.031		0.72		0.6		0.57		0.10	
Anthracene	120-12-7	1000	0.890	U	0.670	U	0.680	U	0.990	U	0.0030	J	0.010	J	0.15		0.14		0.13		0.028	
Fluoranthene	206-44-0	960	0.982		0.670	U	0.680	U	0.990	U	0.040		0.076		1.1		1.0		0.97		0.26	
Pyrene	129-00-0	720	0.901		0.670	U	0.680	U	0.990	U	0.040		0.079		1.1		0.94		0.94		0.27	
Benzo(a)anthracene	56-55-3	1	0.890	U	0.670	U	0.680	U	0.990	U	0.010	J	0.039		0.4		0.34		0.37		0.11	
Chrysene	218-01-9	120	0.546	J	0.670	U	0.680	U	0.990	U	0.015		0.042		0.55		0.50		0.52		0.14	
Benzo(b)fluoranthene	205-99-2	1.0	0.809	J	0.670	U	0.680	U	0.990	U	0.015		0.046		0.49		0.44		0.47		0.16	
Benzo(k)fluoranthene	207-08-9	12	0.890	U	0.670	U	0.680	U	0.990	U	0.010	J	0.048		0.48		0.44		0.46		0.13	
Benzo(a)pyrene	50-32-8	0.7	0.890	U	0.670	U	0.680	U	0.990	U	0.027		0.058		0.54		0.47		0.52		0.17	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.665	J	0.670	U	0.680	U	0.990	U	0.014		0.041		0.38		0.34		0.37		0.12	
Dibenzo(a,h)anthracene	53-70-3	0.7	0.890	U	0.670	U	0.680	U	0.990	U	0.0020	J	0.010	J	0.12		0.11		0.13		0.039	
Benzo(g,h,i)perylene	191-24-2	NS	0.890	U	0.670	U	0.680	U	0.990	U	0.010	J	0.040		0.42		0.38		0.41		0.13	
Pesticides by EPA Method 8081 (mg/kg)																						
4,4'-DDD	72-54-8	6	0.240	U	0.018	U	0.017	U	0.560	U	0.017	U	0.015	U	0.012	U	0.017	U	0.020	J	0.014	U
Metals by EPA Methods 6010/6020, 7471 (mg/kg)																						
Chromium	7440-47-3	1000	44		33		33		64		39		30		33		32		37		73	
Lead	7439-92-1	400	52		17		15		14		17		18		71		59		68		43	
Cadmium	7440-43-9	33	0.8		1.9	U	1.8	U	2.8	U	0.2		0.3	J	0.6	J	0.7	J	2.1		0.1	J
Silver	7440-22-4	89	2.5	U	1.9	U	1.8	U	2.8	U	0.2		0.2	J	1.3		0.89		1.6		0.46	
Arsenic	7440-38-2	11	15.3		9.1		9		14.6		7	J	8.9		13		13		15		12	
Selenium	7782-49-2	180	5	U	3.9	U	3.7	U	5.6	U	4	J	3	J	4	J	4	J	4	J	2	J
Barium	7440-39-3	1000	122		98		102		86		110		110		120		120		130		47	
Mercury	7439-97-6	7	1		0.19		0.18		0.14		0.083	U	0.088	U	1.4		1.1		1.2		0.33	

		Sample Data Sample Date		D-18 3/2020
	Sieve - Graiı	n Description	47	7% G 7% S 3% F
Analyte	CAS #	NHDES S-1/SRS	Result	QL (MDL)
Polycyclic Aromatic Hydrocarbons (PAHs) by E	EPA Method 8270/8270) SIM (mg/kg		
Naphthalene	91-20-3	5	0.012	
2-methylnaphthalene	91-57-6	96	0.0050	J
Acenaphthylene	208-96-8	490	0.067	
Acenaphthene	83-32-9	340	0.0027	U
Dibenzofuran	132-64-9	NS	0.0032	U
Fluorene	86-73-7	77	0.0060	J
Phenanthrene	85-01-8	NS	0.30	
Anthracene	120-12-7	1000	0.084	
Fluoranthene	206-44-0	960	1.1	
Pyrene	129-00-0	720	0.95	
Benzo(a)anthracene	56-55-3	1	0.54	
Chrysene	218-01-9	120	0.56	
Benzo(b)fluoranthene	205-99-2	1.0	0.46	
Benzo(k)fluoranthene	207-08-9	12	0.42	
Benzo(a)pyrene	50-32-8	0.7	0.51	
Indeno(1,2,3-cd)pyrene	193-39-5	1	0.30	
Dibenzo(a,h)anthracene	53-70-3	0.7	0.11	
Benzo(g,h,i)perylene	191-24-2	NS	0.27	
Pesticides by EPA Method 8081 (mg/kg)				
4,4'-DDD	72-54-8	6	0.014	U
Metals by EPA Methods 6010/6020, 7471 (mg,	/kg)			
Chromium	7440-47-3	1000	76	
Lead	7439-92-1	400	44	
Cadmium	7440-43-9	33	0.1	J
Silver	7440-22-4	89	0.52	
Arsenic	7440-38-2	11	10	
Selenium	7782-49-2	180	3	J
Barium	7440-39-3	1000	48	
Mercury	7439-97-6	7	0.47	

Table Notes:

1.) All concentrations are expressed in micrograms per kilogram (mg/kg); only analytes detected in at least one sample are shown in the table. 2.) "U" indicates target analyte not detected at a concentration greater than the quatitation limit (QL) shown. The QL for samples collected in 2009 represents the laboratory reporting limit (RL); the QL for the samples collected in 2020 represents the method detection limit (MDL). 3.) "J" indicates an estimated concentration.

4.) "NA" indicates target analyte not analyzed during sampling event.

5.) "NHDES S-1/SRS" indicates New Hampshire Department of Environmental Services (NHDES) Contaminated Sites Risk Characterization and Management Policy (RCMP) Method 1 Soil Category S-1 Direct Contact Risk-based Concentrations, which are equivalent to the Soil Remediation Standards (SRS) established in the New Hampshire Code of Administrative Rules Chapter Env-Or 600, Contaminated Site Management.

6.) Detected concentrations that exceed NHDES S-1/SRS value are shaded orange.

7.) NHDES S-1/SRS for chromium III (CAS # 16065-83-1) was used for the purposes of this screening-level assessment.

Appendix D.4: Laboratory Analytical Reports

Absolute Resource Associates

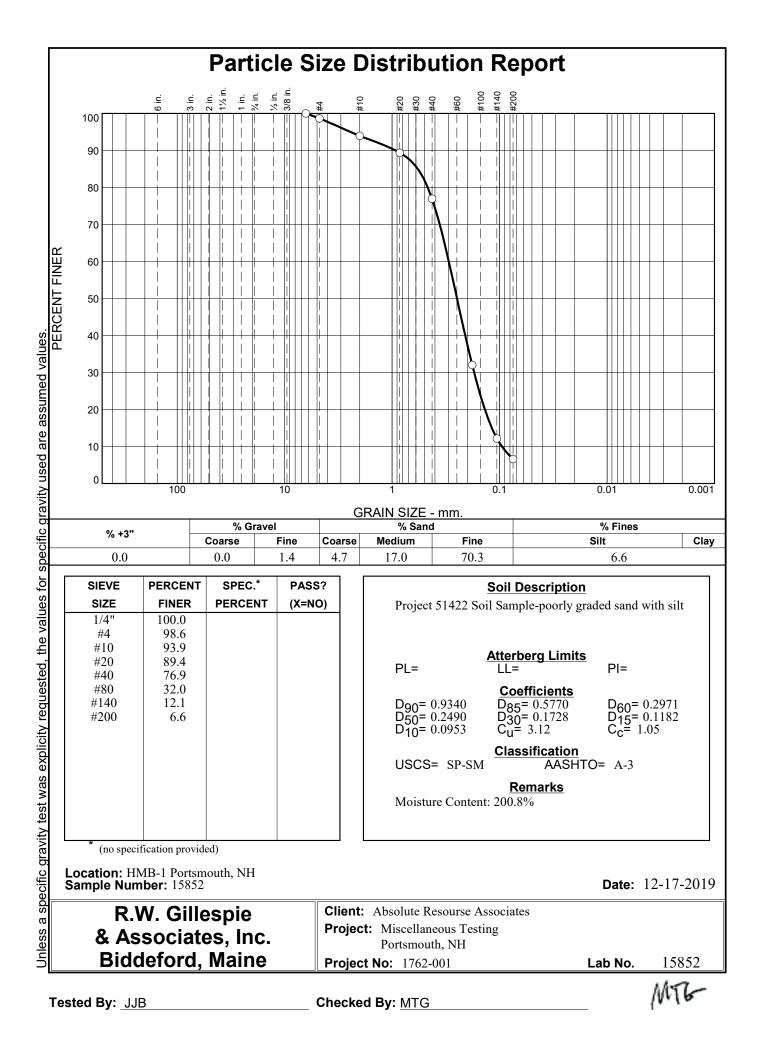
124 Heritage Ave. #16

Portsmouth, NH, 03801

LETTER OF TRANSMITTAL

Date:	Project No.:
December 19, 2019	1762-001
Attention:	
Aaron Dewees (aarond@absoluter	esourceassociates.com)
Re:	
Laboratory Testing	
Miscellaneous Testing	
Portsmouth, NH	

 We are sending you attached Laboratory Test Results.


 Laboratory No. (s)
 Test (s) Performed

 15852: HMB-1, Project 51422
 Washed Gradation

Remarks:

Copy to: Charles Leahy(charlesl@absoluteresourceassociates.com) Jane Stratton (janes@absoluteresourceassociates.com)

If enclosures are not noted, kindly notify us at once.

Absol	lute F	Resou	rce te:		Y,			a	1	Portsn 60	nout)3-4	ge Avenue th, NH 03 436-2001 rceassocia	801	om						UST		QU	ES	T			-	_	42	22		6	OF_	
Company Nan	ne: HB	ord Fr Aver				<i>c</i>		Pro Pro Re Lir	oject oject otocc eporti mits: uote #	Location I: R N ng Q E	CR/	NHDE P GW-1 DW Other	A NI S O S-	Othe PDES THER	ES 0 V0C 8260 M	VOC BTEX D MtBE, only D VOC 8021VT	🗆 MEGRO 🗆 GRO 8015 🗆 1,4-Dioxane	🗆 VOC 524.2 NH List 🔲 Gases-List:	5 🗇 MEDRO 🗠 EPH MADEP 🔄 TPH Fingerprint	S270PAH		Conductivity Turbidity	TVS Alkalinity	RCRA Metals Priority Pollutant Metals TAL Metals Hardness			C TN C TON C TOC	□ Bacteria P/A	e 🗆 Nitrate + Nitrite 🗆 Urtho P	ctive CN Reactive S- Ignitibilit	1.1	Grain Size 🔲 Herbicides 🗌 Formaldehyde		Composite (C)
Lab Sample		eld	CONTAINERS		latrix	-	Pres	serva		Metho	bd	San	npling	-	VDC 8260 0 VD		UPH MADEP	524.2 🗆 VC	CITPH CIDRO 8015	8270PAH [] 827 8082 PCB [] 801	1664 D Mi	□ B0D	1 TSS 1 TDS 1 TS	A Metals	Total Metals-list.	Dissolved Metals-list;	Ammonia COD TKN	T-Phosphorus Phenols	Cyanide L Sulfide	Corrosivity	TCLP Metals	×		or Compo
ID (Lab Use Only)	1	D	# CON	WATER	SOLID	OTHER	HCI	HNO3	H ₂ SO ₄	NaOH	MeOH	DATE	TIME	SAMPLER	D VDC	VOC 624	HU	□ V0C 524.2	HAT [1 8270	086	Hd	SSI D	RCRA	Total	Disso	Amm	1-Pho	I Cyanide	Corro	C TCLP	Subcontract:		Grab (G)
57422 01	HW	1B-1	V		1	0	-	-	-	-	-	11/26/19		48 PI	-																	X		
TAT REQU Priority (24 hr)*		See absolution for samp	le acc	eptan	ce po	licy a	12.1	SPE	ECIA	L INS	TRU	UCTIONS																						
Expedited (48 h Standard (10 Business Day *Date Needed	(s)		COPY	INST REC		TIO		T F AX (F		e-mail	add												_	_		-		-	ECE				I YES	MQNC
CUST		Relinquish	Ed by	F	Wer:	L	/	-				i2/4 Dat		3:0	ime OP	M	_	Bu	er	A	h	ue	i	5						Rec	Date 4 Date		3.2	me Zopv me
OSD-01 Revision	03/21/13	Relinquish	ed by	11	fr	L	c	u	-	_		Dat	e	Т	ime		Rece	eiçec	bye	abor	atory	-	-							N	Date	151	Ti]/	me

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-107592-1 Client Project/Site: 53510

For:

Absolute Resource Associates 124 Heritage Ave Unit 16 Portsmouth, New Hampshire 03801

Attn: Mr. Aaron DeWees

Authorized for release by: 7/10/2020 4:37:12 PM

Debra Bowen, Project Manager I (412)963-2445 Debra.Bowen@Eurofinset.com

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	11
QC Sample Results	14
QC Association Summary	15
Chain of Custody	16
Receipt Checklists	17

Job ID: 180-107592-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-107592-1

Case Narrative

Receipt

The samples were received on 6/25/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.1° C.

GC Semi VOA

Please note that the reporting limit for Lloyd Kahn TOC analysis is a nominal value and does not reflect adjustments in sample mass processed on an individual basis

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Absolute Resource Associates Project/Site: 53510

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	13
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Laboratory: Eurofins TestAmerica, Pittsburgh Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. **Identification Number Expiration Date** Authority Program New Hampshire NELAP 2030 04-05-21 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 2540G Sediment Percent Moisture 2540G Sediment Percent Solids

Sample Summary

Client: Absolute Resource Associates Project/Site: 53510

_ab Sample ID	Client Sample ID	Matrix	Collected	Received
180-107592-1	SED-13	Sediment	06/23/20 12:00	06/25/20 10:00
80-107592-2	SED-16	Sediment	06/23/20 13:00	06/25/20 10:00
80-107592-3	SED-DP	Sediment	06/23/20 12:50	06/25/20 10:00
80-107592-4	SED-14	Sediment	06/23/20 11:00	06/25/20 10:00
80-107592-5	SED-15	Sediment	06/23/20 10:00	06/25/20 10:00
80-107592-6	SED-17	Sediment	06/23/20 16:00	06/25/20 10:00
80-107592-7	SED-18	Sediment	06/23/20 15:00	06/25/20 10:00

Method Summary

Client: Absolute Resource Associates Project/Site: 53510

	M 2540G	SM22	TAL PIT
EDA Lloyd Kohn C			
EPA-Lloyd Kahn C	Organic Carbon, Total (TOC)	EPA	TAL PIT
Protocol Referen	ces:		
EPA = US Env	ironmental Protection Agency		
SM22 = Standa	ard Methods For The Examination Of Water And Wastewater, 22nd E	Edition	

Eurofins TestAmerica, Pittsburgh

Client Sample ID: SED-13 Lab Sample ID: 180-107592-1 Date Collected: 06/23/20 12:00 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Batch Dil Initial Batch Final Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed Analyst Lab 319981 TAL PIT Total/NA Analysis 2540G 06/30/20 07:23 MM1 1 Instrument ID: NOEQUIP **Client Sample ID: SED-13** Lab Sample ID: 180-107592-1 Date Collected: 06/23/20 12:00 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 32.8 Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Factor Amount Amount Number or Analyzed Run Analyst Lab Total/NA EPA-Lloyd Kahn 320149 06/30/20 20:20 DLF TAL PIT Analysis Instrument ID: FLASHEA **Client Sample ID: SED-16** Lab Sample ID: 180-107592-2 Date Collected: 06/23/20 13:00 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Dil Initial Final Batch Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 319981 06/30/20 07:23 TAL PIT Total/NA 2540G MM1 Analysis Instrument ID: NOEQUIF **Client Sample ID: SED-16** Lab Sample ID: 180-107592-2 Date Collected: 06/23/20 13:00 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 35.0 Batch Dil Initial Batch Batch Final Prepared Method Number Prep Type Type Run Factor Amount Amount or Analyzed Analyst Lab Total/NA 320149 06/30/20 20:31 DLF TAL PIT Analysis EPA-Lloyd Kahn 1 Instrument ID: FLASHEA **Client Sample ID: SED-DP** Lab Sample ID: 180-107592-3 Date Collected: 06/23/20 12:50 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 2540G 319981 06/30/20 07:23 MM1 TAL PIT 1 Instrument ID: NOEQUIP **Client Sample ID: SED-DP** Lab Sample ID: 180-107592-3 Date Collected: 06/23/20 12:50 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 35.1 Dil Initial Final Batch Batch Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA-Lloyd Kahn 320149 06/30/20 20:43 DLF TAL PIT Instrument ID: FLASHEA

Client Sample ID: SED-14 Lab Sample ID: 180-107592-4 Date Collected: 06/23/20 11:00 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Batch Dil Initial Batch Final Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed Analyst Lab 319981 TAL PIT Total/NA Analysis 2540G 06/30/20 07:23 MM1 1 Instrument ID: NOEQUIP **Client Sample ID: SED-14** Lab Sample ID: 180-107592-4 Date Collected: 06/23/20 11:00 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 37.1 Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Factor Amount Amount Number or Analyzed Run Analyst Lab Total/NA EPA-Lloyd Kahn 320149 06/30/20 21:05 DLF TAL PIT Analysis Instrument ID: FLASHEA **Client Sample ID: SED-15** Lab Sample ID: 180-107592-5 Date Collected: 06/23/20 10:00 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Dil Initial Final Batch Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 319981 06/30/20 07:23 TAL PIT 2540G MM1 Total/NA Analysis Instrument ID: NOEQUIF **Client Sample ID: SED-15** Lab Sample ID: 180-107592-5 Date Collected: 06/23/20 10:00 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 45.4 Batch Dil Initial Batch Batch Final Prepared Method Number Prep Type Type Run Factor Amount Amount or Analyzed Analyst Lab Total/NA 320149 06/30/20 21:16 DLF TAL PIT Analysis EPA-Lloyd Kahn 1 Instrument ID: FLASHEA **Client Sample ID: SED-17** Lab Sample ID: 180-107592-6 Date Collected: 06/23/20 16:00 Matrix: Sediment Date Received: 06/25/20 10:00 Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 2540G 319981 06/30/20 07:23 MM1 TAL PIT 1 Instrument ID: NOEQUIP **Client Sample ID: SED-17** Lab Sample ID: 180-107592-6 Date Collected: 06/23/20 16:00 Matrix: Sediment Date Received: 06/25/20 10:00 Percent Solids: 39.4 Dil Initial Final Batch Batch Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis EPA-Lloyd Kahn 320149 06/30/20 21:27 DLF TAL PIT Instrument ID: FLASHEA

Client Sample ID: SED-18 Date Collected: 06/23/20 15:00

Date Received: 06/25/20 10:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540G		1			319981	06/30/20 07:23	MM1	TAL PIT
	Instrumer	nt ID: NOEQUIP								
Client Sam	ple ID: SEI	D-18					La	b Sample II	D: 180-	107592-7
Date Collecte	d: 06/23/20 1	5:00						-	Matrix:	Sediment
Date Receive	d: 06/25/20 1	0:00						Р	ercent S	olids: 30.5
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Bron Type	Туро	Mothod	Dun	Eactor	Amount	Amount	Number	or Analyzod	Analyst	Lab

	Datch	Batch		ווט	initial	Final	Datch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA-Lloyd Kahn		1			320149	06/30/20 21:38	DLF	TAL PIT
	Instrumen	t ID: FLASHEA								
<u> </u>										

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Analysis

DLF = Donald Ferguson

MM1 = Mary Beth Miller

Job ID: 180-107592-1

Matrix: Sediment

Lab Sample ID: 180-107592-7

Client Sample Results

Client: Absolute Resource Associates

Job ID: 180-107592-1

Project/Site: 53510	es							Job ID: 180-10	07592-1
Client Sample ID: SED-13 Date Collected: 06/23/20 12:00 Date Received: 06/25/20 10:00						Lab	Sample	ID: 180-107 Matrix: Se	
General Chemistry						_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture Percent Solids	67.2 32.8		0.1 0.1	0.1 0.1	% %			06/30/20 07:23 06/30/20 07:23	1 1
Client Sample ID: SED-13						Lab	Sample	ID: 180-107	
Date Collected: 06/23/20 12:00 Date Received: 06/25/20 10:00								Matrix: Se Percent Solid	
General Chemistry Analyte	Posult	Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	68000		3000		mg/Kg	— ~ —	riepaieu	06/30/20 20:20	1
Client Sample ID: SED-16						Lab	Sample	ID: 180-107	7592-2
Date Collected: 06/23/20 13:00 Date Received: 06/25/20 10:00								Matrix: Se	diment
General Chemistry	Desult	Qualifian	ы	ы	11	P	Drenered	Anolyzed	
Analyte		Qualifier	RL	0.1	Unit	D	Prepared	Analyzed 06/30/20 07:23	Dil Fac
Percent Moisture Percent Solids	65.0 35.0		0.1	0.1				06/30/20 07:23	1
Client Sample ID: SED-16						Lab	Sample	ID: 180-107	7592-2
Date Collected: 06/23/20 13:00 Date Received: 06/25/20 10:00								Matrix: Se Percent Solid	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	63000		2900		mg/Kg	— ¤ —		06/30/20 20:31	1
Client Sample ID: SED-DP						Lab	Sample	ID: 180-107	7592-3
Date Collected: 06/23/20 12:50 Date Received: 06/25/20 10:00								Matrix: Se	diment
General Chemistry	Pocult	Qualifier	RL	DI	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	64.9		0.1	0.1	%		Tropurcu	06/30/20 07:23	1
Percent Solids	35.1		0.1	0.1				06/30/20 07:23	1
Client Sample ID: SED-DP						Lab	Sample	ID: 180-107	
Date Collected: 06/23/20 12:50 Date Received: 06/25/20 10:00								Matrix: Se Percent Solid	
General Chemistry	Decult	Qualifian		MDI	11		Duranta	Amelyand	
Analyte Total Organic Carbon - Duplicates	65000	Qualifier	RL 2800		Unit mg/Kg	— <u>₽</u> —	Prepared	Analyzed 06/30/20 20:43	Dil Fac
Client Sample ID: SED-14						Lab	Sample	ID: 180-107	7592-4
Date Collected: 06/23/20 11:00 Date Received: 06/25/20 10:00								Matrix: Se	
General Chemistry Analyte	Rocult	Qualifier	RL	DI	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Pittsburgh

Client Sample Results

Client: Absolute Resource Associates

Job ID: 180-107592-1

					Lab	Sample	ID: 180-107 Matrix: Se	
Posult	Qualifier	DI	Ы	Unit	Р	Proparod	Analyzod	Dil Fac
37.1		0.1				Fiepareu	06/30/20 07:23	1
					Lob	Comple	ID: 400 405	7502 4
					Lau	Sample	Matrix: Se Percent Solic	diment
Result	Qualifier	RI	мпі	Unit	п	Prenared	Analyzed	Dil Fac
61000		2700			— ¤ –	Tiopurou	06/30/20 21:05	1
					Lab	Sample	ID: 180-107 Matrix: Se	
D	0			11.24	_	D	A seal and a	D.1 E
	Qualifier				D	Prepared		Dil Fac
54.6 45.4		0.1					06/30/20 07:23	1
					Lab	Sample	ID: 180-107	7592-5
						Campio	Matrix: Se Percent Solic	diment
Decult	Qualifier	ы	MDI	11		Drenered	Analyzad	
53000	Quaimer	2200			— ¤ –	Prepared	06/30/20 21:16	Dil Fac
					Lah	Sample	ID: 180-107	7592-6
					Eab	Campio	Matrix: Se	
					_			
	Qualifier				D	Prepared	-	Dil Fac
60.6 39.4		0.1					06/30/20 07:23	1
					Lah	Sample	ID: 180-107	7592-6
					Eas	Campio		
							Percent Solic	
Result	Qualifier	RI	MDI	Unit	р	Prepared	Analyzed	Dil Fac
41000		2500			— — — —		06/30/20 21:27	1
					Lab	Sample	ID: 180-107 Matrix: Se	
Deevit	Qualifier		D /	11	~	Drenewal		
Result	Qualifier	RL	RL 0.1	Unit	D	Prepared	Analyzed	Dil Fac
	37.1 Result 61000 Result 54.6 45.4 Result 60.6 39.4 Result 60.6	Result Qualifier 61000	37.1 0.1 Result Qualifier RL 61000 2700 Result Qualifier RL 54.6 0.1 45.4 0.1 Result Qualifier RL 53000 2200 Result Qualifier RL 53000 2200 Result Qualifier RL 60.6 0.1 39.4 0.1 Result Qualifier RL 60.6 0.1 39.4 0.1	37.1 0.1 0.1 Result Qualifier RL MDL 61000 2700 2000 Result Qualifier RL RL 54.6 0.1 0.1 0.1 0.1 0.1 45.4 0.1 0.1 Result Qualifier RL MDL 53000 2200 1600 Result Qualifier RL MDL 53000 2200 1600 1600 Result Qualifier RL MDL 39.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 39.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1	37.1 0.1 0.1 0.1 % Result Qualifier RL MDL Unit 61000 2700 2000 mg/Kg Result Qualifier RL 0.1 0.1 % Result Qualifier RL 0.1 0.1 % 1 0.1 0.1 % 0.1 % 0.1 % 1 0.1 0.1 % 0.1 1% 1% 1% 1 0.1 % 0.1 0.1 % 1% 1 0.1 0.1 0.1 % 1600 mg/Kg 1 60.6 0.1 0.1 % 1 1% 39.4 0.1 0.1 % 1 1% 1 0.1 0.1 % 1 1%	Result Qualifier RL RL Unit D - 37.1 0.1 0.1 % D - </td <td>Result Qualifier RL RL Unit D Prepared 37.1 0.1 0.1 0.1 % D Prepared 1 0.1 0.1 % D Prepared 1 0.00 2000 mg/Kg T D Prepared 61000 2000 mg/Kg T D Prepared T 61000 2000 mg/Kg T D Prepared T 61000 2000 mg/Kg D Prepared T T 1 0.1 0.1 % D Prepared T 54.6 0.1 0.1 % D Prepared T 54.6 0.1 0.1 % Lab Sample Lab Sample 60.6 2000 2000 mg/Kg D Prepared 60.6 0.1 0.1 % D Prepared 39.4 0.1 0.1 % Lab Sample Result Qualifier RL MDL Unit <td< td=""><td>Result 37.1 Qualifier 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Lab Sample ID: 180-107 Matrix: Se Percent Solid Lab Sample ID: 180-107 Matrix: Se Percent Solid D % Prepared 06/30/20 21:05 Analyzed 06/30/20 21:05 Result Qualifier 54.6 RL 0.1 MDL 0.1 Unit % D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 54.6 RL 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 53000 RL 2200 MDL 1600 Unit mg/Kg D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 60.6 RL 0.1 MDL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 0.1 NL 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 2500 MDL 1900 Unit 1900 D % Prepared 06/30/20 21:27 Analyzed 06/30/20 21:27</td></td<></td>	Result Qualifier RL RL Unit D Prepared 37.1 0.1 0.1 0.1 % D Prepared 1 0.1 0.1 % D Prepared 1 0.00 2000 mg/Kg T D Prepared 61000 2000 mg/Kg T D Prepared T 61000 2000 mg/Kg T D Prepared T 61000 2000 mg/Kg D Prepared T T 1 0.1 0.1 % D Prepared T 54.6 0.1 0.1 % D Prepared T 54.6 0.1 0.1 % Lab Sample Lab Sample 60.6 2000 2000 mg/Kg D Prepared 60.6 0.1 0.1 % D Prepared 39.4 0.1 0.1 % Lab Sample Result Qualifier RL MDL Unit <td< td=""><td>Result 37.1 Qualifier 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Lab Sample ID: 180-107 Matrix: Se Percent Solid Lab Sample ID: 180-107 Matrix: Se Percent Solid D % Prepared 06/30/20 21:05 Analyzed 06/30/20 21:05 Result Qualifier 54.6 RL 0.1 MDL 0.1 Unit % D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 54.6 RL 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 53000 RL 2200 MDL 1600 Unit mg/Kg D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 60.6 RL 0.1 MDL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 0.1 NL 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 2500 MDL 1900 Unit 1900 D % Prepared 06/30/20 21:27 Analyzed 06/30/20 21:27</td></td<>	Result 37.1 Qualifier 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Lab Sample ID: 180-107 Matrix: Se Percent Solid Lab Sample ID: 180-107 Matrix: Se Percent Solid D % Prepared 06/30/20 21:05 Analyzed 06/30/20 21:05 Result Qualifier 54.6 RL 0.1 MDL 0.1 Unit % D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 54.6 RL 0.1 RL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 53000 RL 2200 MDL 1600 Unit mg/Kg D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 60.6 RL 0.1 MDL 0.1 Unit 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 0.1 NL 0.1 D % Prepared 06/30/20 07:23 Analyzed 06/30/20 07:23 Result Qualifier 41000 RL 2500 MDL 1900 Unit 1900 D % Prepared 06/30/20 21:27 Analyzed 06/30/20 21:27

Eurofins TestAmerica, Pittsburgh

Client Sample Results

		Client S	Sample F	Resul	ts							
Client: Absolute Resource Associates Project/Site: 53510							Job ID: 180-107592-1					
Client Sample ID: SED-18 Date Collected: 06/23/20 15:00						Lab Sample ID: 180-107592-7 Matrix: Sediment						
Date Received: 06/25/20 10:00								Percent Solid	ds: 30.5			
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5		
Total Organic Carbon - Duplicates	59000		3300	2400	mg/Kg	<u>¥</u> .		06/30/20 21:38	1	6		
										8		
										9		
										_		

Job ID: 180-107592-1

10

Method: EPA-Lloyd Kahn - Organic Carbon, Total (TOC)

Lab Sample ID: MB 180-320149/4 Matrix: Sediment									Clie	ent Sam	nple ID: Metho Prep Type: T	
Analysis Batch: 320149	МВ									_		
Analyte	Result	Qualifier		RL		MDL U	Unit		D P	repared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	ND			1000		750 r	ng/Kg				06/30/20 16:59	1
Lab Sample ID: LCS 180-320149/5 Matrix: Sediment Analysis Batch: 320149								Clie	ent Sa	mple ID	: Lab Control Prep Type: T	
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Quali	fier	Unit	D	%Rec	Limits	
Total Organic Carbon -			37800		42800			mg/Kg		113	75 - 125	
Duplicates												

QC Association Summary

General Chemistry

Analysis Batch: 319981

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-107592-1	SED-13	Total/NA	Sediment	2540G	
180-107592-2	SED-16	Total/NA	Sediment	2540G	
180-107592-3	SED-DP	Total/NA	Sediment	2540G	
180-107592-4	SED-14	Total/NA	Sediment	2540G	
180-107592-5	SED-15	Total/NA	Sediment	2540G	
180-107592-6	SED-17	Total/NA	Sediment	2540G	
180-107592-7	SED-18	Total/NA	Sediment	2540G	

Analysis Batch: 320149

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-107592-1	SED-13	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-2	SED-16	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-3	SED-DP	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-4	SED-14	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-5	SED-15	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-6	SED-17	Total/NA	Sediment	EPA-Lloyd Kahn	
180-107592-7	SED-18	Total/NA	Sediment	EPA-Lloyd Kahn	
MB 180-320149/4	Method Blank	Total/NA	Sediment	EPA-Lloyd Kahn	
LCS 180-320149/5	Lab Control Sample	Total/NA	Sediment	EPA-Lloyd Kahn	

Job ID: 180-107592-1

Client: Abouter Resource Associates Cineti: Cineti: <thcinet:< th=""> Cineti: Cineti:</thcinet:<>	Absolut	Absolute Resource S	SUBCONTRACT		HAIN OF	CUSTOD	CHAIN OF CUSTODY DOCUMENTATION	NTATION			
Aaron Doriveus/Charles Leahy Address: 124 Heritage Ave, #15 Project Namo/Munder: 55 5/0 Catibridgebioluteresourcessocietes com Portsmorth, Hr) 03801 Project Namo/Munder: 55 5/0 Catibridgebioluteresourcessocietes com Portsmorth, Hr) 03801 Project Namo/Munder: 55 5/0 Catibridgebioluteresourcessocietes com Portsmorth, Hr) 03801 Project Namo/Munder: 55 5/0 Catibridgebioluteresourcessocietes com Random Project Namo/Munder: 55 5/0 SEE D- UB 1/300 1/8 Vac. Namo/Munder: 57 70C SEE D- UB 1/250 1/8 Vac. Monder Main Namo/Munder: 57 70C SEE D- UB 1/250 1/8 Vac. Monder Main Namo/Munder: 57 70C SEE D- UB 1/250 1/8 Vac. Monder Main Namo Main SEE D- UB 1/250 1/8 1/200 1/8 Vac. Main Main Main SEE D- IB 1/200 1/8 1/200 1/200 Main	Client:	Absolute Resource Associates		Contact:	Aaron DeWee	SS	Phone: 603-436-200			Page	e of
Cathologiescourcessociates.com Portonouth. Mil G801 Portonouth. Mil G801 Portonouth. Mil G801 Mil	Report to:	Aaron DeWees/Charles Leahy		Address:	124 Heritage	Ave, #16		Project Name/Number			
Description Annex of the second rest of	Invoice to:	cathyd@absoluteresourceass	ociates.com		Portsmouth, I	NH 03801		Project State:			VT
Image Total Total Total Total Total Image Reservation Sentine Sentine Sentine Sentine SE D-13 7.20 AR Vrz. Ar Andre Repeated SE D-16 7.20 AR Vrz. Ar Andre Repeated SE D-16 7.20 AR Vrz. Ar Andre Repeated SE D-16 7.20 AR Ar Andre Repeated SE D-18 1/260 Andre Repeated Andre Repeated SE D-14 1/100 Andre Repeated Andre Repeated SE D-14 1/100 Andre Repeated Andre Repeated SE D-14 1/100 Andre Repeated Andre Repeated SE D-18 1/100 Andre Repeated Andre Repeated SE D-14 1/100 Andre Repeated Andre Repeated SE D-18 1/100 Andre Repeated Andre Repeated SE D-18 1/100 Andre Repeated Andre Repeated SE D-18 1/100 Andre Repeated Andre Repeated Instructions Dire 1/100 Andre Repeated Andre Repated	PO#: 62510							Protocol: RCRA SDWA	NPDES MCP N	HDES Other	
CEO-13 CIP3 I200	Lab Number: (assigned by laboratory)	Field ID: (must agree with container)	Date Sampled	Time Sampled		Container Size (mL)	Container Type (P/G/T)	Field Preservation	Matrix S=Soil W=Water	Analyses Request Special Instruction	ed: 1s:
$ \begin{array}{ $		CED-13	12	1200	A	402 JOU	S	Nore	5	100	
5 & B - UP 12.50 1000 1000 5 & B - 14 1000 1000 1000 5 & B - 17 1000 1000 1000 5 & B - 18 1000 1500 1000 1000 5 & B - 18 1000 1500 1000 1000 5 & B - 18 1000 1500 1000 1000 5 & B - 18 1000 1500 1000 1000 5 & B - 18 1000 1500 1000 1000 5 & B - 18 1000 1000 1000 1000 6 & M 1000 1000 1000 1000 1000 1 = 0000 1000 1000 1000 1000 1000 1 = 0000 1000 1000 1000 1000 1000 1 = 0000 1000 10000 10000 10000 10000 1 = 0000 10000 10000 10000 10000 10000 1 = 0000 10000 10000 10000 10000 10000 10000 1 = 00000 100000 100000		-	(1300	1	-	_	_	-		
SED-14 100 100 100 SED-15 1000 1000 1000 SED-18 1500 1500 1500 SED-18 1600 1600 1600 SED-18 1600 1600 1600 SED-18 1600 1600 1600 SED-18 1600 1600 1600 SED-18 1600 1000 1000 SED-18 1700 1700 1000 SED-19 1700 1700 1000 SED-100 1000 1000 1000 SEC0100 1000 1000 1000 SEC0100 1000 1000 1000 SEC0100 1000 1000 1000 </td <td></td> <td>5ED-0P</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		5ED-0P									
SED-15 1600 1600 1600 SED-18 1600 1600 1600 SED-18 1506 1506 1000 SED-18 1506 1500 1000 SED-18 1506 1500 1000 SED-18 1506 1000 1000 SED-18 1506 1000 1000 SED-18 1506 1000 1000 SED-18 1000 1000 1000 SED-18 1000 1000 1000 SED-18 1000 1000 1000 SED-18 1000 1000 1000 Second time 1000 1000 1000		1-0=		1100							
SED-17 IG00 M M M SED-18 IS00 IS00 IS00 IS00 IS00 Isboratory Isboratory IS00 IS00 IS00 IS00 Isboratory Isboratory IS00 IS00 IS00 IS00 Isboratory Isboratory Isboratory IS00 IS00 IS00 Isboratory Isboratory Isboratory Isboratory Isboratory Isboratory Isboratory Isboratory Isboratory Isb		567-15									
SED-18 V JSO V<		SED-17		1600							
Iteratory: Iteratory: Iteratory: Iteratory: Iteratory:		1-0	AN	1500	>	7	À			A	
Iaboratory: The PHE/MULT The PHE/MULT The PHE/MULT Iaboratory: The PHE/MULT Pate: The PHE/MULT Iaboratory: Pate: The PHE/MULT Pate: The PHE/MULT Iaboratory: The PHE/MULT Pate: The PHE/MULT Pate: Iaboratory: Pate: The PHE/MULT Pate: The PHE/MULT Iaboratory: The PHE/MUL											
dby: Markin Date: Markenter Date: Markin Date: Markin											
Index: The Received by: The: The: <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			_								
I laboratory: TA PHS/WG/A I laboratory: TA PHS/WG/A I laboratory: TA PHS/WG/A I laboratory: TA PHS/WG/A d by: Date: C/14/120 Time: /Y; 3/2 Received by: Date: C/14/120 d by: Date: Time: Received by: Date: C/14/120 d by: Date: Time: Received by: Date: C/12/120 d by: Date: Control of the sourceassociates.com Date: C/12/120 f instructions: PDF (Email Address: aarond@absoluteresourceassociates.com) Date: C/12/120 f instructions: PDF (Email Address: aarond@absoluteresourceassociates.com) Date: C/12/120 f instructions: Excel File: V N N											
d by: M. M. M. M. Date: Date: M. H. M. M. Date: Date: M. H. M. M. Date: Date: M. M. M. M. M. M. M. Date: Date: M. M. M. M. M. M. M. Date: Date: M. M. M. M. M. M. M. M. Date: Date: $[125^{-1}]_{2}$ d by: Date: Time: Received by: M. M. M. M. M. M. M. M. Date: Date: $[125^{-1}]_{2}$ d by: Date: Time: Received by: M. M. M. M. M. M. M. M. Date: Date: $[125^{-1}]_{2}$ d by: Date: Time: Received by: M. M	Subcontract La	A-AI	N						180-101-081	hain of Custody	
d by:Date:Time:Ime:Received by: \mathcal{M} \mathcal{M} Date: \mathcal{O} O	Relinquished by	Mathewill.			=14:32	Received by:	SUPS			Date: C/24/	0 Time:/U/3
d by: Date: Time: Time: Date: f Instructions: PDF (Email Address: aarond@absoluteresourceassociates.com); Date: f Instruction: Fxcel File: V V ited: Poelited (48hr) 10 Business days Date needed:	Relinquished by			Time	ii	Received by:	Shind	TEM UIN		6 25	o Time: /000
Instructions: <u>PDF</u> (Email Address: aarond@absoluteresourceassociates.com; charlesl@absoluteresourceassociates.com) (Excel File: Y / N sted: Priority (24hr) Expedited (48hr) 10 Business days Date needed:	Relinquished by	<i>i</i> :	Date:	Time	ii	Received by:	,			Date:	Time:
Excel File: Y / N sted: Priority (24hr) Expedited (48hr) 10 Business days Date needed:	Reporting In	PDF	aarond@absol	uteresource	associates.com	ו; charlesl@ab	soluteresourceasso	ociates.com)		Rec	ceived on ice? N
ted: Priority (24hr) Expedited (48hr) 10 Business days										Ter	:du
Comments:	TAT Requested			iss days	Date needed:						
	Commente.										

7/10/2020

QSD-21 12/10/19 Rev2 ajd (pg 1/1)

Client: Absolute Resource Associates

Login Number: 107592 List Number: 1 Creator: Say, Thomas C

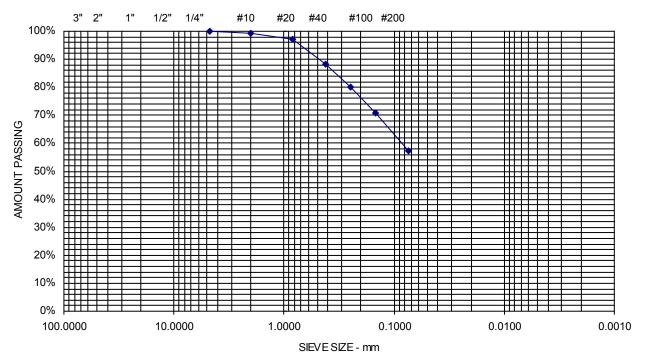
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-107592-1

List Source: Eurofins TestAmerica, Pittsburgh

Abso	luteF	Resou			K						sm		enue #16 H 03801 001						F-C							R	D			5	3	52			
11050	as	socia	te	5	15				abso	oluter			sociates.c	om								A	NA	ALY	YS	SI	RE	QL	JE	ST	1				
Company Na	me:							Pr	oject	Name	N: N	vill for	nd		Г											0									
VH	В							Pr	oject	#: C	21	633														Hardness			Iron	-		ide			0
Company Add			-									NHMA	ME VT											lor		L Ha			SILOUS	Enterococci	lenols	C Fluoride	oide		Dep
2 Bidt	Grad Fas	m Dri	ve	Rec	H-ro	1. 1	JH								A	-			int	5				Apparent Color		tals			DFe	Enter	E I		Pestic		2
Report To:R	0.0	Alabi	1			-		Ad	cred			quired? I			MADE	021V	1	st	gerpr	SIM	CB			ppare	- Acidity	TAL Metals			TOC		Po P	D Bromide	CLP	estos	10
Phone #:	Che 1	VULTI	_					- Pr	otoc		RCR MCF		WA NPD DES DOD		C 8260 MADEP	LI VOC 8021VT	au	Gases-List:	TPH Fingerprint		G08.3 Pest/PCB					100			I TON ALOC D Ferrous from	🗆 Bacteria MPN			TCLP SVOC TCLP Pesticide	□ Asbestos	nx Spille
Phone #: 603	3-391	-3993					_		eport		QAP		V-1 S-1		VOC.		1,4-Dioxane	L Gas		L EDB	08.3			Turbidity	Alkalinity	etals			010	lacter	rite	Sulfate	SVOC		-C
Invoice to:			_					- Li	mits:	1	EPA	DW Ot	ner	_		E, only	11.4-		ADEP	5			64	111	JAK	ant M			I		+ Ni		TCLP	□ Herbicides	med
Email: <u>R</u> n PO #:	ahlile	e 168.	com						NH F		Irsei	ment Pric	ina	_	8260 NHDES	LI VOC BTEX MtBE,	CR0 8015	U VOC 524.2 NH List	LI EPH MADEP	BN 🗆 625.1	Pesticides			luctivity	SVID	C Priority Pollutant Metals			DITKN		□ Nitrate + Nitrite	Chloride			10
Lab			ŝ		Matri		Pre	-	-	Meth	-	-	Sampling	-	D VOC	I VOC	C GR	1 VOC	3015	82704	\$081		Mine	Con	TS	DPri	st:	als-lis			C Sulfide	India C	D TCI	Grain	il v
Sample	Fi	eld	INEP	-		-							Sandania	œ			1.		DR0 8015		A		84	SOD			tals-li	d Met				Initrite	tals	DR.	X
ID (Lab Use Only)	1	ID	# CONTAINERS	WATER	SOLID	OTHER	HCI	*ONH	H ₂ SO4	NaOH	MeOH	DATE	TIME	SAMPLER	C VOC 8260	U VOC 624.1	D VPH MADEP	UNC 524.2		X8270PAH D 8270ABN	A 8082 PCB X 8081 Pesticides	DFAS 537.1	0&G 1664	008 D Hd D	SOT D SST D	GBCRA Metals	Total Metals-list:	Dissolved Metals-list:	ammonia	-Phosphorus	Cyanide	Corrosinity Contribution	TCLP Metals	Subcontract: AGrain Size	Total Nitroy Matrix Spike
53510-01	SED-1	3	5		×							6/23/2	0 1200	AR						X	×					X			X	2				X	X
-02	SED-1		5		X							1	1300	AR		1				X	×				1	2			x	X	1			X	X
-ozms	SED-		3		4								1300	AR						×	×				1	×									¥
-oemso	SED-	6 m50	3	-	×	-		-		-			1300	AR				1		×	×		-			X									×
-03	SED-		75		×								1250	AR						×	X					×			×	×					R C
-04	SED-1	4	-		×		l						1/60	AR						×	×					2		1	X	\times				X	×
	SED-		5		X	-							1000	AR						X	X					<			×	X				X	XL
-06	SED-	17	5	_	X		-						1600	AR	-					×	×				-	×			×	1				4	X
-07	SED-1	8	5		X	_							1500	AR						×	K				1	\times			×	×				X	K
-08	SED-1	FB.	2	4	-	-	-	K	-		_	A	1630	AR		-				×	-	-	+	-	1	×	+	-	-	-	-	+	-		
TAT REQU Priority (24 hi Expedited (44	r)* 🗆	See absolu for samp curre		eptar	nce po	licy a		SPI	ECIA	LINS	STR	UCTIO	IS									_										1			/
Standard (10 Busines *Date Neede									PDF (e-mai	l ad	dress)			-	_	_				-			_				_	-						
CLICT	ODV	Relinquist		-								/	Date	Tin			Rec	eive	d by	:											Ι	Da	te	1	Time
CUST		Relinquish	ned by	4			-						Date	Tin	_		Rec	eive	d by	: ^												Da	te	1	Time
QSD-01 Revisio	2. S	Relinquish	ned by	:								1	Date	Tin	ne		Rec	eive	dby	Lab	orat	ory:				-					1	Pa	te/		Time

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 12:00

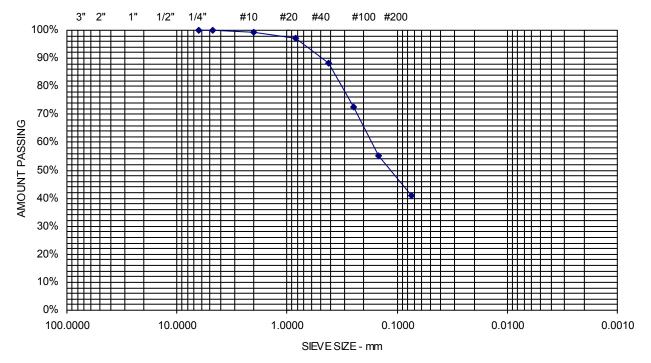
Material Source SED - 13

Project Number	20-0893
Lab ID	19870S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%	<u>)</u>
4.75 mm	No. 4	100	0% Gravel
2.00 mm	No. 10	99	
850 um	No. 20	97	
425 um	No. 40	88	42.7% Sand
250 um	No. 60	80	
150 um	No. 100	71	
75 um	No. 200	57.3	57.3% Fines

Comments:

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 11:00

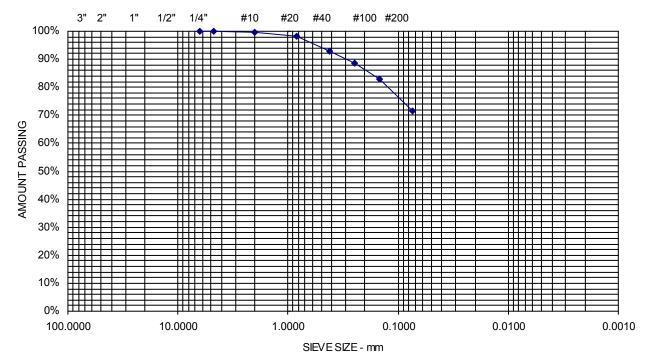
Material Source SED - 14

Project Number	20-0893
Lab ID	19871S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0.1% Gravel
2.00 mm	No. 10	99
850 um	No. 20	97
425 um	No. 40	88 58.9% Sand
250 um	No. 60	72
150 um	No. 100	55
75 um	No. 200	41.1 41.1% Fines

Comments:

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 10:00

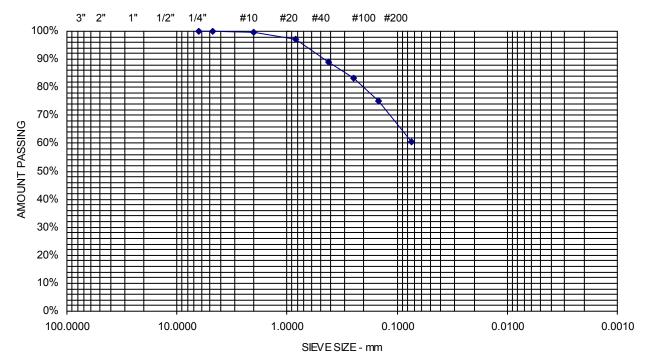
Material Source SED - 15

Project Number	20-0893
Lab ID	19872S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0.1% Gravel
2.00 mm	No. 10	100
850 um	No. 20	98
425 um	No. 40	93 28.4% Sand
250 um	No. 60	88
150 um	No. 100	83
75 um	No. 200	71.5 71.5% Fines

Comments:

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 13:00

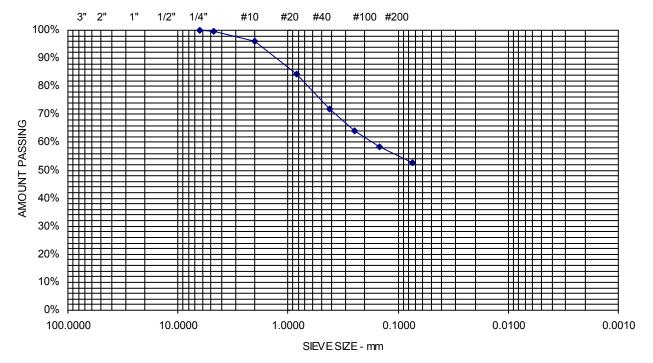
Material Source SED - 16

Project Number	20-0893
Lab ID	19873S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0.1% Gravel
2.00 mm	No. 10	100
850 um	No. 20	97
425 um	No. 40	89 39.5% Sand
250 um	No. 60	83
150 um	No. 100	75
75 um	No. 200	60.5 60.5% Fines

Comments:

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 16:00

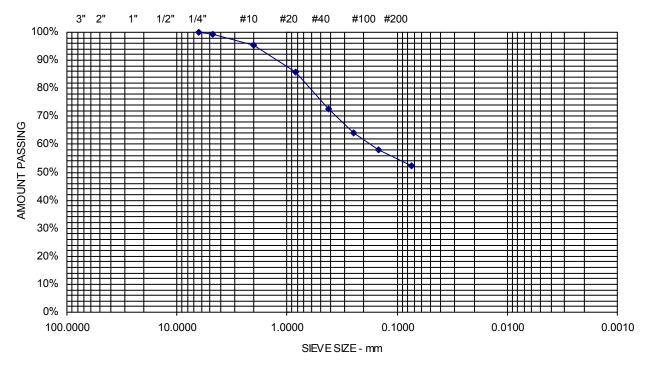
Material Source SED - 17

Project Number	20-0893
Lab ID	19874S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
6.3 mm	1/4"	100
4.75 mm	No. 4	100 0.2% Gravel
2.00 mm	No. 10	96
850 um	No. 20	84
425 um	No. 40	72 46.9% Sand
250 um	No. 60	64
150 um	No. 100	58
75 um	No. 200	52.8 52.8% Fines

Comments:

ASTM C-117 & C-136


Project Name PORTSMOUTH NH - ARA PROJECT 53510 - LAB TESTING

- Client ABSOLUTE RESOURCE ASSOCIATES
- Exploration 6/23 15:00

Material Source SED - 18

Project Number	20-0893
Lab ID	19875S
Date Received	7/1/2020
Date Completed	7/13/2020
Tested By	BRADLEY GERSCHWILER

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	99 0.7% Grave	I
2.00 mm	No. 10	95	
850 um	No. 20	86	
425 um	No. 40	73 47% Sand	
250 um	No. 60	64	
150 um	No. 100	58	
75 um	No. 200	52.3 52.3% Fines	5

Comments:

Sheet

Laboratory Report

124 Heritage Avenue Portsmouth NH 03801

Bill Arcieri Vanasse Hangen Brustlin, Inc. 6 Bedford Farms Drive Suite 607 Bedford, NH 03110

PO Number: None Job ID: 53510 Date Received: 6/23/20

Project: Mill Pond 52633

Attached please find results for the analysis of the samples received on the date referenced above.

Subcontracted analyses are provided under separate cover.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below. The reported results apply to the sample(s) in the condition as received at the time the laboratory took custody. This report shall not be reproduced except in full and with approval from the laboratory. The liability of ARA is limited to the cost of the requested analyses, unless otherwise agreed upon in writing.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

luer

Aaron DeWees Chief Operating Officer

Date of Approval: 7/10/2020 Total number of pages: 45

Absolute Resource Associates Certifications

New Hampshire 1732 Maine NH902 Massachusetts M-NH902

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SED-13	Solid	6/23/2020 12:00	53510-001	
				ABN Extractables in solids by 8270 SIM/Scan
				Arsenic in solids by 6020
				Barium in solids by 6020
				Cadmium in solids by 6020
				Chromium in solids by 6020
				Combo: RCRA 8 Metals
				Grain Size - Hydrometer (subcontract)
				Lead in solids by 6020
				Mercury in solids by 7471
				Nitrate-N in solids (NO3) by 300.0A
				Nitrite-N in solids (NO2) by 300.0A
				PCBs in solids by Soxhlet 8082
				Pesticides in solids by 8081
				Selenium in solids by 6020
				Shipping & Handling to Subcontract Lab
				Silver in solids by 6020
				Solid Digestion for ICP Analysis
				TOC in Solids by 9060A (subcontract)
				Total Kjeldahl Nitrogen in solids by ASTMD359002A
				Total Nitrogen (NO2 + NO3 + TKN)
				Total Phosphate in solids by 365.3
SED-16	Solid	6/23/2020 13:00	53510-002	
	Colla	0/23/2020 13.00	33310-002	ABN Extractables in solids by 8270 SIM/Scan
				Arsenic in solids by 6020
				Barium in solids by 6020
				Cadmium in solids by 6020
				Chromium in solids by 6020
				Combo: RCRA 8 Metals
				Field Specified Laboratory Duplicate
				Field Specified Matrix Spike
				Grain Size - Hydrometer (subcontract)
				Lead in solids by 6020
				Lead in solids by 6020 Mercury in solids by 7471
				Mercury in solids by 7471
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020 Silver in solids by 6020
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020 Silver in solids by 6020 Solid Digestion for ICP Analysis
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020 Silver in solids by 6020 Solid Digestion for ICP Analysis TOC in Solids by 9060A (subcontract)
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020 Silver in solids by 6020 Solid Digestion for ICP Analysis TOC in Solids by 9060A (subcontract) Total Kjeldahl Nitrogen in solids by ASTMD359002A
				Mercury in solids by 7471 Nitrate-N in solids (NO3) by 300.0A Nitrite-N in solids (NO2) by 300.0A PCBs in solids by Soxhlet 8082 Pesticides in solids by 8081 Selenium in solids by 6020 Silver in solids by 6020 Solid Digestion for ICP Analysis TOC in Solids by 9060A (subcontract)

s by 8270 SIM/Scan 20 020 by 300.0A by 300.0A t 8082 81 20 nalysis (subcontract)
20 020 by 300.0A by 300.0A t 8082 81 20 nalysis
20 020 by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A by 300.0A t 8082 81 20 nalysis
by 300.0A t 8082 81 20 nalysis
t 8082 81 20 nalysis
t 8082 81 20 nalysis
81 20 nalysis
20 nalysis
nalysis
-
-
solids by ASTMD359002A
03 + TKN)
by 365.3
s by 8270 SIM/Scan
-
20
020
(subcontract)
, , , , , , , , , , , , , , , , , , ,
by 300.0A
by 300.0A
t 8082
81
20
nalysis
(subcontract)
solids by ASTMD359002A
03 + TKN)
by 365.3

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SED-15	Solid	6/23/2020 10:00	53510-005	
				ABN Extractables in solids by 8270 SIM/Scan
				Arsenic in solids by 6020
				Barium in solids by 6020
				Cadmium in solids by 6020
				Chromium in solids by 6020
				Combo: RCRA 8 Metals
				Grain Size - Hydrometer (subcontract)
				Lead in solids by 6020
				Mercury in solids by 7471
				Nitrate-N in solids (NO3) by 300.0A
				Nitrite-N in solids (NO2) by 300.0A
				PCBs in solids by Soxhlet 8082
				Pesticides in solids by 8081
				Selenium in solids by 6020
				Silver in solids by 6020
				Solid Digestion for ICP Analysis
				TOC in Solids by 9060A (subcontract)
				Total Kjeldahl Nitrogen in solids by ASTMD359002A
				Total Nitrogen (NO2 + NO3 + TKN)
				Total Phosphate in solids by 365.3
SED-17	Solid	6/23/2020 16:00	53510-006	
		0,20,2020 10.000		ABN Extractables in solids by 8270 SIM/Scan
				Arsenic in solids by 6020
				Barium in solids by 6020
				Cadmium in solids by 6020
				Chromium in solids by 6020
				Combo: RCRA 8 Metals
				Grain Size - Hydrometer (subcontract)
				Lead in solids by 6020
				Mercury in solids by 7471
				Nitrate-N in solids (NO3) by 300.0A
				Nitrite-N in solids (NO2) by 300.0A
				PCBs in solids by Soxhlet 8082
				Pesticides in solids by 8081
				Selenium in solids by 6020
				Silver in solids by 6020
				Solid Digestion for ICP Analysis
				TOC in Solids by 9060A (subcontract)
				Total Kjeldahl Nitrogen in solids by ASTMD359002A
				Total Nitrogen (NO2 + NO3 + TKN)

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
SED-18	Solid	6/23/2020 15:00	53510-007	
				ABN Extractables in solids by 8270 SIM/Scan
				Arsenic in solids by 6020
				Barium in solids by 6020
				Cadmium in solids by 6020
				Chromium in solids by 6020
				Combo: RCRA 8 Metals
				Grain Size - Hydrometer (subcontract)
				Lead in solids by 6020
				Mercury in solids by 7471
				Nitrate-N in solids (NO3) by 300.0A
				Nitrite-N in solids (NO2) by 300.0A
				PCBs in solids by Soxhlet 8082
				Pesticides in solids by 8081
				Selenium in solids by 6020
				Silver in solids by 6020
				Solid Digestion for ICP Analysis
				TOC in Solids by 9060A (subcontract)
				Total Kjeldahl Nitrogen in solids by ASTMD359002A
				Total Nitrogen (NO2 + NO3 + TKN)
				Total Phosphate in solids by 365.3
SED-FB	Water	6/23/2020 16:30	53510-008	
				Arsenic in water by 6020
				Barium in water by 6020
				Cadmium in water by 6020
				Chromium in water by 6020
				Combo: RCRA 8 Metals
				Lead in water by 6020
				Mercury in water by 7470
				PAHs in water by 8270SIM
				Selenium in water by 6020
				Silver in water by 6020
				Water Digestion for ICP Analysis

Job ID: 53510

Sample#: 53510-001

Sample ID: SED-13 Matrix: Solid

Percent Dry: 33.3% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:00		Reporting		nstr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	t Date	Batch	Date	Time	Reference
naphthalene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
2-methylnaphthalene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
acenaphthylene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
acenaphthene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
dibenzofuran (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
fluorene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
phenanthrene (SIM)	0.022	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
anthracene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
fluoranthene (SIM)	0.040	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
pyrene (SIM)	0.040	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
benzo(a)anthracene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
chrysene (SIM)	0.015	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.015	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
benzo(k)fluoranthene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
benzo(a)pyrene (SIM)	0.027	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
benzo(g,h,i)perylene (SIM)	< 0.014	0.014	ug/g	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	70	35-114	%	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
2-fluorobiphenyl SUR	77	43-116	%	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E
p-terphenyl-D14 SUR	81	33-141	%	1	CL	6/25/20	12899	6/29/20	18:45	SW3546/8270E

Job ID: 53510

Sample#: 53510-002

Sample ID: SED-16 Matrix: Solid

Percent Dry: 35.6% Results expressed on a dry weight basis.

Sampled: 6/23/20 13:00		Reporting		Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analys	st Date	Batch	Date	Time	Reference
naphthalene (SIM)	0.055	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
2-methylnaphthalene (SIM)	0.035	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
acenaphthylene (SIM)	0.15	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
acenaphthene (SIM)	0.017	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
dibenzofuran (SIM)	0.017	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
fluorene (SIM)	0.048	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
phenanthrene (SIM)	0.60	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
anthracene (SIM)	0.14	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
fluoranthene (SIM)	1.00	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
pyrene (SIM)	0.94	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
benzo(a)anthracene (SIM)	0.34	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
chrysene (SIM)	0.50	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.44	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.44	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
benzo(a)pyrene (SIM)	0.47	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.34	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	0.11	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.38	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	65	35-114	%	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
2-fluorobiphenyl SUR	74	43-116	%	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E
p-terphenyl-D14 SUR	68	33-141	%	1	CL	6/25/20	12899	6/29/20	19:15	SW3546/8270E

Job ID: 53510

Sample#: 53510-003

Sample ID: SED-DP Matrix: Solid

Percent Dry: 33.8% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:50		Reporting	I	nstr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analys	st Date	Batch	Date	Time	Reference
naphthalene (SIM)	0.039	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
2-methylnaphthalene (SIM)	0.025	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
acenaphthylene (SIM)	0.14	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
acenaphthene (SIM)	0.015	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
dibenzofuran (SIM)	< 0.013	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
fluorene (SIM)	0.034	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
phenanthrene (SIM)	0.57	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
anthracene (SIM)	0.13	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
fluoranthene (SIM)	0.97	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
pyrene (SIM)	0.94	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
benzo(a)anthracene (SIM)	0.37	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
chrysene (SIM)	0.52	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.47	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.46	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
benzo(a)pyrene (SIM)	0.52	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.37	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	0.13	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.41	0.013	ug/g	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	69	35-114	%	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
2-fluorobiphenyl SUR	79	43-116	%	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E
p-terphenyl-D14 SUR	78	33-141	%	1	CL	6/25/20	12899	6/29/20	19:45	SW3546/8270E

Job ID: 53510

Sample#: 53510-004

Sample ID: SED-14 Matrix: Solid

Percent Dry: 37.4% Results expressed on a dry weight basis.

Sampled: 6/23/20 11:00		Reporting	I	nstr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analys	t Date	Batch	Date	Time	Reference
naphthalene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
2-methylnaphthalene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
acenaphthylene (SIM)	0.016	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
acenaphthene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
dibenzofuran (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
fluorene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
phenanthrene (SIM)	0.031	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
anthracene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
fluoranthene (SIM)	0.076	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
pyrene (SIM)	0.079	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
benzo(a)anthracene (SIM)	0.039	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
chrysene (SIM)	0.042	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.046	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.048	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
benzo(a)pyrene (SIM)	0.058	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.041	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	< 0.012	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.040	0.012	ug/g	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	64	35-114	%	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
2-fluorobiphenyl SUR	74	43-116	%	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E
p-terphenyl-D14 SUR	75	33-141	%	1	CL	6/25/20	12899	6/29/20	20:15	SW3546/8270E

Job ID: 53510

Sample#: 53510-005

Sample ID: SED-15 Matrix: Solid

Percent Dry: 45.1% Results expressed on a dry weight basis.

Sampled: 6/23/20 10:00		Reporting	I	Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analys	st Date	Batch	Date	Time	Reference
naphthalene (SIM)	0.050	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
2-methylnaphthalene (SIM)	0.034	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
acenaphthylene (SIM)	0.17	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
acenaphthene (SIM)	0.023	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
dibenzofuran (SIM)	0.021	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
fluorene (SIM)	0.055	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
phenanthrene (SIM)	0.72	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
anthracene (SIM)	0.15	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
fluoranthene (SIM)	1.1	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
pyrene (SIM)	1.1	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
benzo(a)anthracene (SIM)	0.40	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
chrysene (SIM)	0.55	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.49	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.48	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
benzo(a)pyrene (SIM)	0.54	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.38	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	0.12	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.42	0.010	ug/g	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	66	35-114	%	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
2-fluorobiphenyl SUR	77	43-116	%	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E
p-terphenyl-D14 SUR	81	33-141	%	1	CL	6/25/20	12899	6/29/20	21:16	SW3546/8270E

Job ID: 53510

Sample#: 53510-006

Sample ID: SED-17

Matrix: Solid Percent Dry: 39% Results expressed on a dry weight basis.

Sampled: 6/23/20 16:00		Reporting	1	nstr Dil'n		Prep	Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date Batch		Time	Reference
naphthalene (SIM)	< 0.012	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
2-methylnaphthalene (SIM)	< 0.012	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
acenaphthylene (SIM)	0.025	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
acenaphthene (SIM)	< 0.012	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
dibenzofuran (SIM)	< 0.012	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
fluorene (SIM)	< 0.012	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
phenanthrene (SIM)	0.10	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
anthracene (SIM)	0.028	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
fluoranthene (SIM)	0.26	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
pyrene (SIM)	0.27	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
benzo(a)anthracene (SIM)	0.11	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
chrysene (SIM)	0.14	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.16	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.13	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
benzo(a)pyrene (SIM)	0.17	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.12	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	0.039	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.13	0.012	ug/g	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
Surrogate Recovery		Limits	6						
nitrobenzene-D5 SUR	62	35-114	%	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
2-fluorobiphenyl SUR	71	43-116	%	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E
p-terphenyl-D14 SUR	70	33-141	%	1	CL 6/2	25/20 12899	6/29/20	20:45	SW3546/8270E

Job ID: 53510

Sample#: 53510-007

Sample ID: SED-18 Matrix: Solid

Percent Dry: 43% Results expressed on a dry weight basis.

Sampled: 6/23/20 15:00		Reporting	I	nstr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
naphthalene (SIM)	0.012	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
2-methylnaphthalene (SIM)	< 0.011	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
acenaphthylene (SIM)	0.067	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
acenaphthene (SIM)	< 0.011	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
dibenzofuran (SIM)	< 0.011	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
fluorene (SIM)	< 0.011	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
phenanthrene (SIM)	0.30	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
anthracene (SIM)	0.084	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
fluoranthene (SIM)	1.1	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
pyrene (SIM)	0.95	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
benzo(a)anthracene (SIM)	0.54	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
chrysene (SIM)	0.56	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
benzo(b)fluoranthene (SIM)	0.46	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
benzo(k)fluoranthene (SIM)	0.42	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
benzo(a)pyrene (SIM)	0.51	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
indeno(1,2,3-cd)pyrene (SIM)	0.30	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
dibenzo(a,h)anthracene (SIM)	0.11	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
benzo(g,h,i)perylene (SIM)	0.27	0.011	ug/g	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
Surrogate Recovery		Limits	;							
nitrobenzene-D5 SUR	63	35-114	%	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
2-fluorobiphenyl SUR	71	43-116	%	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E
p-terphenyl-D14 SUR	73	33-141	%	1	CL 6/	/25/20	12899	6/29/20	18:15	SW3546/8270E

Job ID: 53510

Sample#: 53510-008

Sample ID: SED-FB

Matrix: Water

Sampled: 6/23/20 16:30 Reporting Prep Analysis Instr Dil'n Parameter Result Limit Units Factor Analyst Date Batch Date Time Reference 12895 6/29/20 < 0.1 0.1 CL 6/24/20 12:12 naphthalene ug/L 1 SW3510C8270E 2-methylnaphthalene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E 6/24/20 12895 6/29/20 12:12 acenaphthylene < 0.1 0.1 ug/L 1 CL SW3510C8270E acenaphthene < 0.1 0.1 ug/L CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E 1 < 0.1 6/24/20 12895 6/29/20 12:12 SW3510C8270E dibenzofuran 0.1 ug/L 1 CL fluorene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E phenanthrene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E < 0.1 0.1 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E anthracene ug/L 12:12 fluoranthene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 SW3510C8270E pyrene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E benzo(a)anthracene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E < 0.1 6/24/20 12895 6/29/20 12:12 chrysene 0.1 ug/L 1 CL SW3510C8270E benzo(b)fluoranthene < 0.1 0.1 ug/L CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E 1 benzo(k)fluoranthene < 0.1 0.1 ug/L 1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E < 0.1 0.1 CL 6/24/20 12895 6/29/20 12:12 SW3510C8270E benzo(a)pyrene ug/L 1 12895 6/29/20 indeno(1,2,3-cd)pyrene < 0.1 0.1 ug/L CL 6/24/20 12:12 SW3510C8270E 1 < 0.1 0.1 1 CL 6/24/20 12895 6/29/20 12:12 dibenzo(a,h)anthracene ug/L SW3510C8270E 6/24/20 benzo(g,h,i)perylene < 0.1 0.1 ug/L 1 CL 12895 6/29/20 12:12 SW3510C8270E Surrogate Recovery Limits 43-116 % SW3510C8270E 2-fluorobiphenyl SUR 70 1 CL 6/24/20 12895 6/29/20 12:12 o-terphenyl SUR % 1 CL 12895 6/29/20 12:12 SW3510C8270E 79 33-141 6/24/20

Job ID: 53510

Sample#: 53510-001

```
Sample ID: SED-13
```

Matrix: Solid Percent Dry: 33.3% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:00		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	< 7.5	7.5	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Barium	110	15	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Cadmium	< 1.5	1.5	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Chromium	39	15	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Lead	17	7.5	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Mercury	< 0.083	0.083	ug/g	1	EEB 7/8/20	12925	7/9/20	10:37	SW7471B
Selenium	< 15	15	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A
Silver	< 0.30	0.30	ug/g	5	EEB 6/25/20	12903	6/26/20	1:25	SW3051A6020A

Sample#: 53510-002

Sample ID: SED-16

Matrix: Solid Percent Dry: 35.6% Results expressed on a dry weight basis.

Sampled: 6/23/20 13:00	F	Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	13 M	6.3	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
M = The recovery for the m	atrix spike	was 73%.	The a	cceptance	criteria is 75-125	%.			
Barium	120	13	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
Cadmium	< 1.3	1.3	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
Chromium	32	13	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
Lead	59	6.3	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
Mercury	1.1	0.075	ug/g	1	EEB 7/8/20	12925	7/9/20	10:39	SW7471B
Selenium	< 13M	13	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A
M = The recovery for the m	atrix spike	was 67%.	The a	cceptance	criteria is 75-125	5%.			
Silver	0.89	0.25	ug/g	5	EEB 6/25/20	12903	6/26/20	1:33	SW3051A6020A

Sample#: 53510-003

Sample ID: SED-DP

Matrix: Solid

Percent Dry: 33.8% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:50		Reporting		Instr Dil'n	Prep		Analysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch D	ate Time	Reference
Arsenic	15	7.1	ug/g	5	EEB 6/25/20	12903 6/2	9/20 21:09	SW3051A6020A
Barium	130	14	ug/g	5	EEB 6/25/20	12903 6/2	6/20 1:58	SW3051A6020A
Cadmium	2.1	1.4	ug/g	5	EEB 6/25/20	12903 6/2	6/20 1:58	SW3051A6020A
Chromium	37	14	ug/g	5	EEB 6/25/20	12903 6/2	9/20 21:09	SW3051A6020A
Lead	68	7.1	ug/g	5	EEB 6/25/20	12903 6/2	6/20 1:58	SW3051A6020A
Mercury	1.2	0.11	ug/g	1	EEB 7/8/20	12925 7/9	20 10:45	SW7471B
Selenium	< 14	14	ug/g	5	EEB 6/25/20	12903 6/2	9/20 21:09	SW3051A6020A
Silver	1.6	0.28	ug/g	5	EEB 6/25/20	12903 6/2	6/20 1:58	SW3051A6020A

Job ID: 53510

Sample#: 53510-004

```
Sample ID: SED-14
```

Matrix: Solid Percent Dry: 37.4% Results expressed on a dry weight basis.

Sampled: 6/23/20 11:00		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	8.9	6.2	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Barium	110	12	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Cadmium	< 1.2	1.2	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Chromium	30	12	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Lead	18	6.2	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Mercury	< 0.085	0.085	ug/g	1	EEB 7/8/20	12925	7/9/20	10:46	SW7471B
Selenium	< 12	12	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A
Silver	< 0.25	0.25	ug/g	5	EEB 6/25/20	12903	6/26/20	2:31	SW3051A6020A

Sample#: 53510-005

Sample ID: SED-15 Matrix: Solid

Percent Dry: 45.1% Results expressed on a dry weight basis.

Sampled: 6/23/20 10:00		Reporting		Instr Dil'n	Prep		Analy	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	13	5.4	ug/g	5	EEB 6/25/20	12903	6/26/20	2:40	SW3051A6020A
Barium	120	11	ug/g	5	EEB 6/25/20	12903	6/26/20	2:40	SW3051A6020A
Cadmium	< 1.1	1.1	ug/g	5	EEB 6/25/20	12903 (6/26/20	2:40	SW3051A6020A
Chromium	33	11	ug/g	5	EEB 6/25/20	12903	6/26/20	2:40	SW3051A6020A
Lead	71	5.4	ug/g	5	EEB 6/25/20	12903 (6/26/20	2:40	SW3051A6020A
Mercury	1.4	0.077	ug/g	1	EEB 7/8/20	12925	7/9/20	10:48	SW7471B
Selenium	< 11	11	ug/g	5	EEB 6/25/20	12903	6/26/20	2:40	SW3051A6020A
Silver	1.3	0.22	ug/g	5	EEB 6/25/20	12903 (6/26/20	2:40	SW3051A6020A

Sample#: 53510-006

```
Sample ID: SED-17
```

Matrix: Solid

Percent Dry: 39% Results expressed on a dry weight basis.

Sampled: 6/23/20 16:00		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	12	6.4	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Barium	47	13	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Cadmium	< 1.3	1.3	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Chromium	73	13	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Lead	43	6.4	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Mercury	0.33	0.089	ug/g	1	EEB 7/8/20	12925	7/9/20	10:50	SW7471B
Selenium	< 13	13	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A
Silver	0.46	0.26	ug/g	5	EEB 6/25/20	12903	6/26/20	2:48	SW3051A6020A

Job ID: 53510

Sample#: 53510-007

```
Sample ID: SED-18
```

Matrix: Solid Percent Dry: 43% Results expressed on a dry weight basis.

Sampled: 6/23/20 15:00		Reporting		Instr Dil'n	Prep	Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	10	5.3	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Barium	48	11	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Cadmium	< 1.1	1.1	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Chromium	76	11	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Lead	44	5.3	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Mercury	0.47	0.064	ug/g	1	EEB 7/8/20	12925 7/9/20	10:52	SW7471B
Selenium	< 11	11	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A
Silver	0.52	0.21	ug/g	5	EEB 6/25/20	12903 6/26/20	2:56	SW3051A6020A

Sample#: 53510-008

Sample ID: SED-FB

Matrix: Water

Sampled: 6/23/20	16:30	Reporting		Instr Dil'n	Prep	Ai	nalysis	
Parameter	Res	ult Limit	Units	Factor	Analyst Date	Batch Date	Time	Reference
Arsenic	< 0.005	0 0.0050	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Barium	< 0.01	0 0.010	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Cadmium	< 0.001	0 0.0010	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Chromium	< 0.01	0 0.010	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Lead	< 0.005	0 0.0050	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Mercury	< 0.0002	0 0.00020	mg/L	1	EEB 7/1/20	12911 7/1/20	14:27	SW7470A
Selenium	< 0.01	0 0.010	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A
Silver	< 0.005	0 0.0050	mg/L	1	EEB 6/25/20	12902 6/26/2	0 0:51	SW3005A6020A

Project ID: Mill Pond 52633									
Job ID : 53510									
Sample#: 53510-001									
Sample ID: SED-13									
•	nt Dry: 33.	3% Resul	ts exp	ressed on	a drv we	eiaht h	asis		
Sampled: 6/23/20 12:00	-		to onp		a diy m	-			
Parameter	Result	Reporting Limit	Units	Instr Dil'n Factor	Analyst	Prep Date	Anal Batch Date	Time	Reference
Nitrate-N	< 3.0	3.0	ug/g	1	DBV	Duto	2002766 6/26/20	17:17	E300.0A
Nitrite-N	< 3.0	3.0	ug/g	1	DBV		2002766 6/26/20	17:17	E300.0A
Nitrogen, total	5000	270	ug/g	1			2002858		CALC
Total Kjeldahl Nitrogen (TKN)	5000	270	ug/g	1	WAS		2002784 7/2/20	4:30	ASTMD359002A
Total Phosphorus as P	1500	140	ug/g	10	SFM		2002795 7/1/20	10:50	E365.3
S ame 1.4, 52540.000									
Sample#: 53510-002 Sample ID: SED-16									
•	at Dm // 25		to 0.00	waaaad aw	a da uu	aladat k			
	nt Dry: 35.		is exp		a ury we	•			
Sampled: 6/23/20 13:00		Reporting	11	Instr Dil'n	Analyst	Prep	Anal		Deferrer
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time 17:33	Reference
Nitrate-N Nitrite-N	< 2.8	2.8	ug/g	1	DBV		2002766 6/26/20		E300.0A
Nitrogen, total	< 2.8 3400	2.8 280	ug/g ug/g	1 1	DBV		2002766 6/26/20 2002858	17:33	E300.0A CALC
Total Kjeldahl Nitrogen (TKN)	3400D	280	ug/g ug/g	1	WAS		2002030	4:30	ASTMD359002A
D = The RPD between the							2002104 112120	4.00	AO I MESSSOUZA
Total Phosphorus as P	1100	130	ug/g	10	SFM		2002795 7/1/20	10:50	E365.3
Sample#: 53510-003									
Sample ID: SED-DP				_	_				
	nt Dry: 33.	8% Resul	ts exp	ressed on	a dry we	eight k	asis.		
Sampled: 6/23/20 12:50		Reporting		Instr Dil'n		Prep	Anal	.	
Parameter	Result	Limit	Units		Analyst	Date	Batch Date	Time	Reference
Nitrate-N	< 3.0	3.0	ug/g	1	DBV		2002766 6/26/20	17:50	E300.0A
Nitrite-N	< 3.0	3.0	ug/g	1	DBV		2002766 6/26/20	17:50	E300.0A
Nitrogen, total	3200	270	ug/g	1			2002858	4.20	CALC
Total Kjeldahl Nitrogen (TKN) Total Phosphorus as P	3200 1000	270 120	ug/g	1 10	WAS SFM		2002784 7/2/20 2002795 7/1/20	4:30 10:50	ASTMD359002A E365.3
Total Phospholus as P	1000	120	ug/g	10	SEIVI		2002795 771/20	10.50	E305.5
Sample#: 53510-004									
Sample ID: SED-14									
Matrix: Solid Percer	nt Dry: 37.	4% Resul	ts exp	ressed on	a dry we	eight k	asis.		
Sampled: 6/23/20 11:00		Reporting		Instr Dil'n		Prep	Anal	ysis	
Parameter	Result	Limit	Units		Analyst	•	Batch Date	Time	Reference
Nitrate-N	< 2.7	2.7	ug/g	1	DBV		2002766 6/26/20	18:06	E300.0A
Nitrite-N	< 2.7	2.7	ug/g	1	DBV		2002766 6/26/20	18:06	E300.0A
Nitrogen, total	4200	220	ug/g	1			2002858		CALC
Total Kjeldahl Nitrogen (TKN)	4200	220	ug/g	1	WAS		2002784 7/2/20	4:30	ASTMD359002A
Total Phosphorus as P	540	110	ug/g	10	SFM		2002795 7/1/20	10:50	E365.3

Job ID: 53510

Sample#: 53510-005

Sample ID: SED-15

Matrix: Solid Percent Dry: 45.1% Results expressed on a dry weight basis.

Sampled: 6/23/20 10:00		Reporting	I	nstr Dil'n		Prep	А	nalysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch Date	Time	Reference
Nitrate-N	< 2.2	2.2	ug/g	1	DBV		2002766 6/26/2	18:23	E300.0A
Nitrite-N	< 2.2	2.2	ug/g	1	DBV		2002766 6/26/2	18:23	E300.0A
Nitrogen, total	1600	220	ug/g	1			2002858		CALC
Total Kjeldahl Nitrogen (TKN)	1600	220	ug/g	1	WAS		2002784 7/2/20	4:30	ASTMD359002A
Total Phosphorus as P	910	110	ug/g	10	SFM		2002795 7/1/20	10:50	E365.3

Sample#: 53510-006

Sample ID: SED-17

Matrix: Solid Percent Dry: 39% Results expressed on a dry weight basis.

Sampled: 6/23/20 16:00		Reporting		nstr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Nitrate-N	< 2.7	2.7	ug/g	1	DBV		2002766 6	6/26/20	18:39	E300.0A
Nitrite-N	< 2.7	2.7	ug/g	1	DBV		2002766 6	6/26/20	18:39	E300.0A
Nitrogen, total	2500	210	ug/g	1			2002858			CALC
Total Kjeldahl Nitrogen (TKN)	2500	210	ug/g	1	WAS		2002784 7	7/2/20	4:30	ASTMD359002A
Total Phosphorus as P	780	110	ug/g	10	SFM		2002795 7	7/1/20	10:50	E365.3

Sample#: 53510-007

Sample ID: SED-18

Matrix: Solid

Percent Dry: 43% Results expressed on a dry weight basis.

Sampled: 6/23/20 15:00		Reporting		Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Nitrate-N	< 2.3	2.3	ug/g	1	DBV		2002766	6/26/20	20:49	E300.0A
Nitrite-N	< 2.3	2.3	ug/g	1	DBV		2002766	6/26/20	20:49	E300.0A
Nitrogen, total	2400	190	ug/g	1			2002858			CALC
Total Kjeldahl Nitrogen (TKN)	2400	190	ug/g	1	WAS		2002784	7/2/20	4:30	ASTMD359002A
Total Phosphorus as P	790	120	ug/g	10	SFM		2002795	7/1/20	10:50	E365.3

Job ID: 53510

Sample#: 53510-001

Sample ID: SED-13 Matrix: Solid

Percent Dry: 33.3% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:00

		Reportin	g		Instr Dil'r	ı	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	U	0.11	0.0085	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
beta-BHC	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
delta-BHC	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
gamma-BHC (Lindane)	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Heptachlor	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Aldrin	U	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Heptachlor Epoxide	U	0.11	0.020	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endosulfan I	U	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Dieldrin	U	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
4,4'-DDE	U	0.11	0.020	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endrin	U	0.11	0.020	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endosulfan II	U	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
4,4'-DDD	U	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endosulfan Sulfate	U	0.11	0.0085	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
4,4'-DDT	U	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Methoxychlor	U	0.11	0.031	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endrin Ketone	U	0.11	0.020	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Endrin Aldehyde	U	0.11	0.043	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
alpha-Chlordane	U	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
gamma-Chlordane	U	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Toxaphene	U	0.57	0.11	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
Surrogate Recovery		Limits	6								
tetrachloro-m-xylene SUR	44	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B
decachlorobiphenyl SUR	53	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	13:06 SW3546/8081B

Job ID: 53510

Sample#: 53510-002

Sample ID: SED-16 Matrix: Solid

Percent Dry: 35.6% Results expressed on a dry weight basis.

Sampled: 6/23/20 13:00

		Reportin	g		Instr Dil'r	ı	Pre	эp		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	UΜ	0.11	0.0083	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
beta-BHC	UΜ	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
delta-BHC	UΜ	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
gamma-BHC (Lindane)	UΜ	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Heptachlor	UΜ	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Aldrin	UΜ	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Heptachlor Epoxide	UΜ	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endosulfan I	UΜ	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Dieldrin	UΜ	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
4,4'-DDE	UΜ	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endrin	UΜ	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endosulfan II	UΜ	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
4,4'-DDD	UΜ	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endosulfan Sulfate	UΜ	0.11	0.0083	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
4,4'-DDT	UΜ	0.11	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Methoxychlor	UΜ	0.11	0.031	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endrin Ketone	UΜ	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Endrin Aldehyde	UΜ	0.11	0.042	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
alpha-Chlordane	UΜ	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
gamma-Chlordane	UΜ	0.11	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Toxaphene	U	0.55	0.11	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
Surrogate Recovery		Limits	5								
tetrachloro-m-xylene SUR	53	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B
decachlorobiphenyl SUR	54	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	14:10 SW3546/8081B

M = *The percent recovery and/or RPD for the MS/D was outside acceptance criteria.* See case narrative.

Job ID: 53510

Sample#: 53510-003

Sample ID: SED-DP Matrix: Solid

Percent Dry: 33.8% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:50

-		Reportin	g		Instr Dil'r	ı	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	U	0.11	0.0080	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
beta-BHC	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
delta-BHC	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
gamma-BHC (Lindane)	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Heptachlor	U	0.11	0.011	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Aldrin	U	0.11	0.013	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Heptachlor Epoxide	U	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endosulfan I	U	0.11	0.013	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Dieldrin	U	0.11	0.013	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
4,4'-DDE	U	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endrin	U	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endosulfan II	U	0.11	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
4,4'-DDD	0.02 J	0.11	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endosulfan Sulfate	U	0.11	0.0080	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
4,4'-DDT	U	0.11	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Methoxychlor	U	0.11	0.029	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endrin Ketone	U	0.11	0.019	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Endrin Aldehyde	U	0.11	0.040	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
alpha-Chlordane	U	0.11	0.013	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
gamma-Chlordane	U	0.11	0.013	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Toxaphene	U	0.54	0.11	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
Surrogate Recovery		Limits	5								
tetrachloro-m-xylene SUR	48	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B
decachlorobiphenyl SUR	53	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	14:48 SW3546/8081B

Job ID: 53510

Sample#: 53510-004

Sample ID: SED-14 Matrix: Solid

Percent Dry: 37.4% Results expressed on a dry weight basis.

Sampled: 6/23/20 11:00

		Reportin	g		Instr Dil'r	n	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	U	0.098	0.0074	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
beta-BHC	U	0.098	0.0098	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
delta-BHC	U	0.098	0.0098	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
gamma-BHC (Lindane)	U	0.098	0.0098	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Heptachlor	U	0.098	0.0098	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Aldrin	U	0.098	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Heptachlor Epoxide	U	0.098	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endosulfan I	U	0.098	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Dieldrin	U	0.098	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
4,4'-DDE	U	0.098	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endrin	U	0.098	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endosulfan II	U	0.098	0.015	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
4,4'-DDD	U	0.098	0.015	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endosulfan Sulfate	U	0.098	0.0074	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
4,4'-DDT	U	0.098	0.015	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Methoxychlor	U	0.098	0.027	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endrin Ketone	U	0.098	0.017	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Endrin Aldehyde	U	0.098	0.037	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
alpha-Chlordane	U	0.098	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
gamma-Chlordane	U	0.098	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Toxaphene	U	0.49	0.098	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B
Surrogate Recovery		Limits	5								
tetrachloro-m-xylene SUR	41	30-150		%	1	ACA	6/23/20		12890	6/25/20	13:19 SW3546/8081B
decachlorobiphenyl SUR	49	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	13:19 SW3546/8081B

Job ID: 53510

Sample#: 53510-005

Sample ID: SED-15 Matrix: Solid

Percent Dry: 45.1% Results expressed on a dry weight basis.

Sampled: 6/23/20 10:00

		Reportin	g		Instr Dil'r	า	Pre	ep		Anal	ysis	
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time	Reference
alpha-BHC	U	0.082	0.0062	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
beta-BHC	U	0.082	0.0082	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
delta-BHC	U	0.082	0.0082	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
gamma-BHC (Lindane)	U	0.082	0.0082	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Heptachlor	U	0.082	0.0082	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Aldrin	U	0.082	0.010	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Heptachlor Epoxide	U	0.082	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endosulfan I	U	0.082	0.010	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Dieldrin	U	0.082	0.010	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
4,4'-DDE	U	0.082	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endrin	U	0.082	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endosulfan II	U	0.082	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
4,4'-DDD	U	0.082	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endosulfan Sulfate	U	0.082	0.0062	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
4,4'-DDT	U	0.082	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Methoxychlor	U	0.082	0.023	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endrin Ketone	U	0.082	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Endrin Aldehyde	U	0.082	0.031	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
alpha-Chlordane	U	0.082	0.010	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
gamma-Chlordane	U	0.082	0.010	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Toxaphene	U	0.41	0.082	ug/g	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
Surrogate Recovery		Limits	5									
tetrachloro-m-xylene SUR	40	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B
decachlorobiphenyl SUR	44	30-150		%	1	ACA	6/23/20	23:00	12890	6/25/20	13:31	SW3546/8081B

Job ID: 53510

Sample#: 53510-006

Sample ID: SED-17 Matrix: Solid

Percent Dry: 39% Results expressed on a dry weight basis.

Sampled: 6/23/20 16:00

		Reportin	g		Instr Dil'r	n	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	U	0.092	0.0069	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
beta-BHC	U	0.092	0.0092	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
delta-BHC	U	0.092	0.0092	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
gamma-BHC (Lindane)	U	0.092	0.0092	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Heptachlor	U	0.092	0.0092	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Aldrin	U	0.092	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Heptachlor Epoxide	U	0.092	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endosulfan I	U	0.092	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Dieldrin	U	0.092	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
4,4'-DDE	U	0.092	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endrin	U	0.092	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endosulfan II	U	0.092	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
4,4'-DDD	U	0.092	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endosulfan Sulfate	U	0.092	0.0069	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
4,4'-DDT	U	0.092	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Methoxychlor	U	0.092	0.025	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endrin Ketone	U	0.092	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Endrin Aldehyde	U	0.092	0.035	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
alpha-Chlordane	U	0.092	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
gamma-Chlordane	U	0.092	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Toxaphene	U	0.46	0.092	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B
Surrogate Recovery		Limits	5								
tetrachloro-m-xylene SUR	38	30-150		%	1	ACA	6/23/20		12890	6/26/20	15:15 SW3546/8081B
decachlorobiphenyl SUR	42	30-150		%	1	ACA	6/23/20	23:00	12890	6/26/20	15:15 SW3546/8081B

Job ID: 53510

Sample#: 53510-007

Sample ID: SED-18 Matrix: Solid

Percent Dry: 43% Results expressed on a dry weight basis.

Sampled: 6/23/20 15:00

		Reportin	g		Instr Dil'r	า	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
alpha-BHC	U	0.093	0.0070	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
beta-BHC	U	0.093	0.0093	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
delta-BHC	U	0.093	0.0093	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
gamma-BHC (Lindane)	U	0.093	0.0093	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Heptachlor	U	0.093	0.0093	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Aldrin	U	0.093	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Heptachlor Epoxide	U	0.093	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endosulfan I	U	0.093	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Dieldrin	U	0.093	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
4,4'-DDE	U	0.093	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endrin	U	0.093	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endosulfan II	U	0.093	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
4,4'-DDD	U	0.093	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endosulfan Sulfate	U	0.093	0.0070	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
4,4'-DDT	U	0.093	0.014	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Methoxychlor	U	0.093	0.025	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endrin Ketone	U	0.093	0.016	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Endrin Aldehyde	U	0.093	0.035	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
alpha-Chlordane	U	0.093	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
gamma-Chlordane	U	0.093	0.012	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Toxaphene	U	0.46	0.093	ug/g	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
Surrogate Recovery		Limits	6								
tetrachloro-m-xylene SUR	47	30-150		%	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B
decachlorobiphenyl SUR	47	30-150		%	1	ACA	6/23/20	23:00	12890	6/26/20	15:28 SW3546/8081B

Job ID: 53510

Sample#: 53510-001

Sample ID: SED-13 Matrix: Solid

Percent Dry: 33.3% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:00

		Reporting	J		Instr Dil'r	ı	Pre	эp		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1221	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1232	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1242	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1248	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1254	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
PCB-1260	U	0.099	0.030	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	52	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A
decachlorobiphenyl SUR	55	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	14:49 SW3540C8082A

Sam	ple#:	53510-002	2
••••	P	00010 002	

Sample ID: SED-16

Matrix: Solid

Sampled: 6/23/20 13:00

		Reporting	J		Instr Dil'r	า	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1221	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1232	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1242	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1248	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1254	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
PCB-1260	U	0.076	0.023	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	66	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A
decachlorobiphenyl SUR	69	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	15:04 SW3540C8082A

Percent Dry: 35.6% Results expressed on a dry weight basis.

Job ID: 53510

Sample#: 53510-003

Sample ID: SED-DP Matrix: Solid

Percent Dry: 33.8% Results expressed on a dry weight basis.

Sampled: 6/23/20 12:50

		Reporting	J		Instr Dil'r	า	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1221	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1232	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1242	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1248	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1254	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
PCB-1260	U	0.088	0.026	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	65	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A
decachlorobiphenyl SUR	74	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	16:36 SW3540C8082A

Sam	ple#:	53510	-004
Jain	P10// 1	00010	001

Sample ID: SED-14

Matrix: Solid

Sampled: 6/23/20 11:00

		Reporting	J		Instr Dil'n	1	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1221	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1232	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1242	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1248	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1254	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
PCB-1260	U	0.071	0.021	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	62	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A
decachlorobiphenyl SUR	73	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	16:51 SW3540C8082A

Percent Dry: 37.4% Results expressed on a dry weight basis.

Job ID: 53510

Sample#: 53510-005

Sample ID: SED-15 Matrix: Solid

Percent Dry: 45.1% Results expressed on a dry weight basis.

Sampled: 6/23/20 10:00

		Reporting	J		Instr Dil'r	า	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1221	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1232	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1242	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1248	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1254	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
PCB-1260	U	0.057	0.017	ug/g	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	69	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A
decachlorobiphenyl SUR	66	30-150		%	1	DBV	6/25/20	15:15	12900	7/1/20	17:06 SW3540C8082A

Sam	ple#:	53510-006
•••••		00010 000

Sample ID: SED-17

Matrix: Solid

Sampled: 6/23/20 16:00

		Reporting	J		Instr Dil'r	n	Pre	эp		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1221	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1232	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1242	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1248	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1254	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
PCB-1260	U	0.065	0.020	ug/g	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	55	30-150		%	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A
decachlorobiphenyl SUR	76	30-150		%	1	DBV	6/25/20	15:15	12900	7/7/20	12:44 SW3540C8082A

Percent Dry: 39% Results expressed on a dry weight basis.

Job ID: 53510

Sample#: 53510-007

Sample ID: SED-18 Matrix: Solid

Percent Dry: 43% Results expressed on a dry weight basis.

Sampled: 6/23/20 15:00

		Reporting	J		Instr Dil'r	n	Pre	ep		Anal	ysis
Parameter	Result	Limit	DL	Units	Factor	Analyst	Date	Time	Batch	Date	Time Reference
PCB-1016	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1221	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1232	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1242	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1248	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1254	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
PCB-1260	U	0.060	0.018	ug/g	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
Surrogate Recovery		Limits									
tetrachloro-m-xylene SUR	65	30-150		%	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A
decachlorobiphenyl SUR	74	30-150		%	1	DBV	6/25/20	15:15	12900	7/6/20	16:46 SW3540C8082A

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Absolute Resource

issociates

Case Narrative Lab # 53510

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, on the day of sampling at 10 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines. The reported results are calculated on a "dry weight" basis.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

No exceptions noted.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Metals: The percent recovery for arsenic and selenium in the matrix spike (53510-002) was outside the acceptance criteria of 75-125%. All other batch QC was within acceptance. Results have been qualified accordingly.

Pesticides: The matrix spike duplicate for 53510-002 did not meet the acceptance criteria for Heptachlor, 4,4'-DDT, and Methoxychlor. The relative percent difference between the matrix spike and matrix spike duplicate for sample 53510-002 was outside the acceptance criteria for all compounds. The LCS/D met the method acceptance criteria. Matrix interference suspected. Results have been qualified accordingly.

TKN: The relative percent difference between the matrix spike and matrix spike duplicate for sample 53510-002 was outside the acceptance criteria. Matrix interference suspected. Results have been qualified accordingly.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Data Qualifiers

U = This compound was analyzed for, but not detected above the associated method detection limit.

J = The analytical result was below the instrument calibration range, but above the method detection limit. The reported concentration is an estimate.

31 of 45

GLOSSARY

- %R Percent Recovery
- BLK Blank (Method Blank, Preparation Blank)
- CCB Continuing Calibration Blank
- CCV Continuing Calibration Verification
- CRM Certified Reference Material (associated with solid Metals samples)
- CRMD Certified Reference Material Duplicate (associated with solid Metals samples)
- Dil'n Dilution
- DL Detection Limit
- DUP Duplicate
- LCS Laboratory Control Sample
- LCSD Laboratory Control Sample Duplicate
- LOD Limit of Detection
- LOQ Limit of Quantitation
- MB Methanol Blank (associated with solid VOC samples)
- MLCS Methanol Laboratory Control Sample (associated with solid VOC samples)
- MLCSD Methanol Laboratory Control Sample Duplicate (associated with solid VOC samples)
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- PB Preparation Blank
- QC Quality Control
- RL Reporting Limit
- RPD Relative Percent Difference
- SUR Surrogate

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com - QC Report -

Method QC ID	Parameter	Associated Sample		Result	Units Ar	nt Added	%R	Limits	i	RPD	RPD Limi
SW3510C8270E BLK12895	naphthalene		<	0.10	ug/L						
	2-methylnaphthalene		<	0.10	ug/L						
	acenaphthylene		<	0.10	ug/L						
	acenaphthene		<	0.10	ug/L						
	dibenzofuran		<	0.10	ug/L						
	fluorene		<	0.10	ug/L						
	phenanthrene		<	0.10	ug/L						
	anthracene		<	0.10	ug/L						
	fluoranthene		<	0.10	ug/L						
	pyrene		<	0.10	ug/L						
	benzo(a)anthracene		<	0.10	ug/L						
	chrysene		<	0.10	ug/L						
	benzo(b)fluoranthene		<	0.10	ug/L						
	benzo(k)fluoranthene		<	0.10	ug/L						
	benzo(a)pyrene		<	0.10	ug/L						
	indeno(1,2,3-cd)pyrene		<	0.10	ug/L						
	dibenzo(a,h)anthracene		<	0.10	ug/L						
	benzo(g,h,i)perylene		<	0.10	ug/L						
	2-fluorobiphenyl SUR			67	%			43	116		
SW3510C8270E LCS12895	naphthalene			22	ug/L	40	55	40	140		
	2-methylnaphthalene			25	ug/L	40	62	40	140		
	acenaphthylene			27	ug/L	40	68	40	140		
	acenaphthene			27	ug/L	40	67	40	140		
	dibenzofuran			27	ug/L	40	69	40	140		
	fluorene			33	ug/L	40	82	40	140		
	phenanthrene			30	ug/L	40	74	40	140		
	anthracene			28	ug/L	40	71	40	140		
	fluoranthene			30	ug/L	40	76	40	140		
	pyrene			34	ug/L	40	85	40	140		
	benzo(a)anthracene			35	ug/L	40	86	40	140		
	chrysene			34	ug/L	40	85	40	140		
	benzo(b)fluoranthene			36	ug/L	40	89	40	140		
	benzo(k)fluoranthene			34	ug/L	40	84	40	140		
	benzo(a)pyrene			34	ug/L	40	85	40	140		
	indeno(1,2,3-cd)pyrene			32	ug/L	40	79	40	140		
	dibenzo(a,h)anthracene			31	ug/L	40	77	40	140		
	benzo(g,h,i)perylene			30	ug/L	40	76	40	140		
	2-fluorobiphenyl SUR			67	%			43	116		

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Limits		RPD	RP	D Limit
SW3510C82	70E LCSD12895	naphthalene		24	ug/L	40	59	40	140		7	20
		2-methylnaphthalene		26	ug/L	40	64	40	140		3	20
		acenaphthylene		29	ug/L	40	73	40	140		8	20
		acenaphthene		29	ug/L	40	72	40	140		7	20
		dibenzofuran		30	ug/L	40	74	40	140		8	20
		fluorene		34	ug/L	40	86	40	140		5	20
		phenanthrene		31	ug/L	40	77	40	140		4	20
		anthracene		30	ug/L	40	74	40	140		4	20
		fluoranthene		30	ug/L	40	76	40	140		0	20
		pyrene		37	ug/L	40	93	40	140		9	20
		benzo(a)anthracene		36	ug/L	40	90	40	140		4	20
		chrysene		35	ug/L	40	88	40	140		3	20
		benzo(b)fluoranthene		39	ug/L	40	96	40	140		8	20
		benzo(k)fluoranthene		34	ug/L	40	84	40	140		1	20
		benzo(a)pyrene		35	ug/L	40	87	40	140		3	20
		indeno(1,2,3-cd)pyrene		32	ug/L	40	80	40	140		1	20
		dibenzo(a,h)anthracene		31	ug/L	40	78	40	140		1	20
		benzo(g,h,i)perylene		30	ug/L	40	75	40	140		0	20
		2-fluorobiphenyl SUR		75	%			43	116			

Method QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Limits		RPD	RPD) Limit
SW3540C8082A BLK12900	PCB-1016		<	0.033	ug/g							
	PCB-1221		<	0.033	ug/g							
	PCB-1232		<	0.033	ug/g							
	PCB-1242		<	0.033	ug/g							
	PCB-1248		<	0.033	ug/g							
	PCB-1254		<	0.033	ug/g							
	PCB-1260		<	0.033	ug/g							
	tetrachloro-m-xylene SUR			66	%			30	150			
	decachlorobiphenyl SUR			69	%			30	150			
SW3540C8082A LCS12900	PCB-1016			0.29	ug/g	0.333	88	40	140			
	PCB-1221		<	0.033	ug/g							
	PCB-1232		<	0.033	ug/g							
	PCB-1242		<	0.033	ug/g							
	PCB-1248		<	0.033	ug/g							
	PCB-1254		<	0.033	ug/g							
	PCB-1260			0.30	ug/g	0.333	89	40	140			
	tetrachloro-m-xylene SUR			64	%			30	150			
	decachlorobiphenyl SUR			79	%			30	150			
SW3540C8082A LCSD12900	PCB-1016			0.30	ug/g	0.333	90	40	140		2	30
	PCB-1221		<	0.033	ug/g							
	PCB-1232		<	0.033	ug/g							
	PCB-1242		<	0.033	ug/g							
	PCB-1248		<	0.033	ug/g							
	PCB-1254		<	0.033	ug/g							
	PCB-1260			0.30	ug/g	0.333	89	40	140		0	30
	tetrachloro-m-xylene SUR			64	%			30	150			
	decachlorobiphenyl SUR			73	%			30	150			
SW3540C8082A MS12900	PCB-1016	53510-002		0.66	ug/g	0.779	85	40	140			
	PCB-1221	53510-002	<	0.078	ug/g							
	PCB-1232	53510-002	<	0.078	ug/g							
	PCB-1242	53510-002	<	0.078	ug/g							
	PCB-1248	53510-002	<	0.078	ug/g							
	PCB-1254	53510-002	<	0.078	ug/g							
	PCB-1260	53510-002		0.62	ug/g	0.779	80	40	140			
	tetrachloro-m-xylene SUR	53510-002		56	%			30	150			
	decachlorobiphenyl SUR	53510-002		61	%			30	150			
SW3540C8082A MSD12900	PCB-1016	53510-002		0.62	ug/g	0.738	84	40	140		6	30
	PCB-1221	53510-002	<	0.074	ug/g							
	PCB-1232	53510-002	<	0.074	ug/g							
	PCB-1242	53510-002	<	0.074	ug/g							
	PCB-1248	53510-002	<	0.074	ug/g							
	PCB-1254	53510-002	<	0.074	ug/g							
	PCB-1260	53510-002		0.57	ug/g	0.738	77	40	140		9	30
	tetrachloro-m-xylene SUR	53510-002		55	%			30	150			
	decachlorobiphenyl SUR	53510-002		53	%			30	150			

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Limits		RPD	RPD Limi
SW3546/8081B	BLK12890	alpha-BHC		<	0.040	ug/g						
		beta-BHC		<	0.040	ug/g						
		delta-BHC		<	0.040	ug/g						
		gamma-BHC (Lindane)		<	0.040	ug/g						
		Heptachlor		<	0.040	ug/g						
		Aldrin		<	0.040	ug/g						
		Heptachlor Epoxide		<	0.040	ug/g						
		Endosulfan I		<	0.040	ug/g						
		Dieldrin		<	0.040	ug/g						
		4,4'-DDE		<	0.040	ug/g						
		Endrin		<	0.040	ug/g						
		Endosulfan II		<	0.040	ug/g						
		4,4'-DDD		<	0.040	ug/g						
		Endosulfan Sulfate		<	0.040	ug/g						
		4,4'-DDT		<	0.040	ug/g						
		Methoxychlor		<	0.040	ug/g						
		Endrin Ketone		<	0.040	ug/g						
		Endrin Aldehyde		<	0.040	ug/g						
		alpha-Chlordane		<	0.040	ug/g						
		gamma-Chlordane		<	0.040	ug/g						
		Toxaphene		<	0.20	ug/g						
		tetrachloro-m-xylene SUR			37	%			30	150		
		decachlorobiphenyl SUR			57	%			30	150		
SW3546/8081B	LCS12890	alpha-BHC			0.19	ug/g	0.4	47	40	140		
		beta-BHC			0.20	ug/g	0.4	50	40	140		
		delta-BHC			0.21	ug/g	0.4	53	40	140		
		gamma-BHC (Lindane)			0.19	ug/g	0.4	47	40	140		
		Heptachlor			0.20	ug/g	0.4	49	40	140		
		Aldrin			0.19	ug/g	0.4	47	40	140		
		Heptachlor Epoxide			0.21	ug/g	0.4	53	40	140		
		Endosulfan I			0.21	ug/g	0.4	52	40	140		
		Dieldrin			0.22	ug/g	0.4	54	40	140		
		4,4'-DDE			0.22	ug/g	0.4	56	40	140		
		Endrin			0.23	ug/g	0.4	58	40	140		
		Endosulfan II			0.23	ug/g	0.4	56	40	140		
		4,4'-DDD			0.23	ug/g	0.4	57	40	140		
		Endosulfan Sulfate			0.24	ug/g	0.4	61	40	140		
		4,4'-DDT			0.28	ug/g	0.4	69	40	140		
		Methoxychlor			0.28	ug/g	0.4	71	40	140		
		Endrin Ketone			0.23	ug/g	0.4	58	40	140		
		Endrin Aldehyde			0.20	ug/g	0.4	51	40	140		
		alpha-Chlordane			0.21	ug/g	0.4	54	40	140		
		gamma-Chlordane			0.22	ug/g	0.4	55	40	140		
		Toxaphene		<	0.22	ug/g						
		tetrachloro-m-xylene SUR		Ì	45	ug/g %			30	150		

Method	QC ID	Parameter	Associated Sample	R	esult	Units A	Amt Added	%R	Limits		RPD	RPD Lin
SW3546/8081B	MS12890	alpha-BHC	53424-019		0.22	ug/g	0.441	49	30	150		
		beta-BHC	53424-019		0.21	ug/g	0.421	49	30	150		
		delta-BHC	53424-019		0.23	ug/g	0.441	53	30	150		
		gamma-BHC (Lindane)	53424-019		0.21	ug/g	0.441	49	30	150		
		Heptachlor	53424-019		0.23	ug/g	0.441	52	30	150		
		Aldrin	53424-019		0.22	ug/g	0.441	49	30	150		
		Heptachlor Epoxide	53424-019		0.23	ug/g	0.441	52	30	150		
		Endosulfan I	53424-019		0.23	ug/g	0.441	52	30	150		
		Dieldrin	53424-019		0.22	ug/g	0.421	53	30	150		
		4,4'-DDE	53424-019		0.26	ug/g	0.441	60	30	150		
		Endrin	53424-019		0.26	ug/g	0.441	58	30	150		
		Endosulfan II	53424-019		0.24	ug/g	0.441	54	30	150		
		4,4'-DDD	53424-019		0.24	ug/g	0.421	57	30	150		
		Endosulfan Sulfate	53424-019		0.26	ug/g	0.441	60	30	150		
		4,4'-DDT	53424-019		0.37	ug/g	0.441	70	30	150		
		Methoxychlor	53424-019		0.30	ug/g	0.441	69	30	150		
		Endrin Ketone	53424-019		0.25	ug/g	0.441	58	30	150		
		Endrin Aldehyde	53424-019		0.23	ug/g	0.441	49	30	150		
		alpha-Chlordane	53424-019		0.22	ug/g ug/g	0.441	53	30 30	150		
		gamma-Chlordane	53424-019		0.23		0.441	53	30 30	150		
		•	53424-019			ug/g	0.441	55	30	150		
		Toxaphene		<	0.22	ug/g %			20	150		
		tetrachloro-m-xylene SUR decachlorobiphenyl SUR	53424-019 53424-019		46 59	%			30 30	150		
SW3546/8081B	MS12890	alpha-BHC	53510-002		0.49	ug/g	0.97	51	30	150		
		beta-BHC	53510-002		0.46	ug/g	0.97	47	30	150		
		delta-BHC	53510-002		0.53	ug/g	0.97	55	30	150		
		gamma-BHC (Lindane)	53510-002		0.47	ug/g	0.97	49	30	150		
		Heptachlor	53510-002		0.40	ug/g	0.97	41	30	150		
		Aldrin	53510-002		0.47	ug/g	0.97	49	30	150		
		Heptachlor Epoxide	53510-002		0.53	ug/g	0.97	55	30	150		
		Endosulfan I	53510-002		0.52	ug/g	0.97	53	30	150		
		Dieldrin	53510-002		0.52	ug/g	0.97	54	30	150		
		4,4'-DDE	53510-002		0.53	ug/g	0.97	54	30	150		
		Endrin	53510-002		0.56	ug/g	0.97	58	30	150		
		Endosulfan II	53510-002		0.55	ug/g	0.97	57	30	150		
		4,4'-DDD	53510-002		0.55		0.97	64	30	150		
						ug/g						
		Endosulfan Sulfate	53510-002		0.25	ug/g	0.43	58 24	30 20	150 150		
		4,4'-DDT	53510-002		0.33	ug/g	0.97	34	30 20	150		
		Methoxychlor	53510-002		0.36	ug/g	0.97	37	30 20	150		
		Endrin Ketone	53510-002		0.47	ug/g	0.97	49 50	30	150		
		Endrin Aldehyde	53510-002		0.48	ug/g	0.97	50	30	150		
		alpha-Chlordane	53510-002		0.50	ug/g	0.97	52	30	150		
		gamma-Chlordane	53510-002		0.50	ug/g	0.97	52	30	150		
		Toxaphene	53510-002	<	0.48	ug/g						
		tetrachloro-m-xylene SUR	53510-002		52	%			30	150		
		decachlorobiphenyl SUR	53510-002		51	%			30	150		

Method	QC ID	Parameter	Associated Sample	Result	Units A	Amt Added	%R	Limits		RPD	R	PD	Limi
SW3546/8081B	MSD12890	alpha-BHC	53424-019	0.17	ug/g	0.417	41	30	150		25		30
		beta-BHC	53424-019	0.16	ug/g	0.398	40	30	150		25		30
		delta-BHC	53424-019	0.18	ug/g	0.417	44	30	150		24		30
		gamma-BHC (Lindane)	53424-019	0.17	ug/g	0.417	40	30	150		25		30
		Heptachlor	53424-019	0.18	ug/g	0.417	43	30	150		24		30
		Aldrin	53424-019	0.17	ug/g	0.417	41	30	150		24		30
		Heptachlor Epoxide	53424-019	0.18	ug/g	0.417	44	30	150		22		30
		Endosulfan I	53424-019	0.18	ug/g	0.417	44	30	150		22		30
		Dieldrin	53424-019	0.18	ug/g	0.398	44	30	150		24		30
		4,4'-DDE	53424-019	0.20	ug/g	0.417	49	30	150		26		30
		Endrin	53424-019	0.21	ug/g	0.417	50	30	150		21		30
		Endosulfan II	53424-019	0.19	ug/g	0.417	46	30	150		21		30
		4,4'-DDD	53424-019	0.19	ug/g	0.398	47	30	150		23		30
		Endosulfan Sulfate	53424-019	0.21	ug/g	0.417	51	30	150		21		30
		4,4'-DDT	53424-019	0.30	ug/g	0.417	57	30	150		21		30
		Methoxychlor	53424-019	0.24	ug/g	0.417	58	30	150		23		30
		Endrin Ketone	53424-019	0.21	ug/g	0.417	49	30	150		21		30
		Endrin Aldehyde	53424-019	0.18	ug/g	0.417	42	30	150		20		30
		alpha-Chlordane	53424-019	0.19	ug/g	0.417	44	30	150		23		30
		gamma-Chlordane	53424-019	0.18	ug/g	0.417	43	30	150		25		30
		Toxaphene	53424-019	< 0.21	ug/g		38.059						
		tetrachloro-m-xylene SUR	53424-019	38	%			30	150				
		decachlorobiphenyl SUR	53424-019	50	%			30	150				
SW3546/8081B	MSD12890	alpha-BHC	53510-002	0.33	ug/g	1.006	33	30	150		40	*	30
		beta-BHC	53510-002	0.31	ug/g	1.006	31	30	150		37	*	30
		delta-BHC	53510-002	0.36	ug/g	1.006	36	30	150		38	*	30
		gamma-BHC (Lindane)	53510-002	0.32	ug/g	1.006	32	30	150		40	*	30
		Heptachlor	53510-002	0.27	ug/g	1.006	27 *	30	150		37	*	30
		Aldrin	53510-002	0.33	ug/g	1.006	33	30	150		36	*	30
		Heptachlor Epoxide	53510-002	0.35	ug/g	1.006	35	30	150		41	*	30
		Endosulfan I	53510-002	0.35	ug/g	1.006	35	30	150		38	*	30
		Dieldrin	53510-002	0.36	ug/g	1.006	36	30	150		36	*	30
		4,4'-DDE	53510-002	0.37	ug/g	1.006	37	30	150		35	*	30
		Endrin	53510-002	0.38	ug/g	1.006	38	30	150		38	*	30
		Endosulfan II	53510-002	0.39	ug/g	1.006	38	30	150		36	*	30
		4,4'-DDD	53510-002	0.44	ug/g	1.006	43	30	150		35	*	30
		Endosulfan Sulfate	53510-002	0.39	ug/g	1.006	38	30	150		44	*	30
		4,4'-DDT	53510-002	0.23	ug/g	1.006	23 *	30	150		35	*	30
		Methoxychlor	53510-002	0.27	ug/g	1.006	26 *	30	150		31	*	30
		Endrin Ketone	53510-002	0.33	ug/g	1.006	32	30	150		37	*	30
		Endrin Aldehyde	53510-002	0.34	ug/g	1.006	33	30	150		36	*	30
		alpha-Chlordane	53510-002	0.36	ug/g	1.006	35	30	150		34	*	30
		gamma-Chlordane	53510-002	0.34	ug/g	1.006	34	30	150		38	*	30
		Toxaphene		< 0.50	ug/g				-		-		
		tetrachloro-m-xylene SUR	53510-002	32	~9 [,] 9 %			30	150				
		decachlorobiphenyl SUR	53510-002	36	%			30	150				

Method	QC ID	Parameter	Associated Sample	_	Result	Units Am	t Added	%R	Limits		RPD	RPD Limi
SW3546/8270E	BLK12899	naphthalene (SIM)		<	0.0050	ug/g						
		2-methylnaphthalene (SIM)		<	0.0050	ug/g						
		acenaphthylene (SIM)		<	0.0050	ug/g						
		acenaphthene (SIM)		<	0.0050	ug/g						
		dibenzofuran (SIM)		<	0.0050	ug/g						
		fluorene (SIM)		<	0.0050	ug/g						
		phenanthrene (SIM)		<	0.0050	ug/g						
		anthracene (SIM)		<	0.0050	ug/g						
		fluoranthene (SIM)		<	0.0050	ug/g						
		pyrene (SIM)		<	0.0050	ug/g						
		benzo(a)anthracene (SIM)		<	0.0050	ug/g						
		chrysene (SIM)		<	0.0050	ug/g						
		benzo(b)fluoranthene (SIM)		<	0.0050	ug/g						
		benzo(k)fluoranthene (SIM)		<	0.0050	ug/g						
		benzo(a)pyrene (SIM)		<	0.0050	ug/g						
		indeno(1,2,3-cd)pyrene (SIM)		<	0.0050	ug/g						
		dibenzo(a,h)anthracene (SIM))	<	0.0050	ug/g						
		benzo(g,h,i)perylene (SIM)		<	0.0050	ug/g						
		nitrobenzene-D5 SUR			61	%			35	114		
		2-fluorobiphenyl SUR			69	%			43	116		
		p-terphenyl-D14 SUR			85	%			33	141		
SW3546/8270E	LCS12899	naphthalene (SIM)			2.3	ug/g	4	57	40	140		
		2-methylnaphthalene (SIM)			2.4	ug/g	4	60	40	140		
		acenaphthylene (SIM)			2.3	ug/g	4	57	40	140		
		acenaphthene (SIM)			2.2	ug/g	4	56	40	140		
		dibenzofuran (SIM)			2.1	ug/g	4	53	40	140		
		fluorene (SIM)			2.2	ug/g	4	56	40	140		
		phenanthrene (SIM)			2.5	ug/g	4	61	40	140		
		anthracene (SIM)			2.4	ug/g	4	60	40	140		
		fluoranthene (SIM)			2.1	ug/g	4	52	40	140		
		pyrene (SIM)			2.7	ug/g	4	69	40	140		
		benzo(a)anthracene (SIM)			2.4	ug/g	4	59	40	140		
		chrysene (SIM)			2.3	ug/g	4	57	40	140		
		benzo(b)fluoranthene (SIM)			2.4	ug/g	4	61	40	140		
		benzo(k)fluoranthene (SIM)			2.3	ug/g	4	59	40	140		
		benzo(a)pyrene (SIM)			2.5	ug/g	4	63	40	140		
		indeno(1,2,3-cd)pyrene (SIM)			2.7	ug/g	4	66	40	140		
		dibenzo(a,h)anthracene (SIM))		2.6	ug/g	4	64	40	140		
		benzo(g,h,i)perylene (SIM)			2.6	ug/g	4	65	40	140		
		nitrobenzene-D5 SUR			66	%			35	114		
		2-fluorobiphenyl SUR			74	%			43	116		
		p-terphenyl-D14 SUR			88	%			33	141		

Method	QC ID	Parameter	Associated Sample	Result	Units A	mt Added	%R	Limits		RPD	RP	D Limit
SW3546/8270E	MS12899	naphthalene (SIM)	53510-002	4.8	ug/g	10.4	46	40	140			
		2-methylnaphthalene (SIM)	53510-002	5.2	ug/g	10.4	50	40	140			
		acenaphthylene (SIM)	53510-002	5.0	ug/g	10.4	47	40	140			
		acenaphthene (SIM)	53510-002	4.9	ug/g	10.4	47	40	140			
		dibenzofuran (SIM)	53510-002	4.6	ug/g	10.4	44	40	140			
		fluorene (SIM)	53510-002	5.0	ug/g	10.4	48	40	140			
		phenanthrene (SIM)	53510-002	5.7	ug/g	10.4	49	40	140			
		anthracene (SIM)	53510-002	5.1	ug/g	10.4	48	40	140			
		fluoranthene (SIM)	53510-002	5.6	ug/g	10.4	44	40	140			
		pyrene (SIM)	53510-002	5.9	ug/g	10.4	48	40	140			
		benzo(a)anthracene (SIM)	53510-002	5.0	ug/g	10.4	45	40	140			
		chrysene (SIM)	53510-002	5.0	ug/g	10.4	43	40	140			
		benzo(b)fluoranthene (SIM)	53510-002	5.2	ug/g	10.4	45	40	140			
		benzo(k)fluoranthene (SIM)	53510-002	4.9	ug/g	10.4	43	40	140			
		benzo(a)pyrene (SIM)	53510-002	5.3	ug/g	10.4	46	40	140			
		indeno(1,2,3-cd)pyrene (SIM)	53510-002	5.1	ug/g	10.4	46	40	140			
		dibenzo(a,h)anthracene (SIM)	53510-002	4.8	ug/g	10.4	45	40	140			
		benzo(g,h,i)perylene (SIM)	53510-002	5.1	ug/g	10.4	45	40	140			
		nitrobenzene-D5 SUR	53510-002	53	%			35	114			
		2-fluorobiphenyl SUR	53510-002	58	%			43	116			
		p-terphenyl-D14 SUR	53510-002	62	%			33	141			
SW3546/8270E	MSD12899	naphthalene (SIM)	53510-002	4.8	ug/g	10.2	46	40	140		1	30
		2-methylnaphthalene (SIM)	53510-002	5.3	ug/g	10.2	51	40	140		1	30
		acenaphthylene (SIM)	53510-002	5.1	ug/g	10.2	48	40	140		1	30
		acenaphthene (SIM)	53510-002	5.0	ug/g	10.2	48	40	140		1	30
		dibenzofuran (SIM)	53510-002	4.7	ug/g	10.2	46	40	140		2	30
		fluorene (SIM)	53510-002	5.1	ug/g	10.2	49	40	140		2	30
		phenanthrene (SIM)	53510-002	5.9	ug/g	10.2	51	40	140		3	30
		anthracene (SIM)	53510-002	5.4	ug/g	10.2	51	40	140		5	30
		fluoranthene (SIM)	53510-002	5.7	ug/g	10.2	46	40	140		3	30
		pyrene (SIM)	53510-002	6.1	ug/g	10.2	50	40	140		2	30
		benzo(a)anthracene (SIM)	53510-002	5.3	ug/g	10.2	48	40	140		6	30
		chrysene (SIM)	53510-002	5.3	ug/g	10.2	46	40	140		4	30
		benzo(b)fluoranthene (SIM)	53510-002	5.7	ug/g	10.2	51	40	140		9	30
		benzo(k)fluoranthene (SIM)	53510-002	5.0	ug/g	10.2	44	40	140		2	30
		benzo(a)pyrene (SIM)	53510-002	5.6	ug/g	10.2	50	40	140		6	30
		indeno(1,2,3-cd)pyrene (SIM)	53510-002	5.5	ug/g	10.2	51	40	140		7	30
		dibenzo(a,h)anthracene (SIM)		5.2	ug/g	10.2	50	40	140		8	30
		benzo(g,h,i)perylene (SIM)	53510-002	5.5	ug/g	10.2	50	40	140		7	30
		nitrobenzene-D5 SUR	53510-002	52	%			35	114			
		2-fluorobiphenyl SUR	53510-002	59	%			43	116			
		p-terphenyl-D14 SUR	53510-002	64	%			33	141			

Method QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Limits		RPD	RPD L	imit
SW3005A6020A BLK12902	Silver		<	0.0050	mg/L							
	Arsenic		<	0.0050	mg/L							
	Barium		<	0.010	mg/L							
	Cadmium		<	0.0010	mg/L							
	Chromium		<	0.010	mg/L							
	Lead		<	0.0050	mg/L							
	Selenium		<	0.010	mg/L							
SW3005A6020A DUP12902	Lead	53424-035		0.37	mg/L					2		20
SW3005A6020A LCS12902	Silver			0.25	mg/L	0.25	101	80	120			
	Arsenic			0.47	mg/L	0.5	93	80	120			
	Barium			0.50	mg/L	0.5	100	80	120			
	Cadmium			0.50	mg/L	0.5	100	80	120			
	Chromium			0.46	mg/L	0.5	92	80	120			
	Lead			0.54	mg/L	0.5	108	80	120			
	Selenium			0.45	mg/L	0.5	90	80	120			
SW3005A6020A LCSD12902	Silver			0.26	mg/L	0.25	104	80	120		3	20
	Arsenic			0.47	mg/L	0.5	94	80	120		1	20
	Barium			0.51	mg/L	0.5	103	80	120		3	20
	Cadmium			0.51	mg/L	0.5	102	80	120		2	20
	Chromium			0.46	mg/L	0.5	92	80	120		0	20
	Lead			0.55	mg/L	0.5	109	80	120		1	20
	Selenium			0.46	mg/L	0.5	92	80	120		2	20
SW3005A6020A MS12902	Lead	53424-035		5.0	mg/L	5	93	75	125			

Method C	DC ID	Parameter	Associated Sample	Result	Units	Amt Added	%R	Limit	ts	RPD	RP	D Limit
SW3051A6020A B	3LK12903	Silver		< 2.5	ug/g							
		Arsenic		< 2.5	ug/g							
		Barium		< 5.0	ug/g							
		Cadmium		< 0.50	ug/g							
		Chromium		< 5.0	ug/g							
		Lead		< 2.5	ug/g							
		Selenium		< 5.0	ug/g							
SW3051A6020A C	CRM12903	Silver		39.2	ug/g	57.3		34.6	64.3			
		Arsenic		83.2	ug/g	126		73.6	139			
		Barium		174	ug/g	223		139	245			
		Cadmium		73.4	ug/g	106		66.6	116			
		Chromium		124	ug/g	178		105	196			
		Lead		199	ug/g	248		152	273			
		Selenium		125	ug/g	196		111	217			
SW3051A6020A C	CRMD12903	Silver		38.8	ug/g	57.3		34.6	64.3		1	20
		Arsenic		82.2	ug/g	126		73.6	139		1	20
		Barium		177	ug/g	223		139	245		2	20
		Cadmium		72.4	ug/g	106		66.6	116		1	20
		Chromium		125	ug/g	178		105	196		1	20
		Lead		197	ug/g	248		152	273		1	20
		Selenium		121	ug/g	196		111	217		3	20
SW3051A6020A M	/IS12903	Silver	53510-002	310	ug/g	313	99	75	125			
		Arsenic	53510-002	470	ug/g	627	73	* 75	125			
		Barium	53510-002	830	ug/g	627	115	75	125			
		Cadmium	53510-002	600	ug/g	627	95	75	125			
		Chromium	53510-002	560	ug/g	627	83	75	125			
		Lead	53510-002	700	ug/g	627	102	75	125			
		Selenium	53510-002	420	ug/g	627	67	* 75	125			
SW3051A6020A M	/ISD12903	Silver	53510-002	280	ug/g	297	93	75	125		12	20
		Arsenic	53510-002	460	ug/g	595	75	75	125		3	20
		Barium	53510-002	720	ug/g	595	102	75	125		14	20
		Cadmium	53510-002	520	ug/g	595	87	75	125		14	20
		Chromium	53510-002	540	ug/g	595	85	75	125		3	20
		Lead	53510-002	640	ug/g	595	98	75	125		8	20
		Selenium	53510-002	400	ug/g	595	67	* 75	125		5	20
SW7470A B	3LK12911	Mercury		< 0.00020	mg/L							
SW7470A D)UP12911	Mercury	53510-008	< 0.00020	mg/L							20
SW7470A L	CS12911	Mercury		0.0022	mg/L	0.002	109	80	120			
SW7470A L	CSD12911	Mercury		0.0021	mg/L	0.002	106	80	120		2	20
SW7470A N	/IS12911	Mercury	53510-008	0.0022	mg/L	0.002	113	80	120			

Method	QC ID	Parameter	Associated Sample	Result	Units A	Amt Added	%R	Limits	6	RPD	RPD	Limit
SW7471B	BLK12925	Mercury		< 0.032	ug/g							
SW7471B	CRM12925	Mercury		0.231	ug/g	0.221		0.0908	0.351			
SW7471B	CRMD12925	Mercury		0.234	ug/g	0.221		0.0908	0.351		1	35
SW7471B	MS12925	Mercury	53510-002	1.8	ug/g	0.83	80	80	120			
SW7471B	MSD12925	Mercury	53510-002	1.7	ug/g	0.75	81	80	120		3	35

Method	QC ID	Parameter	Associated Sample		Result	Units A	Mat Added	%R	Limits		RPD	F	RPD	Limit
ASTMD359002A	A CCVB2002784	Total Kjeldahl Nitrogen (TKN)			5.1	mg/L	5	101	80	120				
ASTMD359002A	A CCVE2002784	Total Kjeldahl Nitrogen (TKN)			9.1	mg/L	10	91	80	120				
ASTMD359002A	A LCS2002784	Total Kjeldahl Nitrogen (TKN)			9.1	mg/L	10	91	80	120				
ASTMD359002A	A LCSD2002784	Total Kjeldahl Nitrogen (TKN)			9.9	mg/L	10	99	80	120		8		25
ASTMD359002A	A MS2002784	Total Kjeldahl Nitrogen (TKN)	53510-002		6100	mg/L	3125	87	80	120				
ASTMD359002A	A MSD2002784	Total Kjeldahl Nitrogen (TKN)	53510-002		8400	mg/L	4688	107	80	120		32	*	25
ASTMD359002A	A PB2002784	Total Kjeldahl Nitrogen (TKN)		<	0.5	mg/L								
E300.0A	BLK2002766	Nitrate-N		<	0.1	mg/L								
		Nitrite-N		<	0.1	mg/L								
E300.0A	DUP2002766	Nitrate-N Nitrite-N	53526-001 53526-001	<	0.1 0.1	mg/L mg/L					1			10 10
			33320-001			-								10
E300.0A	LCS2002766	Nitrate-N Nitrite-N			9.1 14	mg/L mg/L	10 15	91 94	90 90	110 110				
E300.0A	LCSD2002766	Nitrate-N			9.1	mg/L	10	91	90	110		1		10
		Nitrite-N			14	mg/L	15	94	90	110		0		10
E300.0A	MS2002766	Nitrate-N	53526-001		1.6	mg/L	1.66	88 *	90	110				
		Nitrite-N	53526-001		2.3	mg/L	2.53	91	90	110				
E365.3	LCS2002795	Total Phosphorus as P			0.24	mg/L	0.2	120	75	125				
E365.3	LCSD2002795	Total Phosphorus as P			0.20	mg/L	0.2	99	75	125		20		20
E365.3	MS2002795	Total Phosphorus as P	53605-003		0.29	mg/L	0.2	103	75	125				
E365.3	MS2002795	Total Phosphorus as P	53635-001		0.50	mg/L	0.2	104	75	125				
E365.3	MSD2002795	Total Phosphorus as P	53605-003		0.29	mg/L	0.2	103	75	125		0		10
E365.3	MSD2002795	Total Phosphorus as P	53635-001		0.49	mg/L	0.2	99	75	125		2		10
E365.3	PB2002795	Total Phosphorus as P		<	0.01	mg/L								

Abso	olute F	lesou	*	110	K	-					sm	outh		nue #16 03801 01									QL			OR	D			5	53	5	PAG		0	
11050	as	socia	te	sel	5				abso	oluter				ciates.co	om								AN	IAL	LYS	SIS	R	Q	UE	ST						
Company Na	201							Pr	oject	Name	: N	1.1)	lone	Ì		Г										92										
VH	B							Pr	oject	#: 5	21	623	2													Hardness			Iron	75		ide				0
Company Ad			-					1						IE VT										lor		DHa			C Ferrous Iron	Enterococci	renols	C Fluoride		cide		Dup
2 Bud	ford Far	m Dri.	re	Reo	4.0	1.1	JH									£.	-			int	5	1		ant Co	1	stals			D	Enter	D			Pestic		2
Report To:R	PAD 1	Jahli	-			-		Ad			RCR		SDW		E6	MAD	30211		st	dagu	SIM	2		□ Apparent Color	□ Acidity	TAL Metals			FOC		Cortho P C Phenols	D Bromide		TCLP		Spille
Phone #:	vnc ····	- 002						- Pr	otoc		MCF		NHD			8260	TV0C 8021VT	ane	Gases-List:	TPH Fingerprint		Lesu		1.000	1000				D TON SHOC	ria MF	Dor			C UTCLP		SXU
Phone #: 603	5-341-	-3993	-	_			-		porti	-	QAP		GW-			O VOC 8260 MADEP		1,4-Dioxane	L Ga		C EDB	- 000.0 FESUROD		Turbidity	C Alkalinity	Aetals			DIC	🗆 Bacteria MPN	trite	□ Sulfate				4
Invoice to:	1 2 2 1	. 10	2					-	nits:		EPA	DW	Othe	r	-		E, on	4'L C	List	ADEP			664	D Tu	DAIK	tant A			NID	1 1	N + 0			Herbicides	5	hand
Email: <u>R</u> r PO #:	ach.l.le	e 16.	com						NH F		urse	ment	Pricin	g	_	VOC 8260 NHDES	UNC BTEX MtBE, only	GR0 8015	524.2 NH List	LI EPH MADEP		Lesucine	Mineral 0&G 1664	ductivity	SVLD	C Priority Pollutant Metals		#	NATE	🗆 Bacteria P/A	□ Nitrate + Nitrite	Chloride		. 0		17
Lab			SE		Matri	x	Pre	serva	tion	Meth	od		Sa	ampling		VOC 8	DOV E		D VOC	8015	8270/	i ond	Mine	Cor	D TS	DPn	st:	als-lis	000		□ Sulfide	rite	1 Igniti	Grain	3	1× 5pi
Sample ID (Lab Use Only)		eld D	CONTAINERS	WATER	SOLID	OTHER	HCI	FUO3	H ₂ SO ₄	NaOH	MeOH	1	DATE	TIME	SAMPLER	L VOC 8260	U VOC 624.1	UPH MADEP	U VOC 524.2	TPH DR0 8015	8270PAH I 8270ABN	Monos rue Monos residues	D 0&G 1664	D PH D BOD D Conductivity		GRICRA Metals	Total Metals-list:	Dissolved Metals-list:		Phosphorus	Cyanide S	Nitrate 🗆 Nitrite	Corrosivity 🗆 Ignitibility/FP	U TCLP Metals U TCLP VO Subcontract: Seain Size	Tata	オイン
53510-01	SED-1	2	#	5	-	0	T	I	I	z	2	1	3/20		1	-	0				XY	-		0	0	X	0	0		R	0	-			14	1
	SED-1	2	5		XX	-					-	010	1 20	1200	AR						1			-	-	X			X	X			+	X	X	
-ozms	SED-1	6 ms	3		4									1300	AR						XX		1	+	1	X		-	~			+	-	F	1~	Y C
-oemso	SED-1	6.060	3		X						-			1300	AR						XX				1	X									1	XC
	SED-	and the second se	-		X									1250	AR						XY	2				X		1	×	×		1			R	1
1	SED-1		45		×									1100	AR							2		1		X			×	X				X	X	1
	SED-1		5		×						1			1000	AR						XV	<		1		×			×	X			1	×	X	1
-06	5ED -1	7	5		X									1600	AR						2	<				×			×	K				14	-	0
-07	SED-1	8	5		X									1500	AR						X	(×			×	×				×	X	1
-	SED-F		2	4		-		K					-	1630	AR						×				-	×										
TAT REQU Priority (24 h Expedited (4	r)* 🗆	See absolu for samp curre		eptan	ice po	licy a	1 C C C C C	SPI	ECIA	LINS	STR	UCT	IONS	3																				-	/	2
Standard (10 Busines *Date Neede									PDF (e-mai	il ad	dres	5)		_	_		_	_			_							_			ED O		E J	YES	
		Relinquish		-	-	-							Da		Tin		I	Rece	eiveo	by:		-		-	-			-	-		Τ	D	ate	1	Ti	ime
CUST		Relinquish	led by	1						-	-	-	(<u>23</u> Da		70 Tin	-	1	Rece	eiveo	by:	Λ	_	-		_	-					+	D	ate	1	Ti	ime
OSD-01 Revisio		Relinquish	ed by	:								-	Da	te	Tin	ne	1	Rece	eived	By	Labo	rato	ry:			-	-	-	-		1	P	ate	XI	I	

Appendix E: Natural Resource Agency Coordination

CONFIDENTIAL – NH Dept. of Environmental Services review

Memo

NH NA NHB DAT

NH NATURAL HERITAGE BUREAU NHB DATACHECK RESULTS LETTER

То:	Andrew Mahor 200 Bedford Fa Bedford, NH (arms Drive					
From:	Amy Lamb, Nl	H Natural Heritage B	ureau				
Date:	9/11/2020 (val	id for one year from the	his date)				
Re:	Review by NH	Natural Heritage Bur	reau				
	NHB File ID:	NHB20-2530	Town:	Durham		Location:	The Mill Pond Dam and its
					- 1.J		impoundment area
	Description:	This project consists	s of a feasibility	study for the	e potential removal o	f the Oyster River/Mil	ll Pond Dam in Durham, NH, and the
		impacts of a dam re	moval to the sur	rrounding im	poundment area.		
cc:	Kim Tuttle						

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments: NHB recommends surveys for the rare plant species listed below, in order to assess the current status of the populations, and the potential impacts of the drawdown on plant communities. Surveys should occur at least where plants were previously documented within Mill Pond, but preferably throughout the area of drawdown influence.

Natural Community Sparsely vegetated intertidal system	State ¹	Federal	Notes Threats to these communities are primarily alterations to the hydrology of the wetland (such as alterations that might affect the sheet flow of tidal waters across the intertidal flat) and increased input of nutrients and pollutants in storm runoff.
Plant species	State ¹	Federal	Notes
arctic bur-reed (Sparganium natans)*	T		
Beck's water-marigold (Bidens beckii)*	Т		Threats to aquatic species include changes in water quality, e.g., due to pollution and stormwater runoff, and significant changes in water level.
great bur-reed (Sparganium eurycarpum)*	Т		Threats to aquatic species include changes in water quality, e.g., due to pollution and stormwater runoff, and significant changes in water level.
ivy-leaved duckweed (Lemna trisulca)*	Е		Threats to aquatic species include changes in water quality, e.g., due to pollution and stormwater runoff, and significant changes in water level.
lake quillwort (Isoetes lacustris)*	Е	Surger Street of the local division of the l	
marsh horsetail (Equisetum palustre)*	Е		This wetland species, which occurs in marshes and wet meadows, would be

DNCR/NHB 172 Pembroke Rd. Concord, NH 03301

CONFIDENTIAL – NH Dept. of Environmental Services review

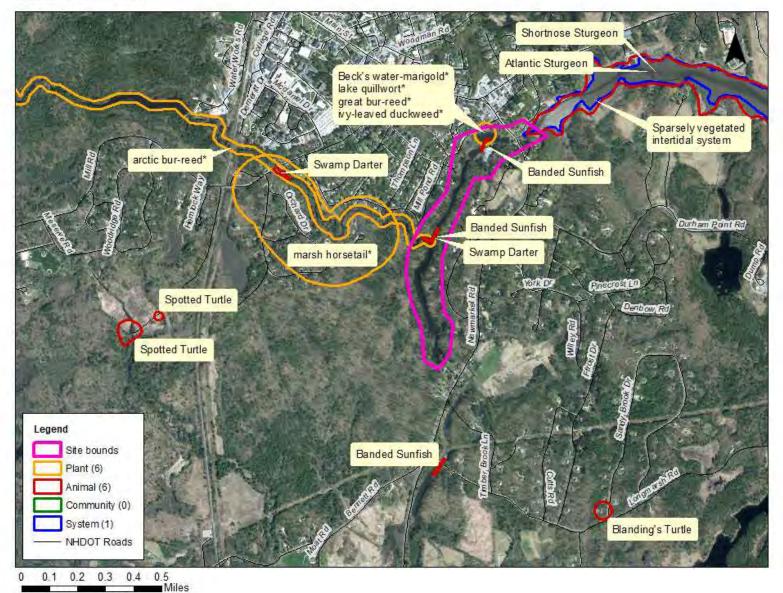
Memo

NH NATURAL HERITAGE BUREAU NHB DATACHECK RESULTS LETTER

threatened by changes to local hydrology, including increased nutrient input from stormwater runoff, and sedimentation from nearby disturbance. It also occurs on river and streambanks, where the primary threats would be direct destruction of plants or their habitat.

Vertebrate species	State ¹	Federal	Notes
Atlantic Sturgeon (Acipenser oxyrinchus)	Т	Т	Contact the NH Fish & Game Dept and the US Fish & Wildlife Service (see below).
Banded Sunfish (Enneacanthus obesus)	SC		Contact the NH Fish & Game Dept (see below).
Blanding's Turtle (Emydoidea blandingii)	Е		Contact the NH Fish & Game Dept (see below).
Shortnose Sturgeon (Acipenser brevirostrum)	Е	Е	Contact the NH Fish & Game Dept and the US Fish & Wildlife Service (see below).
Spotted Turtle (Clemmys guttata)	Т		Contact the NH Fish & Game Dept (see below).
Swamp Darter (Etheostoma fusiforme)	SC	() - 1	Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.


Contact for all animal reviews: Kim Tuttle, NH F&G, (603) 271-6544.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

CONFIDENTIAL – NH Dept. of Environmental Services review

NHB20-2530

Sparsely vegetated intertidal system

Legal Status	Conservation Status			
Federal: Not listed	Global: Not ranked (need more information)			
State: Not listed	State: Rare or uncommon			
Description at this Lo	ocation			
Conservation Rank:	Good quality, condition and landscape context ('B' on a scale of A-D).			
Comments on Rank:				
Detailed Description:	Extensive <i>intertidal flats</i> that are exposed daily at low tide, bordered in places by <i>intertidal rocky shore</i> and <i>coastal shoreline strand/swale</i> communities.			
General Area:	2010: Borders salt marsh system landward and subtidal system seaward.			
General Comments:				
Management				
Comments:				
Location				
Survey Site Name: 0	Great Bay			
Managed By: N	Moody Point Open Space			
County: Rockingha				
County: Rockingha Town(s): Newington				
Size: 3589.5 acr				
Precision: Within (but not necessarily restricted to) the area indicated on the map.				
Directions: Occurs throughout Great Bay from the mouths of its tributaries, through Little Bay, to the confluence with the Piscataqua River.				
Dates documented				
First reported: 1	997-06-23 Last reported: 2010-10-13			

arctic bur-reed (Sparganium natans)

Legal Status		Conserv	vation Status	
Federal: Not listed			Demonstrably widespread, abundant, and secure	
State: Listed Threate	ened	State:	Imperiled due to rarity or vulnerability	
Description at this Loc	ration			
	Not ranked			
Comments on Rank: -				
Detailed Description:	1965: Specimen collected.			
o enterar i near	eneral Area: 1965: In 1-18 inches of water.			
General Comments: -				
management				
Comments:				
Location				
Survey Site Name: Oy	yster River			
Managed By:				
County: Strafford				
Town(s): Durham				
Size: 64.8 acres		Elevatio	n:	
Precision: Within 1	1.5 miles of the area indicated	d on the m	ap (location information is vague or uncertain).	
Directions: 1965: O	yster River, Durham.			
Dates documented				
First reported: 19	65-10-14	Last rep	orted: 1965-10-14	
-		-		

Beck's water-marigold (Bidens beckii)

Legal Status		Conser	vation Sta	tus			
Federal: Not listed		Global:	Demonst	rably widespread, abundant, and secure			
State: Listed Threa	atened	State:	State: Imperiled due to rarity or vulnerability				
Description at this L	acation						
Conservation Rank:	Not ranked						
Comments on Rank:							
Comments on Rank.							
Detailed Description:	1995: Extremely abundant (i	n an area	to be impa	cted by vegetation removal). 3+ other			
1	•		1	ecimen at FF. 1965: Gruencking specimen at			
	UNH.		• •				
General Area:	In 3 inches of water.						
General Comments:							
Management				ating-leaved vegetation planned. Crow			
Comments:	e	1		<i>i</i> . Upstream searches confirmed presence of			
	other populations providing p	otential	for natural	revegetation.			
Location							
Survey Site Name: N	Mill Pond						
Managed By: Mill Pond							
County: Strafford							
Town(s): Durham							
Size: 2.8 acres		Elevatio	on:				
Precision: Within (but not necessarily restricted to) the area indicated on the map.							
Directions: Oyster River, just west of Rte. 108 in Durham.							
Dates documented							
First reported: 1	965	Last rep	orted:	1995-07-10			

great bur-reed (Sparganium eurycarpum)

Legal Status		Conservation	Status			
Federal: Not listed			nstrably widespread, abundant, and secure			
State: Listed Three	atened	State: Imper	iled due to rarity or vulnerability			
Description at this L	ocation					
Conservation Rank:	Not ranked					
Comments on Rank:						
Detailed Description:	1997: No details provided					
General Area:						
General Comments:						
Management	1 0	ation in the area	between the point on the peninsula and the			
Comments:	"islands".					
J	Survey Site Name: Mill Pond					
County: Strafford Town(s): Durham Size: 2.8 acres		Elevation:				
Precision: Within (but not necessarily restricted to) the area indicated on the map.						
	ond, Oyster River, just west of and again along the near side o		urham. At the tip of the peninsula, out into the rub islands".			
Dates documented						
First reported: 1	995-07-10	Last reported:	1995-07-10			

ivy-leaved duckweed (Lemna trisulca)

	strably widespread, abundant, and secure				
State: Listed Endangered State: Critical	lly imperiled due to rarity or vulnerability				
Description at this Location					
Conservation Rank: Not ranked					
Comments on Rank:					
shallower waters of Mill Pond. 1961: Spe collected. 1956: Specimen collected. <br< td=""><td colspan="5">1998: Species observed. 1995: Not greatly abundant but widely scattered through the shallower waters of Mill Pond. 1961: Specimen collected. 1958: Specimen collected. 1956: Specimen collected. 1942: Specimen collected.</td></br<>	1998: Species observed. 1995: Not greatly abundant but widely scattered through the shallower waters of Mill Pond. 1961: Specimen collected. 1958: Specimen collected. 1956: Specimen collected. 1942: Specimen collected.				
very thick. 1958: Floating in 1-2 ft. water	1995: Oyster River. br />1961: Oyster River, Durham (Mill Pond) on bottom in 1 ft. water, very thick. br />1958: Floating in 1-2 ft. water edge of Oyster River above dam. br />1956: Quiet, muddy organic water. dbr />1942: Above dam in shallow water.				
General Comments:					
Management Unknown date: Mechanical removal of aquation	c vegetation expected to have little overall				
Comments: impact due to vigorous vegetative reproduction	n.				
Location					
Survey Site Name: Mill Pond					
Managed By: Mill Pond					
County: Strafford					
County: Strafford Town(s): Durham					
Size: 2.8 acres Elevation:					
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).					
Directions: Mill Pond, Oyster River, just west of Route 108 in Durham above dam in shallow water. br/>>19. Oyster River, Laundry Pond.					
Dates documented					
First reported: 1942-06-09 Last reported:	1998				

lake quillwort (Isoetes lacustris)

Legal Status	Conservation Status				
Federal: Not listed		Global: Demonst	rably widespread, abundant, and secure		
State: Listed Enda	ngered	State: Not rank	ed (need more information)		
Description at this L					
Conservation Rank:	Historical records only - curre	nt condition unkno	own.		
Comments on Rank:					
Detailed Description:	1995: Crow fails to relocate. S eliminated the plant from the a	1 1	ascreen panels installed in 1981 may have nen of Crow at NEBC.		
General Area:					
General Comments:					
Management					
Comments:					
Location Survey Site Name: M Managed By:	Survey Site Name: Mill Pond				
County: Strafford					
Town(s): Durham					
Size: 2.8 acres		Elevation:			
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: Mill P	ond, Oyster River, just west of l	Rte 108 in Durhan	1.		
Dates documented					
First reported: 1	1978	Last reported:	1978-09		

CONFIDENTIAL – NH Dept. of Environmental Services review

marsh horsetail (Equisetum palustre)

Legal Status	Conservation Status				
Federal: Not listed	Global: Demonstrably widespread, abundant, and secure				
State: Listed Endangered	State: Not ranked (need more information)				
Description of this Location					
Description at this Location Conservation Rank: Not ranked					
Comments on Rank:					
Detailed Description: 1973: Herb	Detailed Description: 1973: Herbarium specimen (#55,628) of Chapman at NHA.				
	sun, sandy soil.				
	erally without evidence of fertile stems on ground beneath.				
Management	, , , , , , , , , , , , , , , , , , ,				
Comments:					
Location					
Survey Site Name: Orchard Driv	e				
Managed By: Oyster River	School District				
County: Strafford					
Town(s): Durham					
Size: 105.4 acres	Elevation:				
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).					
Directions: Durham. Along sid	le of Orchard Drive.				
Dates documented					
First reported: 1973-05-23	Last reported: 1973-05-23				
L	L L				

Atlantic Sturgeon (Acipenser oxyrinchus)

Legal Status		Conser	vation Sta	tus	
Federal: Listed Threa	atened	Global:	Rare or u		
State: Listed Three	atened	State:	Critically	imperiled due to rarity or vulnerability	
Description at this L	ocation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description:	2016: 1 individual, sex unknown, detected in the lower Piscataqua River. 2015: 1 individual, sex unknown, detected in Portsmouth Harbor. 2012: 1 individual, sex unknown, detected in Little Bay.				
General Area:	2016: Tidal waters in Portsm	outh Har	bor, Little	Bay, and the Piscataqua River.	
General Comments:					
Management					
Comments:					
Location					
Survey Site Name: I Managed By:	Piscataqua River				
County: Town(s): Out-Of-Sta Size: 7749.3 act		Elevatio	on:		
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).					
Directions: 2016: Tidal waters of Portsmouth Harbor, Little Bay, and the Piscataqua River.					
Dates documented					
First reported: 2	2012-06-02	Last rep	orted:	2016-05-27	
-					

The U.S. Fish & Wildlife Service has jurisdiction over Federally listed species. Please contact them at 70 Commercial Street, Suite 300, Concord NH 03301 or at (603) 223-2541.

CONFIDENTIAL – NH Dept. of Environmental Services review

Banded Sunfish (*Enneacanthus obesus*)

Legal Status	Conservation Status			
Federal: Not listed	Global: Demonstrably widespread, abundant, and secure			
State: Special Co				
Description at this I				
Conservation Rank:	Not ranked			
Comments on Rank:				
Detailed Description: 2007: Area 12259: 2 observed.2005: Area 8991: 3 observed. Area 8989: 1 observed. Area				
	8990: 1 observed. Area 8992: 3 observed. Area 8981: 2 observed. 1985: 3 observed, age and			
	sex unknown (Obs_id 384).			
General Area:	2007: Area 12259: Vegetation along the margins of small stream channels flowing through			
	abandoned beaver impoundments.2005: Areas 8991, 8989, 8990, 8992, and 8981:			
General Comments:	Freshwater - stream or river. 1985: Freshwater - stream or river (Obs_id 384). 1985: 3 BDS (85,70,68 mm.) sampled by electrofishing at NHFG Fishing for the Future			
General Comments.	index site ST285030. Index site is 300 ft.long (Obs_id 384).			
Management				
Comments:				
Location				
	Oyster River			
Managed By:	NRCS_WRP_Brisson			
County: Strafford				
Town(s): Barrington				
Size: 5.2 acres	Elevation:			
Precision: Withi	n (but not necessarily restricted to) the area indicated on the map.			
Directions: 2007	Area 12259: Upper Oyster River, downstream of Glass Road (dirt road heading south off of Rt			
4) at eastern inlet to abandoned beaver impoundment.2005: Area 8991: Oyster River SW of the Lee				
traffic circle. Area 8989: Oyster River at Sheep Rd. just N of Rte 4. Area 8990: Oyster River just W				
of New Market Rd. Area 8992: Oyster River W of New Market Rd. Area 8981:Longmarsh Brook at				
	ossing with Longmarsh Rd. 1985: Oyster River at Rte.155A between Rte.4 and Lee Five			
Corne	ers (Obs_id 384).			
Defendence (1				
Dates documented	1095 07 05 Lost reported: 2007 07 12			
First reported:	1985-07-05 Last reported: 2007-07-13			

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conserva	ation Status		
Federal: Not listed State: Listed Endangered			Apparently secure but with cause for concern Critically imperiled due to rarity or vulnerability		
Description at this L	ocation				
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description: General Area:	· ·				
General Area: General Comments:	2006: Area 11524: Nested in 2006: Area 11524: Email wit				
Management					
Comments:					
Location Survey Site Name: O Managed By: County: Strafford	Crommet Creek				
Town(s): Durham					
Size: 1.9 acres		Elevation	1:		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2006: Area 11524: Found in driveway or 5 Sandy Brook Drive.					
Dates documented					
First reported: 2	2006-08-20	Last repo	rted: 2006-08-20		

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

Shortnose Sturgeon (Acipenser brevirostrum)

Legal Status		Conservation Status			
Federal: Listed Endangered		Global:	: Rare or uncommon		
State: Listed Endangered		State:	Critically imperiled due to rarity or vulnerability		
Description at this Location					
Conservation Rank:	Not ranked				
Comments on Rank:					
Detailed Description:	2016: 2 individuals, 1 female and 1 sex unknown, detected in Portsmouth Harbor and the lower Piscataqua River. br />2015: 3 females and 2 other individuals, sex unknown detected in Portsmouth Harbor. br />2014: 1 female detected moving from Portsmouth Harbor up the Piscataqua River to the mouth of the Cocheco River. br />2012: 1 female detected in Little Bay. br />2011: 1 female detected in Little Bay. 				
General Area:	2016: Tidal waters in Portsmouth Harbor, Little Bay, and the Piscataqua River.				
General Comments:	:				
Management					
Comments:					
Location					
Survey Site Name: Piscataqua River Managed By:					
County: Town(s): Out-Of-State					
Size: 7749.3 acr	es	Elevatio	on:		
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).					
Directions: 2016: Tidal waters of Portsmouth Harbor, Little Bay, and the Piscataqua River.					
Dates documented					
	010-11-03	Last rep	orted:	2016-10-20	
*		1			

The U.S. Fish & Wildlife Service has jurisdiction over Federally listed species. Please contact them at 70 Commercial Street, Suite 300, Concord NH 03301 or at (603) 223-2541.