

5 Railroad Street, Newmarket, NH 03561 • Ph 603-444-4111 • Fax 603-659-4627 • www.horizonsengineering.com

TOWN OF DURHAM STORMWATER MANAGEMENT PLAN FOR CLARK PROPERTIES, LLC

74 MAIN STREET TAX MAP 106, LOT 59 (FORMERLY TAX MAP 2, LOT 14-1)

> SUBMITTED ON 19 JULY 2021

REVISED ON 24 MARCH 2023

> Project Number NM18054 Copyright © 2022 Horizons Engineering, Inc.

Horizons Engineering, Inc.

New London, NH • Newport, VT • Littleton, NH • Sharon, VT • Conway, NH • Newmarket, NH

1. PROJECT INFORMATION NARRATIVE

1.1. Project narrative

1.1.1. Project summary

Clark Properties, LLC intends to redevelop the property at 74 Main Street in Durham, New Hampshire (Tax Map 106, Lot 59). The project will demolish the existing 1100 ft² building on the property and construct five-story mixed-use building. Additionally, the parking and traffic flow will be modified. This report was prepared by Horizons Engineering to ensure the design of the stormwater management for 74 Main Street complies with the applicable federal, state and local regulations for stormwater.

1.1.2. Existing conditions

The proposed work is located at the corner of Main Street and Pettee Brook Lane. The project site currently consists of an office building and two paved parking areas with a combined 13 spaces. The stormwater runoff from the office building and the larger parking area in the north drain to catch basins on Pettee Brook Lane at the northeast side of the property. The stormwater runoff from the western portion of the site is collected in catch basins along Main Street. All the existing catch basins are part of Durham's municipal separate storm sewer system (MS4). The flow is split between two drainage points. The first point (PA-1) is located at a catch basin on Main Street. This catch basin is routed to the west into UNH property and ultimately outlets to College Brook. The second point (PA-2) is located at a catch basin on the northeast corner of the property along Pettee Brook Lane. The storm sewer ultimately outlets to the Pettee Brook.

1.1.3. Proposed site conditions & disturbances

In the proposed post-developed condition the majority of the lot will be covered by the new building. The majority of the remained of the land will be paved using pervious interlocking concrete pavers (PICP). A small remainder of the land, ca. 300 square feet will be grassed. Due to the negligible impact of this grassed area on the over runoff from the site, and the potential to compact the soils during construction, the entire lot has been modelled as impervious land cover.

The new building will have a roof area of about 6100 square feet. Two-thirds (4000 sq. ft.) of the roof will be routed to permeable paver system to infiltrate some of the runoff and buffer the peak flow. The remainder of the roof will be routed to a new catch basin (1P)

The permeable paver system have been split into three cells. The system is built on a max. 5% grade and two membrane barriers will be installed to create storage space on the slope. Overall the system takes up about 1880 sq. ft. with some of the open-graded reservoir stone extending below the concrete slab under the building overhang.

The runoff from the adjacent property (TM160, L61) will be collected along the property line. The design intent is to have a the concrete pad and concrete edge restraint to be 1/4" proud of the new asphalt to concentrate flow towards a new deep-sump catch basin (2P). The purpose of this to prevent heavily sediment laden runoff from flowing directly into the PICP system. It is expected that during larger storms, the flow depth in this location may exceed 1/2" for very short periods of time, and the PICIP is able to handle these additional flows without ponding.

The remainder of the runoff form the site are the narrow strip between the front of the building and the road which currently flows to the street, and a small 300 sq. ft. area by the proposed transformer pad. These areas will be collected in the existing catch basins located on Pettee Brook Lane (E2) and on the abutting town property (E1).

The flows towards PA-1 have been reduced due to the removal of the paved area on the abutting property.

1.1.4. Hydrologic data and methods

The stormwater model was built in the software program HydroCAD (Version 10.00 25). HydroCAD uses the methods described in the NRCS National Engineering Handbook [2] to create rainfall-runoff relationships, determine time of concentration, generate unit hydrographs for each subcatchment area.

The direct runoff from the site was estimated using the Weighted-Q method. Synthetic design storms used rainfall data and intensity curves from the NOAA (Atlas 14). Soils maps generated by the Natural Resources Conservation Service (NRCS), and land cover data from the field survey were used to determine the soil-complex CN values.

Using SCS TR-20, run under HydroCAD Version 10.0 with 24-hour rainfall events based on Atlas 14 data for Durham, NH, pre- and post-development cover types and drainage paths were modeled to generate peak discharge rates. These data are provided in full in section 1.3 of this report and are summarized below in Table 1.1.

1.1.5. Peak runoff control requirement

Town of Durham Site Design Standards require that measures be taken to control the post-development peak rate runoff so that it does not exceed pre-development runoff for the 1 inch, 2-, 10-, and 17¹- year, 24-hour storm events. Due to the post-project grading of the site and changes in land cover, stormwater devices were used to attenuate flow in order to meet these Peak Runoff Control requirements. Table 1.2 summarizes the stormwater runoff peak flow rate for the 1 inch, 2-, 10- and 25-year storm events.

		Storm event runoff volume (cf)				
	1-inch	2-year	10-year	25-year	50-yr	100-yr
PA-1						
Pre	0.28	1.07	1.71	2.12	2.43	2.75
Post (w/ UD)	0.23	0.95	1.58	1.95	2.28	2.60
PA-2						
Pre	0.19	0.83	1.40	1.76	2.03	2.32
Post (w/ UD)	0.15	0.51	0.98	1.41	1.36	1.51

Table 1.2: Peak flow from 74 Main Street

The peak flows for all events are decreased in the post-development conditions.

¹ Understood to be a typo and the 25-year rainfall event is intended

1.1.6. Runoff volume control

		Storm event runoff volume (cf)				
	1-inch	2-year	10-year	25-year	50-yr	100-yr
PA-1						
Pre	834	3532	6048	7649	8833	10 141
Post (w/ UD)	690	3129	5505	7034	8170	9429
PA-2						
Pre	591	2747	4873	6247	7269	8402
Post (w/ UD)	412	2080	4134	5548	6617	7806

The runoff volume from each storm event is summarized in table 1.3.

In all events the volume of runoff leaving the site is less in the post-development conditions than the pre-development conditions.

1.2. NRCS soils information

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Strafford County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Strafford County, New Hampshire	13
BzB—Buxton silt loam, 3 to 8 percent slopes	13
HdB—Hollis-Charlton very rocky fine sandy loams, 3 to 8 percent	
slopes	14
HdC—Hollis-Charlton very rocky fine sandy loams, 8 to 15 percent	
slopes	16
Sb—Saugatuck loamy sand	18
SfC—Suffield silt loam, 8 to 15 percent slopes	19
References	21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

MAP LEGEND **MAP INFORMATION** The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) Spoil Area 8 1:20,000. Area of Interest (AOI) Stony Spot 0 Soils Very Stony Spot 00 Warning: Soil Map may not be valid at this scale. Soil Map Unit Polygons Ŷ Wet Spot Soil Map Unit Lines -Enlargement of maps beyond the scale of mapping can cause Other \triangle inisunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of Soil Map Unit Points .-Special Line Features Special Point Features contrasting soils that could have been shown at a more detailed Water Features scale. Blowout (0) Streams and Canals Borrow Pit Transportation Please rely on the bar scale on each map sheet for map Clay Spot × +++ Rails measurements. Closed Depression 0 ~ Interstate Highways Source of Map: Natural Resources Conservation Service Gravel Pit X US Routes Web Soil Survey URL: ~ Coordinate System: Web Mercator (EPSG:3857) Gravelly Spot ... Major Roads Ø Landfill Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts 100 A Lava F**l**ow Background distance and area. A projection that preserves area, such as the Marsh or swamp Aerial Photography 业 Page Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. 旁 Mine or Quarry Miscellaneous Water 0 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. 0 Perennial Water Rock Outcrop 11 Soil Survey Area: Strafford County, New Hampshire Survey Area Data: Version 20, May 29, 2020 + Saline Spot Sandy Spot °.** Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Severely Eroded Spot -Sinkhole ô Date(s) aerial images were photographed: Dec 31, 2009-Sep 9.2017 Slide or Slip ò ø Sodic Spot The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

10

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI	
BzB	Buxton silt loam, 3 to 8 percent slopes	6.1	29.8%	
HdB	Hollis-Charlton very rocky fine sandy loams, 3 to 8 percent slopes	6.6	32.4%	
HdC	Hollis-Charlton very rocky fine sandy loams, 8 to 15 percent slopes	5.4	26.6%	
Sb	Saugatuck loamy sand	2.2	10.6%	
SfC	Suffield silt loam, 8 to 15 percent slopes	0.1	0.6%	
Totals for Area of Interest		20.4	100.0%	

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Strafford County, New Hampshire

BzB—Buxton silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d6p Elevation: 0 to 260 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Buxton and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Buxton

Setting

Parent material: Glaciomarine

Typical profile

H1 - 0 to 10 inches: silt loam H2 - 10 to 28 inches: silty clay loam H3 - 28 to 43 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 12 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D Ecological site: F145XY006CT - Semi-Rich Moist Lake Plain Hydric soil rating: No

Minor Components

Elmwood

Percent of map unit: 10 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent *Hydric soil rating:* No

HdB—Hollis-Charlton very rocky fine sandy loams, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d7m Elevation: 0 to 1,000 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 120 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 40 percent *Charlton and similar soils:* 30 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: very stony fine sandy loam *H2 - 14 to 18 inches:* bedrock

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Charlton

Setting

Parent material: Till

Typical profile

H1 - 0 to 13 inches: very stony fine sandy loam

H2 - 13 to 36 inches: fine sandy loam

H3 - 36 to 40 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 10 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent *Hydric soil rating:* No

Sutton

Percent of map unit: 5 percent Hydric soil rating: No

Buxton

Percent of map unit: 5 percent Hydric soil rating: No

Leicester

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

HdC—Hollis-Charlton very rocky fine sandy loams, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9d7n Elevation: 0 to 1,200 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 120 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 40 percent *Charlton and similar soils:* 30 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: very stony fine sandy loam *H2 - 14 to 18 inches:* bedrock

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Charlton

Setting

Parent material: Till

Typical profile

H1 - 0 to 13 inches: very stony fine sandy loam *H2 - 13 to 36 inches:* fine sandy loam *H3 - 36 to 40 inches:* gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 10 percent Hydric soil rating: No

Not named

Percent of map unit: 10 percent Hydric soil rating: No

Woodbridge

Percent of map unit: 5 percent *Hydric soil rating:* No

Sutton

Percent of map unit: 5 percent Hydric soil rating: No

Sb—Saugatuck loamy sand

Map Unit Setting

National map unit symbol: 9d8r Elevation: 300 to 1,000 feet Mean annual precipitation: 27 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 125 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Saugatuck and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Saugatuck

Setting

Landform: Outwash terraces Parent material: Outwash

Typical profile

H1 - 0 to 4 inches: loamy sand H2 - 4 to 7 inches: sand H3 - 7 to 26 inches: loamy sand H4 - 26 to 42 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 10 to 16 inches to undefined
Drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Not named wet

Percent of map unit: 15 percent

Landform: Outwash terraces Hydric soil rating: Yes

SfC—Suffield silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9d8v Elevation: 0 to 250 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Suffield and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Suffield

Typical profile

H1 - 0 to 19 inches: silt loam H2 - 19 to 28 inches: silt loam H3 - 28 to 41 inches: silty clay

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: F144AY017NH - Well Drained Lake Plain Hydric soil rating: No

Minor Components

Not named

Percent of map unit: 9 percent Hydric soil rating: No

Buxton

Percent of map unit: 5 percent Hydric soil rating: No

Rock outcrop

Percent of map unit: 1 percent Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

1.3. Precipitation tables

NOAA Atlas 14, Volume 10, Version 3 Location name: Durham, New Hampshire, USA* Latitude: 43.1354°, Longitude: -70.9281° Elevation: m/ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.300 (0.242-0.374)	0.363 (0.293-0.453)	0.466 (0.374-0.584)	0.550 (0.439-0.693)	0.667 (0.512-0.877)	0.755 (0.565-1.01)	0.847 (0.613-1.18)	0.952 (0.648-1.35)	1.10 (0.718-1.62)	1.23 (0.776-1.84)
10-min	0.425 (0.343-0.531)	0.514 (0.415-0.642)	0.659 (0.529-0.825)	0.779 (0.622-0.982)	0.945 (0.725-1.24)	1.07 (0.802-1.44)	1.20 (0.869-1.67)	1.35 (0.917-1.92)	1.56 (1.02-2.30)	1.74 (1.10-2.61)
15-min	0.500 (0.404-0.624)	0.605 (0.488-0.755)	0.776 (0.624-0.972)	0.917 (0.731-1.16)	1.11 (0.853-1.46)	1.26 (0.943-1.69)	1.41 (1.02-1.97)	1.59 (1.08-2.26)	1.84 (1.20-2.70)	2.04 (1.29-3.07)
30-min	0.669 (0.540-0.834)	0.808 (0.652-1.01)	1.03 (0.832-1.30)	1.22 (0.977-1.54)	1.48 (1.14-1.96)	1.68 (1.26-2.26)	1.88 (1.37-2.63)	2.12 (1.44-3.02)	2.47 (1.61-3.64)	2.77 (1.75-4.15)
60-min	0.837 (0.676-1.04)	1.01 (0.815-1.26)	1.30 (1.04-1.62)	1.53 (1.22-1.93)	1.86 (1.43-2.45)	2.10 (1.58-2.83)	2.36 (1.71-3.30)	2.66 (1.81-3.79)	3.11 (2.02-4.58)	3.49 (2.21-5.24)
2-hr	1.12 (0.911-1.39)	1.37 (1.11-1.69)	1.76 (1.43-2.19)	2.09 (1.68-2.62)	2.55 (1.97-3.34)	2.88 (2.18-3.87)	3.25 (2.38-4.55)	3.69 (2.52-5.22)	4.36 (2.84-6.38)	4.94 (3.14-7.36)
3-hr	1.33 (1.08-1.64)	1.62 (1.32-2.00)	2.10 (1.70-2.60)	2.50 (2.01-3.11)	3.05 (2.37-3.99)	3.45 (2.62-4.62)	3.89 (2.87-5.44)	4.43 (3.03-6.24)	5.26 (3.44-7.67)	5.97 (3.80-8.87)
6-hr	1.74 (1.43-2.14)	2.14 (1.75-2.63)	2.78 (2.27-3.43)	3.32 (2.69-4.11)	4.06 (3.17-5.28)	4.60 (3.52-6.13)	5.20 (3.85-7.22)	5.93 (4.07-8.30)	7.05 (4.62-10.2)	8.03 (5.12-11.8)
12-hr	2.22 (1.84-2.71)	2.74 (2.26-3.34)	3.58 (2.94-4.39)	4.29 (3.50-5.27)	5.25 (4.13-6.79)	5.96 (4.58-7.89)	6.74 (5.02-9.31)	7.69 (5.30-10.7)	9.17 (6.03-13.2)	10.4 (6.68-15.3)
24-hr	2.63 (2.19-3.19)	3.30 (2.74-4.00)	4.39 (3.63-5.33)	5.29 (4.34-6.46)	6.53 (5.17-8.41)	7.44 (5.76-9.82)	8.44 (6.34-11.7)	9.71 (6.71-13.4)	11.7 (7.72-16.8)	13.5 (8.64-19.6)
2-day	2.92 (2.44-3.51)	3.74 (3.12-4.50)	5.09 (4.23-6.14)	6.20 (5.12-7.53)	7.74 (6.18-9.95)	8.86 (6.92-11.7)	10.1 (7.69-14.0)	11.8 (8.15-16.2)	14.5 (9.56-20.6)	16.9 (10.9-24.4)
3-day	3.14 (2.64-3.76)	4.03 (3.38-4.83)	5.47 (4.57-6.58)	6.67 (5.53-8.06)	8.32 (6.66-10.7)	9.52 (7.46-12.5)	10.9 (8.29-15.0)	12.7 (8.78-17.3)	15.6 (10.3-22.1)	18.2 (11.7-26.3)
4-day	3.38 (2.84-4.03)	4.29 (3.61-5.13)	5.78 (4.84-6.93)	7.02 (5.83-8.46)	8.72 (7.00-11.1)	9.96 (7.83-13.1)	11.4 (8.68-15.6)	13.2 (9.18-18.0)	16.2 (10.8-22.9)	18.9 (12.2-27.2)
7-day	4.10 (3.47-4.86)	5.05 (4.27-6.00)	6.62 (5.57-7.89)	7.91 (6.61-9.49)	9.70 (7.81-12.3)	11.0 (8.66-14.3)	12.5 (9.52-16.9)	14.3 (10.0-19.5)	17.4 (11.6-24.5)	20.1 (13.0-28.8)
10-day	4.79 (4.07-5.66)	5.78 (4.90-6.84)	7.40 (6.24-8.79)	8.74 (7.32-10.4)	10.6 (8.54-13.3)	11.9 (9.40-15.4)	13.4 (10.2-18.1)	15.3 (10.7-20.7)	18.3 (12.2-25.7)	21.0 (13.6-29.9)
20-day	6.76 (5.78-7.94)	7.86 (6.71-9.25)	9.66 (8.21-11.4)	11.2 (9.41-13.2)	13.2 (10.7-16.4)	14.8 (11.6-18.7)	16.4 (12.4-21.5)	18.3 (12.9-24.5)	21.0 (14.1-29.1)	23.3 (15.1-32.9)
30-day	8.32 (7.14-9.74)	9.52 (8.16-11.2)	11.5 (9.79-13.5)	13.1 (11.1-15.5)	15.3 (12.4-18.8)	17.0 (13.4-21.3)	18.8 (14.1-24.3)	20.6 (14.6-27.5)	23.2 (15.6-32.0)	25.2 (16.4-35.5)
45-day	10.2 (8.79-11.9)	11.5 (9.90-13.4)	13.7 (11.7-16.0)	15.4 (13.1-18.2)	17.9 (14.5-21.8)	19.8 (15.6-24.6)	21.7 (16.2-27.7)	23.5 (16.7-31.2)	25.9 (17.5-35.6)	27.6 (18.0-38.8)
60-day	11.7 (10.1-13.6)	13.1 (11.3-15.3)	15.4 (13.3-18.0)	17.3 (14.8-20.4)	20.0 (16.2-24.2)	22.1 (17.4-27.2)	24.0 (18.0-30.5)	25.9 (18.4-34.2)	28.1 (19.0-38.5)	29.7 (19.4-41.6)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Fri Mar 24 08:47:26 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

2. DRAINAGE CALCULATIONS

2.1. Pre-development analysis

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
8,902	74	>75% Grass cover, Good, HSG C (1, 2, 3)
18,468	98	Paved parking & roofs, HSG C (1, 2, 3)
2,892	98	Paved parking, HSG C (1, 2, 3)
30,262	91	TOTAL AREA
NM18054_PRE_06	NH-Durham(NOAA) 2	4-hr S1 1-yr 1" Rainfall=1.00"
---	--------------------------	--------------------------------
Prepared by Horizons Engineering Inc.		Printed 2023-03-24
HydroCAD® 10.10-7a s/n 01179 © 2021 HydroCA	D Software Solutions LLC	Page 3

Subcatchment 1: Subcatchment 1	Runoff Area=14,023 sf 82.49% Impervious Runoff Depth=0.66" Tc=6.0 min CN=WQ Runoff=0.26 cfs 767 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impervious Runoff Depth=0.39" Tc=6.0 min CN=WQ Runoff=0.02 cfs 67 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14,180 sf 62.17% Impervious Runoff Depth=0.50" Tc=6.0 min CN=WQ Runoff=0.19 cfs 591 cf
Pond 1P: CB 2078 12.0"	Peak Elev=50.25' Inflow=0.26 cfs 767 cf Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=0.26 cfs 767 cf
Link PA-1: POA-1	Inflow=0.28 cfs 834 cf Primary=0.28 cfs 834 cf
Link PA-2: POA-2	Inflow=0.19 cfs 591 cf Primary=0.19 cfs 591 cf

Total Runoff Area = 30,262 sf Runoff Volume = 1,425 cfAverage Runoff Depth = 0.57"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

NM18054_PRE_06	NH-Durham(NOAA) 24-hr S1 2-yr Rainfall=3.30"	
Prepared by Horizons Engineering Inc.		Printed 2023-03-24
HydroCAD® 10.10-7a s/n 01179 © 2021 Hydr	OCAD Software Solutions LLC	Page 4
Time span=0.00-4	8.00 hrs, dt=0.01 hrs, 4801 points x 2	
Runoff by SCS II	R-20 method, UH=SCS, Weighted-Q	
Reach routing by Dyn-Stor-Inc	a method - Pond routing by Dyn-Stor	-Ind method
Subcatchment 1: Subcatchment 1	Runoff Area=14.023 sf 82.49% Impe	vious Runoff Depth=2.72"
	Tc=6.0 min CN=WC	Runoff=0.96 cfs 3,182 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impe	vious Runoff Depth=2.04"
	Tc=6.0 min CN=W	Q Runoff=0.11 cfs 349 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14 180 sf 62 17% Impe	vious Runoff Depth=2.32"
Subcatchment J. Subcatchment J	Tc=6.0 min CN=WQ	Runoff=0.83 cfs 2.747 cf
Pond 1P: CB 2078	Peak Elev=50.50)' Inflow=0.96 cfs 3,182 cf
12.0" Round	d Culvert n=0.012 L=90.0' S=0.0100 '/'	Outflow=0.96 cfs 3,182 cf
Link PA-1: POA-1		Inflow=1.07 cfs 3,532 cf
		Primary=1.07 cfs 3,532 cf
$I ink PA_2 POA_2$		Inflow=0.83 cfs 2.747 cf
		Primary=0.83 cfs 2.747 cf

Total Runoff Area = 30,262 sfRunoff Volume = 6,278 cfAverage Runoff Depth = 2.49"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

NM18054_PRE_06	NH-Durham(NOAA) 24-hr S1 10-yr Rainfa	all=5.29"
Prepared by Horizons Engineering Inc.	Printed 202	23-03-24
<u>HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD So</u>	ftware Solutions LLC	Page 5
		-

Subcatchment 1: Subcatchment 1	Runoff Area=14,023 sf 82.49% Impervious Runoff Depth=4.62" Tc=6.0 min CN=WQ Runoff=1.52 cfs 5,402 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impervious Runoff Depth=3.76" Tc=6.0 min CN=WQ Runoff=0.19 cfs 646 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14,180 sf 62.17% Impervious Runoff Depth=4.12" Tc=6.0 min CN=WQ Runoff=1.40 cfs 4,873 cf
Pond 1P: CB 2078 12.0"	Peak Elev=50.66' Inflow=1.52 cfs 5,402 cf Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=1.52 cfs 5,402 cf
Link PA-1: POA-1	Inflow=1.71 cfs 6,048 cf Primary=1.71 cfs 6,048 cf
Link PA-2: POA-2	Inflow=1.40 cfs 4,873 cf Primary=1.40 cfs 4,873 cf

Total Runoff Area = 30,262 sf Runoff Volume = 10,921 cfAverage Runoff Depth = 4.33"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

NM18054_PRE_06	NH-Durham(NOAA) 24-hr S1 25-yr Rainfall=6.53"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD So	ftware Solutions LLC Page 6

Subcatchment 1: Subcatchment 1	Runoff Area=14,023 sf 82.49% Impervious Runoff Depth=5.83" Tc=6.0 min CN=WQ Runoff=1.88 cfs 6,808 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impervious Runoff Depth=4.90" Tc=6.0 min CN=WQ Runoff=0.24 cfs 840 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14,180 sf 62.17% Impervious Runoff Depth=5.29" Tc=6.0 min CN=WQ Runoff=1.76 cfs 6,247 cf
Pond 1P: CB 2078 12.0"	Peak Elev=50.75' Inflow=1.88 cfs 6,808 cf Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=1.88 cfs 6,808 cf
Link PA-1: POA-1	Inflow=2.12 cfs 7,649 cf Primary=2.12 cfs 7,649 cf
Link PA-2: POA-2	Inflow=1.76 cfs 6,247 cf Primary=1.76 cfs 6,247 cf

Total Runoff Area = 30,262 sf Runoff Volume = 13,895 cfAverage Runoff Depth = 5.51"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

NM18054_PRE_06	NH-Durham(NOAA) 24-hr S1 50-yr Rainfall=7.44"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
<u>HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD So</u>	ftware Solutions LLC Page 7

Subcatchment 1: Subcatchment 1	Runoff Area=14,023 sf 82.49% Impervious Runoff Depth=6.71" Tc=6.0 min CN=WQ Runoff=2.15 cfs 7,847 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impervious Runoff Depth=5.74" Tc=6.0 min CN=WQ Runoff=0.28 cfs 986 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14,180 sf 62.17% Impervious Runoff Depth=6.15" Tc=6.0 min CN=WQ Runoff=2.03 cfs 7,269 cf
Pond 1P: CB 2078 12.0"	Peak Elev=50.83' Inflow=2.15 cfs 7,847 cf Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=2.15 cfs 7,847 cf
Link PA-1: POA-1	Inflow=2.43 cfs 8,833 cf Primary=2.43 cfs 8,833 cf
Link PA-2: POA-2	Inflow=2.03 cfs 7,269 cf Primary=2.03 cfs 7,269 cf

Total Runoff Area = 30,262 sf Runoff Volume = 16,102 cf Average Runoff Depth = 6.39"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

NM18054_PRE_06	NH-Durham(NOAA) 24-hr S1 100-yr Rainfall=8.44"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a s/n 01179 © 2021 HydroCAD \$	Software Solutions LLC Page 8

Subcatchment 1: Subcatchment 1	Runoff Area=14,023 sf 82.49% Impervious Runoff Depth=7.70" Tc=6.0 min CN=WQ Runoff=2.43 cfs 8,993 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,059 sf 47.50% Impervious Runoff Depth=6.69" Tc=6.0 min CN=WQ Runoff=0.32 cfs 1,148 cf
Subcatchment 3: Subcatchment 3	Runoff Area=14,180 sf 62.17% Impervious Runoff Depth=7.11" Tc=6.0 min CN=WQ Runoff=2.32 cfs 8,402 cf
Pond 1P: CB 2078 12.0"	Peak Elev=50.91' Inflow=2.43 cfs 8,993 cf Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=2.43 cfs 8,993 cf
Link PA-1: POA-1	Inflow=2.75 cfs 10,141 cf Primary=2.75 cfs 10,141 cf
Link PA-2: POA-2	Inflow=2.32 cfs 8,402 cf Primary=2.32 cfs 8,402 cf

Total Runoff Area = 30,262 sf Runoff Volume = 18,543 cfAverage Runoff Depth = 7.35"29.42% Pervious = 8,902 sf70.58% Impervious = 21,360 sf

Summary for Subcatchment 1: Subcatchment 1

Runoff = 1.52 cfs @ 12.04 hrs, Volume= 5,402 cf, Depth= 4.62" Routed to Pond 1P : CB 2078

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"

A	rea (sf)	CN	Description			
	21	74	>75% Grass cover, Good, HSG C			
	2,435	74	>75% Gras	s cover, Go	ood, HSG C	
	147	98	Paved park	ing, HSG C	;	
	11,420	98	Paved park	ing & roofs	, HSG C	
	14,023		Weighted A	verage		
	2,456		17.51% Pervious Area			
	11,567		82.49% Imp	pervious Are	ea	
Тс	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Subcatchment 1: Subcatchment 1

Summary for Subcatchment 2: Subcatchment 2

Runoff = 0.19 cfs @ 12.04 hrs, Volume= 646 cf, Depth= 3.76" Routed to Link PA-1 : POA-1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"

AI	rea (sf)	CN	Description			
	123	74	>75% Gras	s cover, Go	ood, HSG C	
	958	74	>75% Gras	s cover, Go	ood, HSG C	
	310	98	Paved park	ing, HSG C	C	
	668	98	Paved park	ing & roofs	s, HSG C	
	2,059		Weighted A	verage		
	1,081		52.50% Per	rvious Area	a	
	978		47.50% Imp	pervious Ar	rea	
Тс	Length	Slop	a Velocity	Canacity	Description	
(min)	(foot)	(ff/ff		Capacity (cfs)	Description	
		(101		(015)		
6.0					Direct Entry,	

Subcatchment 2: Subcatchment 2

Summary for Subcatchment 3: Subcatchment 3

Runoff = 1.40 cfs @ 12.04 hrs, Volume= 4,873 cf, Depth= 4.12" Routed to Link PA-2 : POA-2

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"

A	rea (sf)	CN	Description			
	658	74	>75% Gras	s cover, Go	ood, HSG C	
	4,707	74	>75% Gras	s cover, Go	ood, HSG C	
	2,435	98	Paved park	ing, HSG C)	
	6,380	98	Paved park	ing & roofs	, HSG C	
	14,180		Weighted A	verage		
	5,365		37.83% Pei	rvious Area		
	8,815		62.17% Imp	pervious Ar	ea	
Тс	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/fl	:) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Subcatchment 3: Subcatchment 3

Summary for Pond 1P: CB 2078

[57] Hint: Peaked at 50.66' (Flood elevation advised)

 Inflow Area =
 14,023 sf, 82.49% Impervious, Inflow Depth = 4.62" for 10-yr event

 Inflow =
 1.52 cfs @ 12.04 hrs, Volume=
 5,402 cf

 Outflow =
 1.52 cfs @ 12.04 hrs, Volume=
 5,402 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.52 cfs @ 12.04 hrs, Volume=
 5,402 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.52 cfs @ 12.04 hrs, Volume=
 5,402 cf

 Routed to Link PA-1 : POA-1
 1.52 cfs
 12.04 hrs, Volume=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 50.66' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.00'	12.0'' Round Outlet L= 90.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 50.00' / 49.10' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Primary OutFlow Max=1.52 cfs @ 12.04 hrs HW=50.66' TW=0.00' (Dynamic Tailwater) **1=Outlet** (Inlet Controls 1.52 cfs @ 2.76 fps)

Pond 1P: CB 2078

Summary for Link PA-1: POA-1

Inflow <i>J</i>	Area =	16,082 sf, 78.01% Impervious,	Inflow Depth = 4.51" for 10-yr even	nt
Inflow	=	1.71 cfs @ 12.04 hrs, Volume=	6,048 cf	
Primar	y =	1.71 cfs @ 12.04 hrs, Volume=	6,048 cf, Atten= 0%, Lag= 0	.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link PA-1: POA-1

Summary for Link PA-2: POA-2

Inflow /	Area =	14,180 sf, 62.17% Impervious,	Inflow Depth = 4.12"	for 10-yr event
Inflow	=	1.40 cfs @ 12.04 hrs, Volume=	4,873 cf	
Primar	y =	1.40 cfs @ 12.04 hrs, Volume=	4,873 cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Link PA-2: POA-2

2.2. Post-development analysis

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
5,386	74	>75% Grass cover, Good, HSG C (1, 2)
9,434	98	Paved parking & roofs, HSG C (1, 2)
9,830	98	Paved parking, HSG C (1, 2, 4, 7, 8, 9)
5,612	98	Roofs, HSG C (3)
30,262	94	TOTAL AREA

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 1-yr 1" Rainfall=1.00	״כ
Prepared by Horizons Engineering Inc.	Printed 2023-03-2	24
HydroCAD® 10.10-7a s/n 01179 © 2021 HydroCAE	D Software Solutions LLC Page	3

Subcatchment 1: Subcatchment 1	Runoff Area=13,191 sf 70.70% Impervious Runoff Depth=0.57" Tc=6.0 min CN=WQ Runoff=0.21 cfs 622 cf
Subcatchment 2: Subcatchment 2	Runoff Area=2,499 sf 39.14% Impervious Runoff Depth=0.32" Tc=6.0 min CN=WQ Runoff=0.02 cfs 67 cf
Subcatchment 3: Subcatchment 3	(New Runoff Area=5,612 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.12 cfs 370 cf
Subcatchment 4: Subcatchment 4	Runoff Area=2,307 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.05 cfs 152 cf
Subcatchment 7: Subcatchment 7	Runoff Area=3,750 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.08 cfs 247 cf
Subcatchment 8: Subcatchment 8	Runoff Area=2,572 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.06 cfs 170 cf
Subcatchment 9: Subcatchment 9	Runoff Area=331 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.01 cfs 22 cf
Pond 1P: Permeable pavers	Peak Elev=49.98' Storage=125 cf Inflow=0.17 cfs 522 cf Discarded=0.02 cfs 522 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 522 cf
Pond 2P: PR. CB-2 12	Peak Elev=48.26' Storage=16 cf Inflow=0.08 cfs 247 cf .0" Round Culvert n=0.013 L=44.0' S=0.0068 '/' Outflow=0.08 cfs 233 cf
Pond E1: EX. CB-2008	Peak Elev=47.71' Storage=9 cf Inflow=0.15 cfs 418 cf .0" Round Culvert n=0.025 L=22.4' S=0.0223 '/' Outflow=0.15 cfs 412 cf
Pond E2: EX. CB-2293	Peak Elev=47.75' Storage=9 cf Inflow=0.06 cfs 170 cf .0" Round Culvert n=0.025 L=22.4' S=0.0223 '/' Outflow=0.06 cfs 163 cf
Pond E3: CB 2078	Peak Elev=50.22' Inflow=0.21 cfs 622 cf .0" Round Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=0.21 cfs 622 cf
Link PA-1: POA-1	Inflow=0.23 cfs 690 cf Primary=0.23 cfs 690 cf
Link PA-2: POA-2	Inflow=0.15 cfs 412 cf Primary=0.15 cfs 412 cf
Total Punoff Area -	20.262 cf. Bunoff Volume = 1.650 cf. Average Bunoff Depth = 0.65"

Total Runoff Area = 30,262 sf Runoff Volume = 1,650 cf Average Runoff Depth = 0.65" 17.80% Pervious = 5,386 sf 82.20% Impervious = 24,876 sf

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 2-yr Rainfall=3.30"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD Sc	oftware Solutions LLC Page 4

Subcatchment 1: Subcatchmer	nt 1	Runoff Area=13,191 sf 70.70% Impervious Runoff Depth=2.49" Tc=6.0 min CN=WQ Runoff=0.83 cfs 2,739 cf
Subcatchment 2: Subcatchmer	nt 2	Runoff Area=2,499 sf 39.14% Impervious Runoff Depth=1.87" Tc=6.0 min CN=WQ Runoff=0.12 cfs 390 cf
Subcatchment 3: Subcatchmer	nt 3 (New	Runoff Area=5,612 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.43 cfs 1,434 cf
Subcatchment 4: Subcatchmer	nt 4	Runoff Area=2,307 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.18 cfs 590 cf
Subcatchment 7: Subcatchmer	nt 7	Runoff Area=3,750 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.29 cfs 958 cf
Subcatchment 8: Subcatchmer	nt 8	Runoff Area=2,572 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.20 cfs 657 cf
Subcatchment 9: Subcatchmer	nt 9	Runoff Area=331 sf 100.00% Impervious Runoff Depth=3.07" Tc=6.0 min CN=98 Runoff=0.03 cfs 85 cf
Pond 1P: Permeable pavers Dis	carded=0.02 (Peak Elev=50.53' Storage=603 cf Inflow=0.61 cfs 2,024 cf cfs 1,618 cf Primary=0.09 cfs 406 cf Outflow=0.11 cfs 2,024 cf
Pond 2P: PR. CB-2	12.0" Roun	Peak Elev=48.39' Storage=18 cf Inflow=0.29 cfs 958 cf nd Culvert n=0.013 L=44.0' S=0.0068 '/' Outflow=0.29 cfs 945 cf
Pond E1: EX. CB-2008	12.0" Round	Peak Elev=47.90' Storage=11 cf Inflow=0.51 cfs 2,086 cf Culvert n=0.025 L=22.4' S=0.0223 '/' Outflow=0.51 cfs 2,080 cf
Pond E2: EX. CB-2293	12.0" Roun	Peak Elev=47.96' Storage=12 cf Inflow=0.20 cfs 657 cf nd Culvert n=0.025 L=22.4' S=0.0223 '/' Outflow=0.20 cfs 651 cf
Pond E3: CB 2078	12.0" Round	Peak Elev=50.46' Inflow=0.83 cfs 2,739 cf Culvert n=0.012 L=90.0' S=0.0100 '/' Outflow=0.83 cfs 2,739 cf
Link PA-1: POA-1		Inflow=0.95 cfs_3,129 cf Primary=0.95 cfs_3,129 cf
Link PA-2: POA-2		Inflow=0.51 cfs_2,080 cf Primary=0.51 cfs_2,080 cf
Total Runoff Ar		sf Runoff Volume = 6 854 cf Average Runoff Donth = 2 72"

Total Runoff Area = 30,262 sf Runoff Volume = 6,854 cf Average Runoff Depth = 2.72" 17.80% Pervious = 5,386 sf 82.20% Impervious = 24,876 sf

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD S	oftware Solutions LLC Page 5

Subcatchment 1: Subcatchme	nt 1	Runoff Area=13,191 sf 70.70% Imper Tc=6.0 min CN=WQ	vious Runoff Depth=4.33" Runoff=1.36 cfs 4,763 cf
Subcatchment 2: Subcatchme	nt 2	Runoff Area=2,499 sf 39.14% Imper Tc=6.0 min CN=W	rvious Runoff Depth=3.56" /Q Runoff=0.22 cfs 741 cf
Subcatchment 3: Subcatchme	nt 3 (New	Runoff Area=5,612 sf 100.00% Imper Tc=6.0 min CN=98	vious Runoff Depth=5.05" Runoff=0.66 cfs 2,363 cf
Subcatchment 4: Subcatchme	nt 4	Runoff Area=2,307 sf 100.00% Imper Tc=6.0 min CN=	rvious Runoff Depth=5.05" 98 Runoff=0.27 cfs 971 cf
Subcatchment 7: Subcatchme	nt 7	Runoff Area=3,750 sf 100.00% Imper Tc=6.0 min CN=98	rvious Runoff Depth=5.05" Runoff=0.44 cfs 1,579 cf
Subcatchment 8: Subcatchme	nt 8	Runoff Area=2,572 sf 100.00% Imper Tc=6.0 min CN=98	rvious Runoff Depth=5.05" Runoff=0.30 cfs 1,083 cf
Subcatchment 9: Subcatchme	nt 9	Runoff Area=331 sf 100.00% Imper Tc=6.0 min CN=	rvious Runoff Depth=5.05" 98 Runoff=0.04 cfs 139 cf
Pond 1P: Permeable pavers Disca	arded=0.02 cf	Peak Elev=50.92' Storage=935 c 1,976 cf Primary=0.27 cfs 1,359 cf	f Inflow=0.93 cfs 3,334 cf Outflow=0.29 cfs 3,334 cf
Pond 2P: PR. CB-2	12.0" Round	Peak Elev=48.47' Storage=18 c Culvert n=0.013 L=44.0' S=0.0068 '/'	f Inflow=0.44 cfs 1,579 cf Outflow=0.44 cfs 1,565 cf
Pond E1: EX. CB-2008	12.0" Round	Peak Elev=48.07' Storage=13 c Culvert n=0.025 L=22.4' S=0.0223 '/'	f Inflow=0.99 cfs 4,140 cf Outflow=0.98 cfs 4,134 cf
Pond E2: EX. CB-2293	12.0" Round	Peak Elev=48.12' Storage=14 c Culvert n=0.025 L=22.4' S=0.0223 '/'	f Inflow=0.30 cfs 1,083 cf Outflow=0.30 cfs 1,077 cf
Pond E3: CB 2078	12.0" Round	Peak Elev=50.62 // Culvert n=0.012 L=90.0' S=0.0100	2' Inflow=1.36 cfs 4,763 cf Outflow=1.36 cfs 4,763 cf
Link PA-1: POA-1			Inflow=1.58 cfs 5,505 cf Primary=1.58 cfs 5,505 cf
Link PA-2: POA-2			Inflow=0.98 cfs 4,134 cf Primary=0.98 cfs 4,134 cf
Total Runoff Are	a = 30,262 st	Runoff Volume = 11,640 cf Avera 7.80% Pervious = 5,386 sf 82.20	age Runoff Depth = 4.62'' % Impervious = 24,876 sf

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 25-yr Rainfall=6.53"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a_s/n 01179_© 2021 HydroCAD S	oftware Solutions LLC Page 6

Subcatchment 1: Subcatchme	nt 1	Runoff Area=13,19 T	91 sf 70.70% c=6.0 min C	lmpervious N=WQ Runγ	Runoff Dept off=1.69 cfs	h=5.51" 6,060 cf
Subcatchment 2: Subcatchme	nt 2	Runoff Area=2,4	99 sf 39.14% Tc=6.0 min	lmpervious CN=WQ Rι	Runoff Dept unoff=0.28 cfs	h=4.67'' 974 cf
Subcatchment 3: Subcatchme	nt 3 (New	Runoff Area=5,61	2 sf 100.00% Tc=6.0 min	6 Impervious CN=98 Run	Runoff Dept	h=6.29'' 2,942 cf
Subcatchment 4: Subcatchme	nt 4	Runoff Area=2,30	7 sf 100.00% Tc=6.0 min	6 Impervious CN=98 Run	Runoff Dept off=0.33 cfs	h=6.29'' 1,210 cf
Subcatchment 7: Subcatchme	nt 7	Runoff Area=3,75	0 sf 100.00% Tc=6.0 min	6 Impervious CN=98 Run	Runoff Dept off=0.53 cfs	h=6.29'' 1,966 cf
Subcatchment 8: Subcatchme	nt 8	Runoff Area=2,57	2 sf 100.00% Tc=6.0 min	6 Impervious CN=98 Run	Runoff Dept off=0.37 cfs	h=6.29'' 1,348 cf
Subcatchment 9: Subcatchme	nt 9	Runoff Area=33	1 sf 100.00% Tc=6.0 min	6 Impervious 1 CN=98 Rt	Runoff Dept unoff=0.05 cfs	h=6.29" 3 174 cf
Pond 1P: Permeable pavers Disc	arded=0.02 cf	Peak Elev=51. s 2,065 cf Primar	11' Storage= y=0.33 cfs 2,	1,098 cf Infl 086 cf Outfl	ow=1.13 cfs ow=0.35 cfs	4,152 cf 4,152 cf
Pond 2P: PR. CB-2	12.0" Round	Peak Elev= Culvert_n=0.013_L	48.52' Storaç .=44.0' S=0.0	ge=19 cf Infl)068 '/' Outfl	ow=0.53 cfs ow=0.53 cfs	1,966 cf 1,952 cf
Pond E1: EX. CB-2008	12.0" Round	Peak Elev= Culvert_n=0.025_L	48.15' Storaç .=22.4' S=0.0	ge=14 cf Infl)223 '/' Outfl	ow=1.21 cfs ow=1.21 cfs	5,554 cf 5,548 cf
Pond E2: EX. CB-2293	12.0" Round	Peak Elev= Culvert_n=0.025_L	48.19' Storaç .=22.4' S=0.0	ge=15 cf Infl)223 '/' Outfl	ow=0.37 cfs ow=0.36 cfs	1,348 cf 1,342 cf
Pond E3: CB 2078	12.0" Round	Culvert n=0.012 L	Peak Ele 90.0' S=0.0.	v=50.71' Infl)100 '/' Outfl	ow=1.69 cfs ow=1.69 cfs	6,060 cf 6,060 cf
Link PA-1: POA-1				Infl Prima	ow=1.98 cfs ary=1.98 cfs	7,034 cf 7,034 cf
Link PA-2: POA-2				Infl Prima	ow=1.21 cfs ary=1.21 cfs	5,548 cf 5,548 cf
Total Runoff Are	ea = 30,262 st	Runoff Volume 17.80% Pervious	= 14,674 cf = 5,386 sf	Average R 82.20% Imp	unoff Depth pervious = 24	= 5.82'' 4,876 sf

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 50-yr Rainfall=7.44"
Prepared by Horizons Engineering Inc.	Printed 2023-03-24
HydroCAD® 10.10-7a s/n 01179 © 2021 HydroCAD S	oftware Solutions LLC Page 7

Subcatchment 1: Subcatchme	nt 1	Runoff Area	a=13,191 s Tc=6.	f 70.70 .0 min	% Imperv CN=WQ	vious F Runof	Runoff De _l f=1.95 cfs	oth=6.39" 7,022 cf
Subcatchment 2: Subcatchme	nt 2	Runoff Are	ea=2,499 s Tc=6.	f 39.14 .0 min	% Imperv CN=WQ	/ious F Runof	Runoff De _l f=0.33 cfs	oth=5.51" 1,148 cf
Subcatchment 3: Subcatchme	nt 3 (New	Runoff Area	a=5,612 sf Tc=	100.00 6.0 min	0% Imperv CN=98	vious F Runof	Runoff De _l f=0.91 cfs	oth=7.20" 3,367 cf
Subcatchment 4: Subcatchme	nt 4	Runoff Area	a=2,307 sf Tc=	100.00 6.0 min	0% Imperv CN=98	vious F Runof	Runoff De f=0.37 cfs	oth=7.20" 1,384 cf
Subcatchment 7: Subcatchme	nt 7	Runoff Area	a=3,750 sf Tc=	100.00 6.0 min	0% Imperv CN=98	vious F Runof	Runoff De f=0.61 cfs	oth=7.20" 2,250 cf
Subcatchment 8: Subcatchme	nt 8	Runoff Area	a=2,572 sf Tc=	100.00 6.0 min	0% Imperv CN=98	vious F Runof	Runoff De f=0.42 cfs	oth=7.20" 1,543 cf
Subcatchment 9: Subcatchme	nt 9	Runoff Ar	rea=331 sf To	100.00 c=6.0 m	% Imperv in CN=98	vious F 8 Run	Runoff De off=0.05 c	oth=7.20" fs 199 cf
Pond 1P: Permeable pavers Disc	arded=0.02 cf	Peak El s 2,100 cf	ev=51.23' Primary=0.	Storage 36 cfs 2	=1,198 cf 2,651 cf	Inflow Outflow	/=1.28 cfs /=0.38 cfs	4,752 cf 4,752 cf
Pond 2P: PR. CB-2	12.0" Round	Peak Culvert n=0	Elev=48.5 .013 L=44	5' Stora .0' S=0	age=20 cf .0068 '/'	Inflow Outflow	v=0.61 cfs v=0.60 cfs	2,250 cf 2,236 cf
Pond E1: EX. CB-2008	12.0" Round	Peak Culvert n=0	Elev=48.1	9' Stora .4' S=0	age=15 cf .0223 '/'	Inflow Outflow	v=1.36 cfs v=1.36 cfs	6,623 cf 6,617 cf
Pond E2: EX. CB-2293	12.0" Round	Peak Culvert n=0	Elev=48.2 .025 L=22	4' Stora .4' S=0	age=16 cf .0223 '/'	Inflow Outflow	/=0.42 cfs /=0.41 cfs	1,543 cf 1,537 cf
Pond E3: CB 2078	12.0" Round	Culvert n=0	l .012 L=90	Peak El .0' S=0	ev=50.77' .0100 '/'	Inflow Outflow	/=1.95 cfs /=1.95 cfs	7,022 cf 7,022 cf
Link PA-1: POA-1						Inflow Primary	/=2.28 cfs /=2.28 cfs	8,170 cf 8,170 cf
Link PA-2: POA-2						Inflow Primary	v=1.36 cfs v=1.36 cfs	6,617 cf 6,617 cf
Total Runoff Are	a = 30,262 si	Runoff V	olume = 1	6.914 c	f Avera	qe Rur	noff Dept	h = 6.71''

30,262 sf Runoff Volume = 16,914 cf Average Runoff Depth = 6.71" 17.80% Pervious = 5,386 sf 82.20% Impervious = 24,876 sf

NM18054_POST_12	NH-Durham(NOAA) 24-hr S1 100-yr Rainfall=8.44	4"
Prepared by Horizons Engineering Inc.	Printed 2023-03-2	24
HydroCAD® 10.10-7a s/n 01179 © 2021 HydroCAD	Software Solutions LLC Page	8

Subcatchment 1: Subcatchme	nt 1	Runoff Area	a=13,191 si Tc=6.	f 70.70 0 min	% Imperv CN=WQ	rious F Runof	Runoff De f=2.21 cfs	pth=7.36" \$ 8,087 cf
Subcatchment 2: Subcatchme	nt 2	Runoff Are	ea=2,499 st Tc=6.	f 39.14 0 min	% Imperv CN=WQ	rious F Runof	Runoff De f=0.38 cfs	pth=6.45" 3 1,343 cf
Subcatchment 3: Subcatchme	nt 3 (New	Runoff Area	a=5,612 sf Tc=0	100.00 6.0 min	% Imperv CN=98	rious F Runof	Runoff De f=1.02 cfs	pth=8.20" 3,835 cf
Subcatchment 4: Subcatchme	nt 4	Runoff Area	a=2,307 sf Tc=0	100.00 6.0 min	% Imperv CN=98	rious F Runof	Runoff De f=0.42 cfs	pth=8.20" 3 1,576 cf
Subcatchment 7: Subcatchme	nt 7	Runoff Area	a=3,750 sf Tc=6	100.00 6.0 min	% Imperv CN=98	rious F Runof	Runoff De f=0.68 cfs	pth=8.20" \$ 2,562 cf
Subcatchment 8: Subcatchme	nt 8	Runoff Area	a=2,572 sf Tc=(100.00 6.0 min	% Imperv CN=98	vious F Runof	Runoff De f=0.47 cfs	pth=8.20" \$ 1,758 cf
Subcatchment 9: Subcatchme	nt 9	Runoff Ar	ea=331 sf To	100.00 =6.0 mi	% Imperv n CN=98	rious F 8 Run	Runoff De off=0.06 c	pth=8.20" sfs_226 cf
Pond 1P: Permeable pavers Disc	arded=0.02 cf	Peak Ele s 2,125 cf	ev=51.35' \$ Primary=0.3	Storage 39 cfs 3	=1,305 cf 3,286 cf	Inflov Outflov	/=1.44 cfs /=0.41 cfs	5,411 cf 5,411 cf
Pond 2P: PR. CB-2	12.0" Round	Peak Culvert n=0	Elev=48.5 .013 L=44.	9' Stora .0' S=0.	age=20 cf .0068 '/'	Inflov Outflov	v=0.68 cfs v=0.68 cfs	; 2,562 cf ; 2,549 cf
Pond E1: EX. CB-2008	12.0" Round	Peak Culvert n=0	Elev=48.2 .025 L=22.	4' Stora .4' S=0.	age=16 cf .0223 '/'	Inflov Outflov	v=1.51 cfs v=1.51 cfs	7,812 cf 7,806 cf
Pond E2: EX. CB-2293	12.0" Round	Peak Culvert n=0	Elev=48.2 .025 L=22.	9' Stora .4' S=0.	age=16 cf .0223 '/'	Inflov Outflov	/=0.47 cfs /=0.46 cfs	5 1,758 cf 5 1,751 cf
Pond E3: CB 2078	12.0" Round	Culvert n=0	F .012 L=90.	Peak Ele .0' S=0.	ev=50.84' .0100 '/'	Inflov Outflov	/=2.21 cfs /=2.21 cfs	8,087 cf 8,087 cf
Link PA-1: POA-1						Inflov Primar	/=2.60 cfs /=2.60 cfs	\$ 9,429 cf \$ 9,429 cf
Link PA-2: POA-2						Inflov Primar	v=1.51 cfs v=1.51 cfs	37,806 cf 37,806 cf
Total Runoff Are	a = 30,262 st	Runoff V	olume = 19	9 387 c	f Avera	ae Rur	off Dent	h = 7.69"

off Area = 30,262 sf Runoff Volume = 19,387 ct Average Runoff Upptn = ۲.80% Pervious = 5,386 sf 82.20% Impervious = 24,876 sf

Summary for Subcatchment 1: Subcatchment 1

Runoff	=	1.36 cfs @	12.04 hrs,	Volume=	4,763 cf,	Depth=	4.33'
Routed	l to Pond	E3 : CB 207	8				

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"

AI	rea (sf)	CN	Description						
	21	74	>75% Gras	s cover, Go	ood, HSG C				
	3,844	74	>75% Gras	s cover, Go	ood, HSG C				
	560	98	Paved park	ing, HSG C)				
	8,766	98	Paved park	Paved parking & roofs, HSG C					
	13,191		Weighted A	verage					
	3,865	29.30% Pervious Area							
	9,326		70.70% Imp	pervious Ar	ea				
Tc	Length	Slop	e Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/fl	:) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment 1: Subcatchment 1

Summary for Subcatchment 2: Subcatchment 2

Runoff = 0.22 cfs @ 12.04 hrs, Volume= 741 cf, Depth= 3.56" Routed to Link PA-1 : POA-1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs NH-Durham(NOAA) 24-hr S1 10-yr Rainfall=5.29"

A	rea (sf)	CN	Description						
	123	74	>75% Gras	s cover, Go	ood, HSG C				
	1,398	74	>75% Gras	s cover, Go	ood, HSG C				
	310	98	Paved park	ing, HSG C)				
	668	98	Paved park	Paved parking & roofs, HSG C					
	2,499		Weighted A	verage					
	1,521	1,521 60.86% Pervious Area							
	978		39.14% Imp	pervious Ar	ea				
Тс	Length	Slop	e Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/f	:) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment 2: Subcatchment 2

Hydrograph

Summary for Subcatchment 3: Subcatchment 3 (New Bldg)

Runoff = 0.66 cfs @ 12.04 hrs, Volume= Routed to Pond 1P : Permeable pavers 2,363 cf, Depth= 5.05"

Summary for Subcatchment 4: Subcatchment 4

971 cf, Depth= 5.05"

Runoff = 0.27 cfs @ 12.04 hrs, Volume= Routed to Pond 1P : Permeable pavers

Summary for Subcatchment 7: Subcatchment 7

Runoff = 0.44 cfs @ 12.04 hrs, Volume= Routed to Pond 2P : PR. CB-2

1,579 cf, Depth= 5.05"

A	rea (sf)	CN D	escription											
	3,750	98 P	aved park	ing, HSG C)									
	3,750	1	00.00% In	npervious A	\rea									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descript	ion								
6.0					Direct E	ntry,								
			Sul	ocatchme Hydro	ent 7: Su	bcat	chme	ent 7	,					
0.48														📘 Runoff
0.46	\downarrow	0.44 cf	s									—	+-1	
0.44-					- N	lΗ-Dι	irham	n(NO/	AA) 2	24-hı	- S1	10-	yr	
0.42									F	Rain	fall=	=5.2	9''	
0.4								Ru	noff /	Area	=3 '	750	sf	
0.36-									fVal		-4	E 70	J.	
0.34-							П	unor		ume	- 1,:	5/9		
0.32								Rı	unoff	Dep	əth=	-5.0	5''	
0.3-										Т	:=6.	.0 m	in	
<u>ຮ</u> 0.28 ວັດ 26-											C	CN=	98	
≥ 0.20														
<u>6</u> 0.22														
0.2	\downarrow													
0.18-	1/+++													
0.16														
0.14														
0.1-														
0.08														
0.06	¥/+++													
0.04-	Ĭ /		Umm	minin						_				
0.02							/////			1////		7////		
0-	0 2 4 6	8 10 12	14 16 18 2	0 22 24 26 2	8 30 32 34	36 38	40 42	44 46	48 50	52	54 56	6 58	60	
	•			Tin	ne (hours)							.,		

Summary for Subcatchment 8: Subcatchment 8

Runoff = 0.30 cfs @ 12.04 hrs, Volume= Routed to Pond E2 : EX. CB-2293 1,083 cf, Depth= 5.05"

Area (sf)	CN Description								
2,572	98 Paved park	ing, HSG C	;						
2,572	100.00% In	npervious A	rea						
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description						
6.0			Direct Entr	у,					
Subcatchment 8: Subcatchment 8									
		Hydro	graph						
0.22							Runoff		
0.32	0.30 cfs		NH-	Durham(NO	AA) 24-hr S	S1 10-vr			
0.28					Rainfa	II=5.29''			
0.26				Ru	noff Area=	2,572 sf			
0.24				Runof	ff Volume=	1,083 cf			
0.22				R	unoff Dept	h=5.05"			
<u>ج</u> و 0.2					T¢=	6.0 min			
5 0.18						CN=98			
0.14									
0.12									
0.08									
0.06									
0.04									
0.02									
	8 10 12 14 16 18 2	0 22 24 26 2	8 30 32 34 36 3	38 40 42 44 46	18 50 52 54	56 58 60			
0240	5 10 12 14 10 10 2	Tim	ne (hours)	00 -10 -12 -14 40		00 00 00			

Summary for Subcatchment 9: Subcatchment 9

Runoff = 0.04 cfs @ 12.04 hrs, Volume= Routed to Pond E1 : EX. CB-2008 139 cf, Depth= 5.05"

Summary for Pond 1P: Permeable pavers

Applied discharge multiplier of 0,8 to account for horizontal infiltration area loss due to geomembrane. Some infiltration under geomembrane that may occur due to geotextile underlaying, which will allow some in-plane water movement below the membrane. Ignoring this addiitonal infiltration was ignored to be conservative as geotextile will not be selected for in-plane transmissivity.

Inflow Are Inflow Outflow Discarded Primary Routed	ea = 0 = 0 d = 0 = 0 d to Pond E	7,919 sf,100).93 cfs @ 12).29 cfs @ 12).02 cfs @ 6).27 cfs @ 12 E1 : EX. CB-20	0.00% Imperviou 2.04 hrs, Volume 2.20 hrs, Volume 5.44 hrs, Volume 2.20 hrs, Volume 08	s, Inflow Dep = 3,3 = 3,3 = 1,5 = 1,3	th = 5.05" 334 cf 334 cf, Atten 376 cf 359 cf	for 10-yr e = 68%, Lag	vent = 9.6 min		
Routing b Peak Elev	y Dyn-Stor v= 50.92' @	-Ind method, T 0 12.20 hrs S	ime Span= 0.00- urf.Area= 2,144 s	60.00 hrs, dt= sf Storage= \$: 0.01 hrs / 3 935 cf				
Plug-Flow Center-of	v detention -Mass det.	time= 148.5 m time= 148.5 m	in calculated for in (897.5 - 749.0	3,334 cf (100º))	% of inflow)				
Volume	Invert	Avail.Stor	age Storage De	escription					
#1	49.83'	1,71	5 cf Permeable 4,288 cf Ov	e pavers (Pris verall x 40.0%	matic) Listed 6 Voids	below (Rec	;alc)		
Flevation	n Si	ırf Area	Inc Store	Cum Store					
(feet))	(sa-ft)	(cubic-feet)	(cubic-feet)					
10.82	2	2144	0	(00010-1000)					
51 33	2	2,144	3 216	3 2 1 6					
51.66		2,144	708	3 92/					
51.83	3	2,144	364	4,288					
Device	Routing	Invert	Outlet Devices						
#1	Discarded	49.83'	0.500 in/hr Exfil	tration X 0.80	over Horizo	ntal area	Phase-In= 0.01'		
#2	Primary	48.00'	8.0" Round 8"	CPP Outlet Pi	ipe				
#3	Device 2	50.33'	L= 6.3' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 48.00' / 47.87' S= 0.0206 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf 4.0'' Vert. 4'' Underdrain (reservoir stone> structure) C= 0.600 Limited to weir flow at low heads						

Discarded OutFlow Max=0.02 cfs @ 6.44 hrs HW=49.85' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.27 cfs @ 12.20 hrs HW=50.92' TW=47.91' (Dynamic Tailwater) 2=8" CPP Outlet Pipe (Passes 0.27 cfs of 2.70 cfs potential flow) 3=4" Underdrain (reservoir stone --> structure) (Orifice Controls 0.27 cfs @ 3.14 fps)

Pond 1P: Permeable pavers

Summary for Pond 2P: PR. CB-2

Inflow Ar Inflow Outflow Primary Route	ea = = = = ed to Pond	3,750 sf,10 0.44 cfs @ 12 0.44 cfs @ 12 0.44 cfs @ 12 E1 : EX. CB-20	00.00% 2.04 hrs 2.04 hrs 2.04 hrs 2.04 hrs 008	Impervious, s, Volume= s, Volume= s, Volume=	Inflow D	epth = 5 1,579 cf 1,565 cf, 1,565 cf	5.05" Atten	for 1 = 0%,	0-yr e∖ Lag=	vent 0.1 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 48.47' @ 12.04 hrs Surf.Area= 13 sf Storage= 18 cf										
Plug-Flow detention time= 12.8 min calculated for 1,565 cf (99% of inflow) Center-of-Mass det. time= 6.6 min(755.6 - 749.0)										
Volume	Inver	t Avail.Stor	rage S	Storage Desc	cription					
#1	47.00	' 5	54 cf 4	1.00'D x 4.30	'H Vertio	al Cone/	Cylind	er		
Device	Routing	Invert	Outlet	Devices						
#1	Primary	48.10'	12.0'' L= 44 Inlet /	Round 12" 0' CPP, en Outlet Invert	CPP d-sectior = 48.10'	n conform / 47.80'	ning to t	fill, Ko 068 '/	e= 0.5(″ Cc=	00

Primary OutFlow Max=0.44 cfs @ 12.04 hrs HW=48.47' TW=48.07' (Dynamic Tailwater) ☐ 1=12'' CPP (Barrel Controls 0.44 cfs @ 2.50 fps)

Pond 2P: PR. CB-2

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Summary for Pond E1: EX. CB-2008

Inflow Area = 14,572 sf,100.00% Impervious, Inflow Depth = 3.41" for 10-yr event Inflow 0.99 cfs @ 12.04 hrs, Volume= 4.140 cf = Outflow 0.98 cfs @ 12.04 hrs, Volume= 4,134 cf, Atten= 0%, Lag= 0.1 min = 4,134 cf 0.98 cfs @ 12.04 hrs, Volume= Primary = Routed to Link PA-2 : POA-2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 48.07' @ 12.04 hrs Surf Area= 13 sf Storage= 13 cf Plug-Flow detention time= 2.7 min calculated for 4,134 cf (100% of inflow) Center-of-Mass det. time= 1.5 min (772.2 - 770.7) Volume Avail Storage Storage Description Invert #1 47.00' 54 cf 4.00'D x 4.30'H Vertical Cone/Cylinder Device Routing Invert Outlet Devices #1 Primary 47.50' 12.0" Round 12" CMP L= 22.4' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 47.50' / 47.00' S= 0.0223 '/' Cc= 0.900

Primary OutFlow Max=0.98 cfs @ 12.04 hrs HW=48.07' TW=0.00' (Dynamic Tailwater) **1=12'' CMP** (Barrel Controls 0.98 cfs @ 3.04 fps)

Pond E1: EX. CB-2008

n= 0.025 Corrugated metal, Flow Area= 0.79 sf

Summary for Pond E2: EX. CB-2293

Inflow Area = 2,572 sf,100.00% Impervious, Inflow Depth = 5.05" for 10-yr event							
Inflow	=	0.30 cfs @ 12	2.04 hrs, Volume= 1,083 cf				
Outflow	=	0.30 cfs 🥘 12	2.04 hrs, Volume= 1,077 cf, Atten= 1%, Lag= 0.2 min				
Primary	=	0.30 cfs 🥘 12	2.04 hrs, Volume= 1,077 cf				
Route	ed to Pond	E1 : EX. ČB-20	008				
Routing l Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 48.12' @ 12.04 hrs Surf.Area= 13 sf Storage= 14 cf						
Plug-Flov Center-o	w detentior f-Mass det	i time= 10.2 mii . time= 6.0 min	n calculated for 1,077 cf (99% of inflow) (755.0 - 749.0)				
Volume	Inver	t Avail.Stor	rage Storage Description				
#1	47.00	' 5	64 cf 4.00'D x 4.30'H Vertical Cone/Cylinder				
Device	Routing	Invert	Outlet Devices				
#1	Primary	47.50'	12.0" Round 12" CMP				
	L= 22.4' CMP, end-section conforming to fill, Ke= 0.500						
			Inlet / Outlet Invert= 47.50' / 47.00' S= 0.0223 '/' Cc= 0.900				

n= 0.025 Corrugated metal, Flow Area= 0.79 sf

Primary OutFlow Max=0.30 cfs @ 12.04 hrs HW=48.12' TW=48.07' (Dynamic Tailwater) **1=12'' CMP** (Outlet Controls 0.30 cfs @ 0.84 fps)

Pond E2: EX. CB-2293

Summary for Pond E3: CB 2078

[57] Hint: Peaked at 50.62' (Flood elevation advised)

 Inflow Area =
 13,191 sf, 70.70% Impervious, Inflow Depth =
 4.33" for 10-yr event

 Inflow =
 1.36 cfs @
 12.04 hrs, Volume=
 4,763 cf

 Outflow =
 1.36 cfs @
 12.04 hrs, Volume=
 4,763 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.36 cfs @
 12.04 hrs, Volume=
 4,763 cf

 Routed to Link PA-1 : POA-1
 12.04 hrs, Volume=
 4,763 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 50.62' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	50.00'	12.0'' Round Outlet L= 90.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 50.00' / 49.10' S= 0.0100 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf

Primary OutFlow Max=1.35 cfs @ 12.04 hrs HW=50.61' TW=0.00' (Dynamic Tailwater) **1=Outlet** (Inlet Controls 1.35 cfs @ 2.67 fps)

Pond E3: CB 2078

Summary for Link PA-1: POA-1

Inflow /	Area =	15,690 sf, 65.67% Impervious,	Inflow Depth = 4.21"	for 10-yr event
Inflow	=	1.58 cfs @ 12.04 hrs, Volume=	5,505 cf	
Primar	y =	1.58 cfs @ 12.04 hrs, Volume=	5,505 cf, Atten=	: 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs

Link PA-1: POA-1

Summary for Link PA-2: POA-2

Inflow A	Area =	14,572 sf,100.00% Impervious,	Inflow Depth = 3.40" for 10-yr event
Inflow	=	0.98 cfs @ 12.04 hrs, Volume=	4,134 cf
Primary	y =	0.98 cfs @ 12.04 hrs, Volume=	4,134 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs

Link PA-2: POA-2