DRAINAGE ANALYSIS

FOR

Site Expansion for Yates Electric

88A Dover Road Durham, New Hampshire

Tax Map 4, Lot 2

April 7, 2021

Prepared For:

Coyote Court, LLC 82 Chestnut Hill Road Farmington, NH 03855

Prepared By:

ALTUS ENGINEERING, INC.

133 Court Street Portsmouth, NH 03801 Phone: (603) 433-2335

Altus Project 5183

Table of Contents

- Section 1 Narrative Project Description Site Overview Site Soils Proposed Site Design Calculation Methods Disclaimer Drainage Analysis Conclusions
- Section 2 Aerial Photo and USGS Map
- Section 3 Drainage Analysis, Pre-Development
- Section 4 Drainage Analysis, Post-Development
- Section 5 Water Quality Volume / Groundwater Recharge Volume Calculations
- Section 6 Precipitation Table
- Section 7 NRCS Soils Report
- Section 8 Stormwater Operations and Maintenance Plan
- Section 9 Watershed Plans Pre-Development Watershed Plan Post-Development Watershed Plan

Section 1

Narrative

PROJECT DESCRIPTION

Coyote Court, LLC and Yates Electric are proposing to construct an 1,800 sf storage building at their existing site located at 88A Dover Road in Durham, NH. The property is identified as Assessor's Map 4, Lot 2, is approximately 1.97 acres in size and is located in the Town's Office and Research (OR) district. The site is currently developed with a $\pm 2,950$ sf building, a shed, several storage containers and paved parking areas and accessways, including a shared driveway with the Durham Police Department. The site is served by private water and septic services and no structural stormwater measures are evident.

The proposed project will construct a new storage building, an associated paved driveway and install new stormwater treatment measures. These measures will include a vegetated swale, underdrained stone drip strip and a raingarden.

Although impervious surfaces will be increased from the existing conditions by 3,632 sf., the stormwater management system proposed for the site will reduce peak flows and treat runoff from 74% of the site's total impervious areas, including the entirety of new impervious surfaces resulting from the new building and driveway.

Site Soils

The NRCS indicates that the subject property consists of two primary soil classifications:

HcB – Hollis-Charlton fine sandy loam, 3-8% slopes HSG A/D ScA – Scantic silt loam, 0-3% slopes, HSG C ScB – Scantic silt loam, 3-8% slopes, HSG C

For the purposes of this analysis, the range of possible HSG values in the HcB series soils was addressed by classifying all HcB uplands as HSG B and HcB wetlands as HSG C.

Pre-Development (Existing Conditions)

The Pre-Development Watershed Plan (Sheet WS-1) reflects the current conditions of the site which include the existing building and parking areas. The current site can be divided into two (2) subcatchments which discharge to the east to Point of Analysis (POA) #1 (HydroCAD Reach 100) and to the west to Point of Analysis (POA) #2 (HydroCAD Reach 200).

Post-Development (Proposed Conditions)

The proposed project will construct a new building, drainage system and associated site improvements.

As shown on the attached Post-Development Watershed Plan (Sheet WS-2), the site was divided into three (3) subcatchment areas in the post-development conditions. The same points of analysis that were used in the Pre-Development model (POA #'s 1 and 2) were used for comparison of the Pre- and Post-development conditions.

CALCULATION METHODS

The drainage study was completed using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. Reservoir routing was performed with the Dynamic Storage Indication method with automated calculation of tailwater conditions. A Type III 24-hour rainfall distribution was utilized in analyzing the data for the 1", 2, 10 and 25 year - 24-hour storm events using rainfall data provided by the Northeast Regional Climate Center (NRCC).

Disclaimer

Altus Engineering, Inc. notes that stormwater modeling is limited in its capacity to precisely predict peak rates of runoff and flood elevations. Results should not be considered to represent actual storm events due to the number of variables and assumptions involved in the modeling effort. Surface roughness coefficients (n), entrance loss coefficients (ke), velocity factors (kv) and times of concentration (Tc) are based on subjective field observations and engineering judgment using available data. For design purposes, curve numbers (Cn) describe the average conditions. However, curve numbers will vary from storm to storm depending on the antecedent runoff conditions (ARC) including saturation and frozen ground. Also, higher water elevations than predicted by modeling could occur if drainage channels, closed drain systems or culverts are not maintained and/or become blocked by debris before and/or during a storm event as this will impact flow capacity of the structures. Structures should be re-evaluated if future changes occur within relevant drainage areas in order to assess any required design modifications.

Drainage Analysis

A complete summary of the drainage model is included in the appendix of this report. The following table compares pre- and post-development peak rates at the Point of Analysis identified on the plans for the 1", 2, 10 and 25-year storm events:

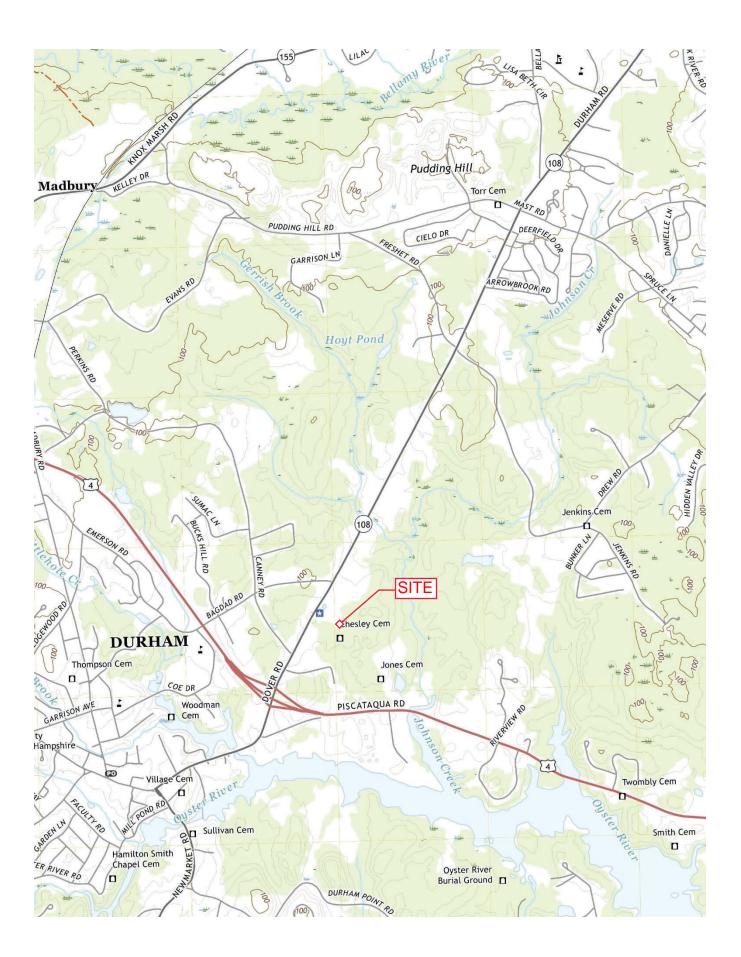
	1" Storm	2-Yr Storm	10-Yr Storm	25-Yr Storm
	(1.00 inch)	(3.14 inch)	(4.75 inch)	(6.02 inch)
POA #1 (Reach #100)				
Pre	0.00	0.19	0.48	0.74
Post	0.00	0.17	0.44	0.67
Change	0.00	-0.02	-0.04	-0.07
POA #2 (Reach #200)				
Pre	0.04	2.84	5.91	8.49
Post	0.01	1.73	5.44	7.98
Change	-0.03	-1.11	-0.47	-0.51

Stormwater Modeling Summary Peak Q (cfs) for Type III 24-Hour Storm Events

As the above table demonstrates, the proposed peak rates of runoff will be decreased from the existing conditions for all analyzed storm events.

Water Quality Volume and Groundwater Recharge Volume

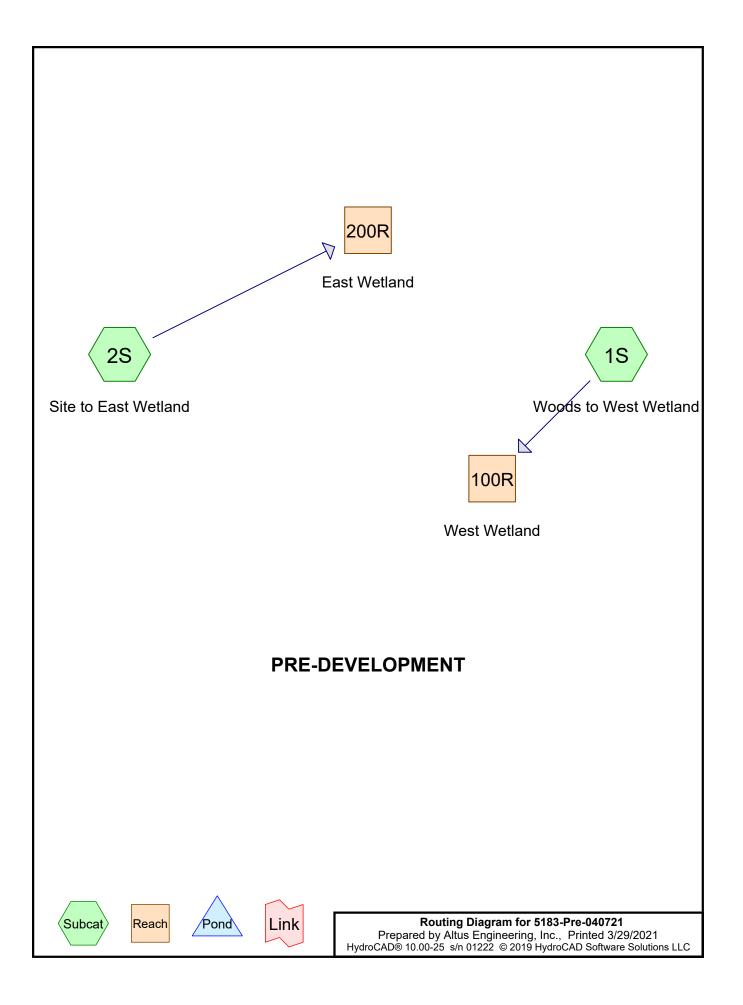
Pursuant to the Durham Site Plan Regulations, runoff from impervious surfaces is required to be filtered or infiltrated using a weighted calculation of Water Quality Volume (WQV) based on hydrologic soil group. As shown in Section 5, the area contributing to the proposed raingarden generates a WQV of 198 cf. The summary for Pond 3 indicates that the proposed raingarden will provide 1,432 cf of available storage between the surface of the filter media and the lowest outlet of the pond, well in excess of the minimum requirement.


CONCLUSION

This proposed addition of a storage building to the Yates Electric site off Dover Road in Durham, NH will have minimal adverse effect on abutting properties and infrastructure as a result of stormwater runoff or siltation. Post-construction peak rates of runoff from the site will be lower than the existing conditions for all analyzed storm events. The new stormwater management system will also provide appropriate treatment to runoff from the proposed and a significant portion of the existing impervious surfaces. Appropriate steps will be taken to properly mitigate erosion and sedimentation through the use of temporary and permanent Best Management Practices for sediment and erosion control, including a vegetated swale, underdrained drip strip and a raingarden.

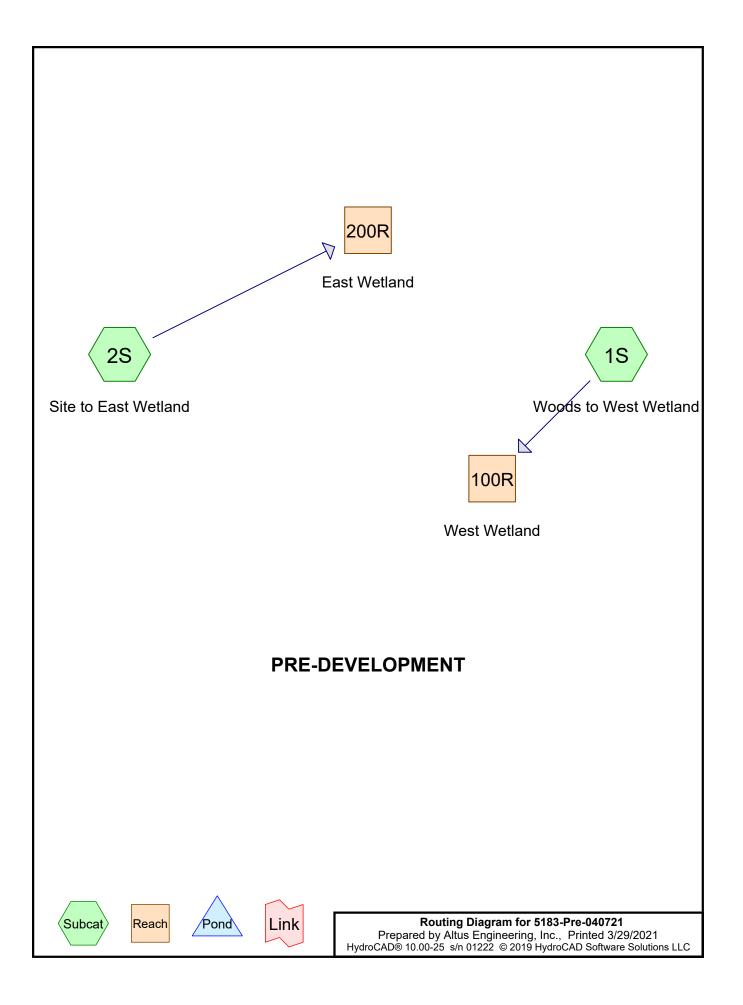
Section 2

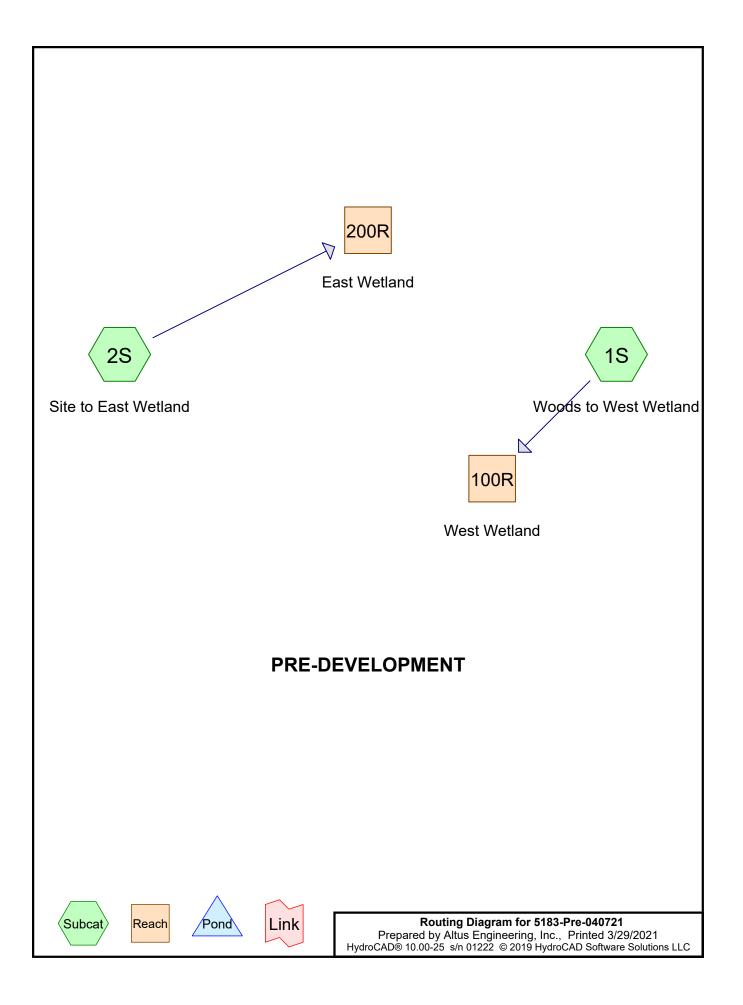
Aerial Photo and USGS Map



Section 4

Drainage Calculations


Post-Development 1", 24-Hour Summary 2-Year, 24-Hour Summary 10-Year, 24-Hour Complete 25-Year, 24-Hour Summary 100-Year, 24-Hour Pond Data



5183-Pre-040721 Prepared by Altus Engineering, Inc. <u>HydroCAD® 10.00-25 s/n 01222 © 2019 Hydr</u>	Type III 24-hr 1" Rainfall=1.00" Printed 3/29/2021 roCAD Software Solutions LLC Page 2
Runoff by SCS T	0-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN d method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: Woods to West Wetla	nd Runoff Area=11,643 sf 0.94% Impervious Runoff Depth>0.01" Flow Length=177' Tc=12.5 min CN=71 Runoff=0.00 cfs 0.000 af
Subcatchment 2S: Site to East Wetland	Runoff Area=87,798 sf 29.11% Impervious Runoff Depth>0.06" Flow Length=370' Tc=6.0 min CN=78 Runoff=0.04 cfs 0.010 af
Reach 100R: West Wetland	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach 200R: East Wetland	Inflow=0.04 cfs 0.010 af Outflow=0.04 cfs 0.010 af

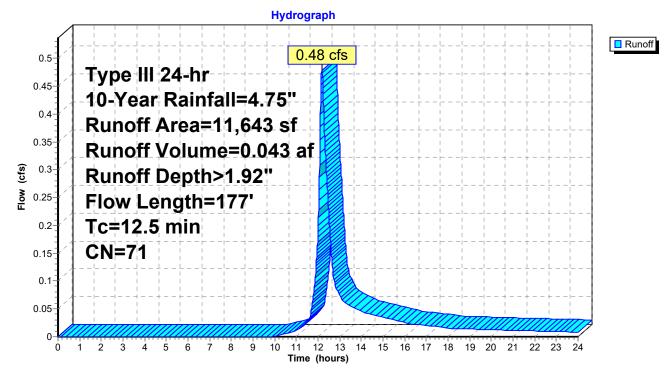
Total Runoff Area = 2.283 acRunoff Volume = 0.010 afAverage Runoff Depth = 0.05"74.19% Pervious = 1.694 ac25.81% Impervious = 0.589 ac

5183-Pre-040721	Type III 24-hr 2-Year Rainfall=3.14"
Prepared by Altus Engineering, Inc.	Printed 3/29/2021
HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solution	ons LLC Page 2
Time span=0.00-24.00 hrs, dt=0.01 h Runoff by SCS TR-20 method, UH=S0 Reach routing by Dyn-Stor-Ind method - Pond roo	CS, Weighted-CN
Subcatchment1S: Woods to West Wetland Runoff Area=11,64 Flow Length=177' To	43 sf 0.94% Impervious Runoff Depth>0.84" =12.5 min CN=71 Runoff=0.19 cfs 0.019 af
	8 sf 29.11% Impervious Runoff Depth>1.23" c=6.0 min CN=78 Runoff=2.84 cfs 0.206 af
Reach 100R: West Wetland	Inflow=0.19 cfs 0.019 af
	Outflow=0.19 cfs 0.019 af
Reach 200R: East Wetland	Inflow=2.84 cfs 0.206 af
	Outflow=2.84 cfs 0.206 af
Total Runoff Area = 2.283 ac Runoff Volume 74.19% Pervious =	U I

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.163	61	>75% Grass cover, Good, HSG B (2S)
0.360	74	>75% Grass cover, Good, HSG C (1S, 2S)
0.029	98	Gravel, HSG C (1S, 2S)
0.129	98	Paved parking, HSG B (2S)
0.318	98	Paved parking, HSG C (2S)
0.040	98	Roofs, HSG B (2S)
0.073	98	Roofs, HSG C (2S)
0.032	55	Woods, Good, HSG B (2S)
1.139	70	Woods, Good, HSG C (1S, 2S)
2.283	77	TOTAL AREA

5183-Pre-040721	Type III 24-hr 10-Year Rainfall=4.75"
Prepared by Altus Engineering, Inc.	Printed 3/29/2021
HydroCAD® 10.00-25 s/n 01222 © 2019 Hyd	roCAD Software Solutions LLC Page 3
Runoff by SCS TI	0-24.00 hrs, dt=0.01 hrs, 2401 points R-20 method, UH=SCS, Weighted-CN d method . Pond routing by Dyn-Stor-Ind method
Subcatchment 1S: Woods to West Wetla	nd Runoff Area=11,643 sf 0.94% Impervious Runoff Depth>1.92" Flow Length=177' Tc=12.5 min CN=71 Runoff=0.48 cfs 0.043 af
Subcatchment 2S: Site to East Wetland	Runoff Area=87,798 sf 29.11% Impervious Runoff Depth>2.50" Flow Length=370' Tc=6.0 min CN=78 Runoff=5.91 cfs 0.420 af
Reach 100R: West Wetland	Inflow=0.48 cfs 0.043 af
	Outflow=0.48 cfs 0.043 af
Reach 200R: East Wetland	Inflow=5.91 cfs 0.420 af Outflow=5.91 cfs 0.420 af
Total Runoff Area = 2.283	ac Runoff Volume = 0.462 af Average Runoff Depth = 2.43" 74.19% Pervious = 1.694 ac 25.81% Impervious = 0.589 ac

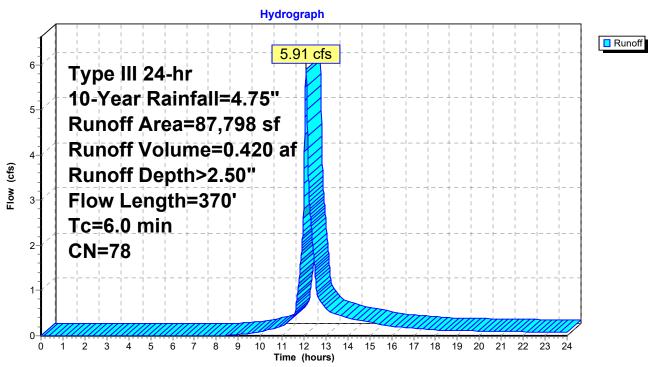

Summary for Subcatchment 1S: Woods to West Wetland

Runoff = 0.48 cfs @ 12.18 hrs, Volume= 0.043 af, Depth> 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.75"

_	A	rea (sf)	CN [Description		
*		110	98 (Gravel, HS	GC	
		1,106	74 >	75% Gras	s cover, Go	ood, HSG C
_		10,427	70 \	Voods, Go	od, HSG C	
		11,643	71 \	Veighted A	verage	
		11,533	ç	9.06% Pe	vious Area	
		110	().94% Impe	ervious Are	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.4	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.25"
	2.1	127	0.0404	1.00		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	12.5	177	Total			

Subcatchment 1S: Woods to West Wetland

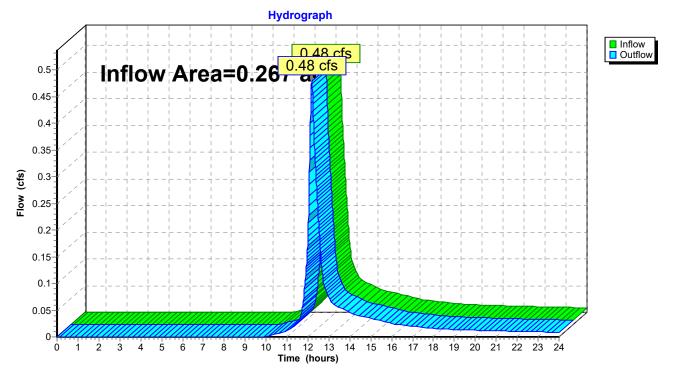


Summary for Subcatchment 2S: Site to East Wetland

Runoff = 5.91 cfs @ 12.09 hrs, Volume= 0.420 af, Depth> 2.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.75"

	Area (sf)	CN [Description		
	13,838	98 F	Paved park	ing, HSG C	
	5,637	98 F	Paved park	ing, HSG E	3
*	1,146	98 (Gravel, HS	GČ	
	3,192	98 F	Roofs, HSC	ЭC	
	1,741	98 F	Roofs, HSC	βB	
	14,573	74 >	>75% Gras	s cover, Go	bod, HSG C
	39,186		,	od, HSG C	
	7,109				bod, HSG B
	1,376	55 V	Voods, Go	od, HSG B	
	87,798		Veighted A		
	62,244	7	70.89% Pe	rvious Area	l
	25,554	2	29.11% Imp	pervious Ar	ea
_		01		o	
	Fc Length	Slope			Description
<u>(mi</u>		(ft/ft)	(ft/sec)	(cfs)	
0	.7 50	0.0200	1.21		Sheet Flow,
	o 07		4.05		Smooth surfaces n= 0.011 P2= 3.25"
0	.3 97	0.0571	4.85		Shallow Concentrated Flow,
0	0 450	0.0500	0.40		Paved Kv= 20.3 fps
0	.8 156				
	.0 100	0.0522	3.43		Shallow Concentrated Flow,
1					Grassed Waterway Kv= 15.0 fps
1	.6 67	0.0322	0.69		Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,
		0.0188	0.69		Grassed Waterway Kv= 15.0 fps

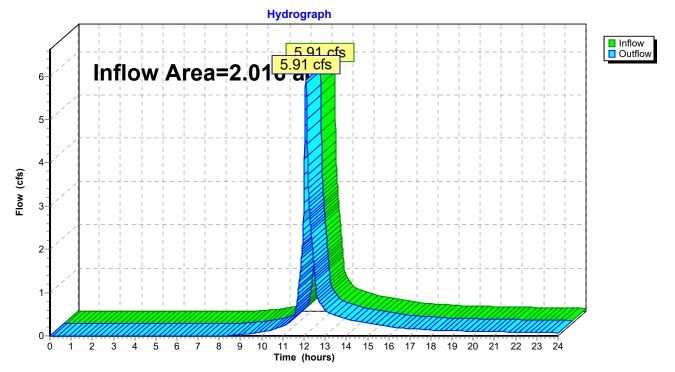


Subcatchment 2S: Site to East Wetland

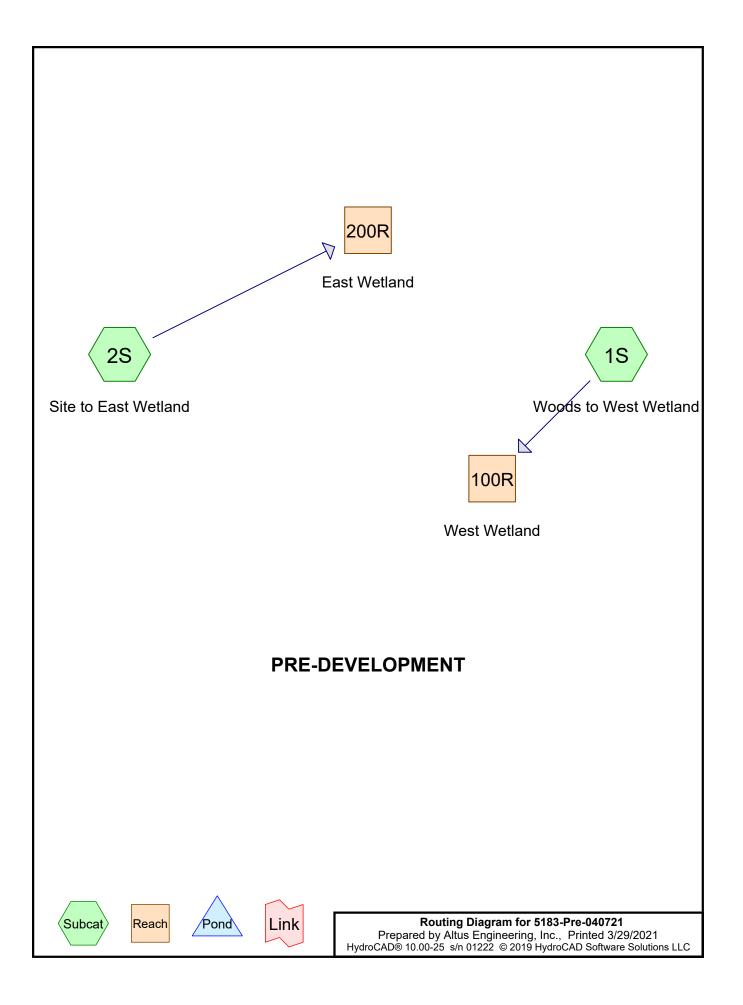
Summary for Reach 100R: West Wetland

Inflow Area	a =	0.267 ac,	0.94% Impervious,	Inflow Depth > 1.	.92" for 10-Year event
Inflow	=	0.48 cfs @	12.18 hrs, Volume	= 0.043 af	
Outflow	=	0.48 cfs @	12.18 hrs, Volume	= 0.043 af	, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



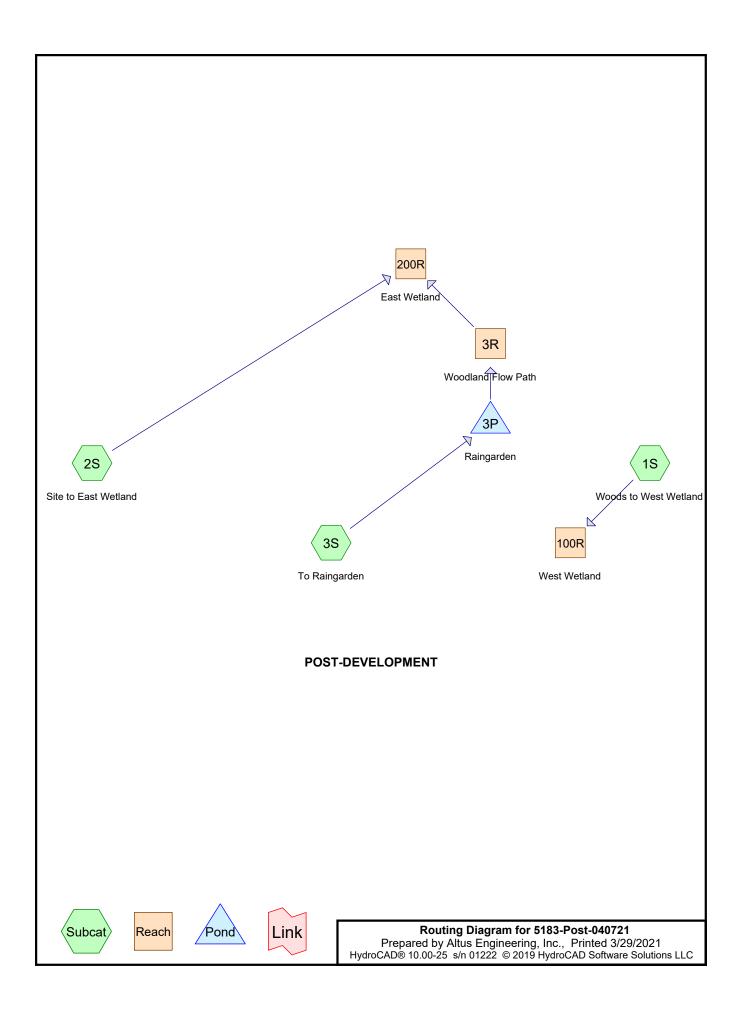
Reach 100R: West Wetland


Summary for Reach 200R: East Wetland

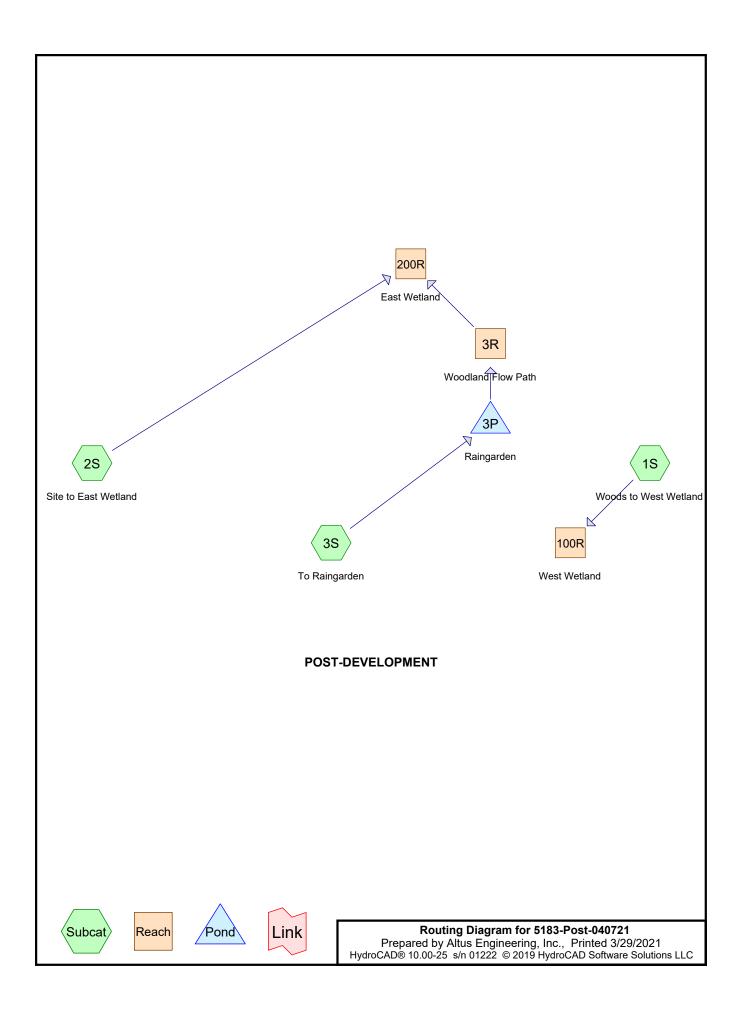
Inflow Area	a =	2.016 ac, 29.11% Impervious, Inflow Depth > 2.50" for 10-Year even	nt
Inflow	=	5.91 cfs @ 12.09 hrs, Volume= 0.420 af	
Outflow	=	5.91 cfs $\overline{@}$ 12.09 hrs, Volume= 0.420 af, Atten= 0%, Lag= 0.0) min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

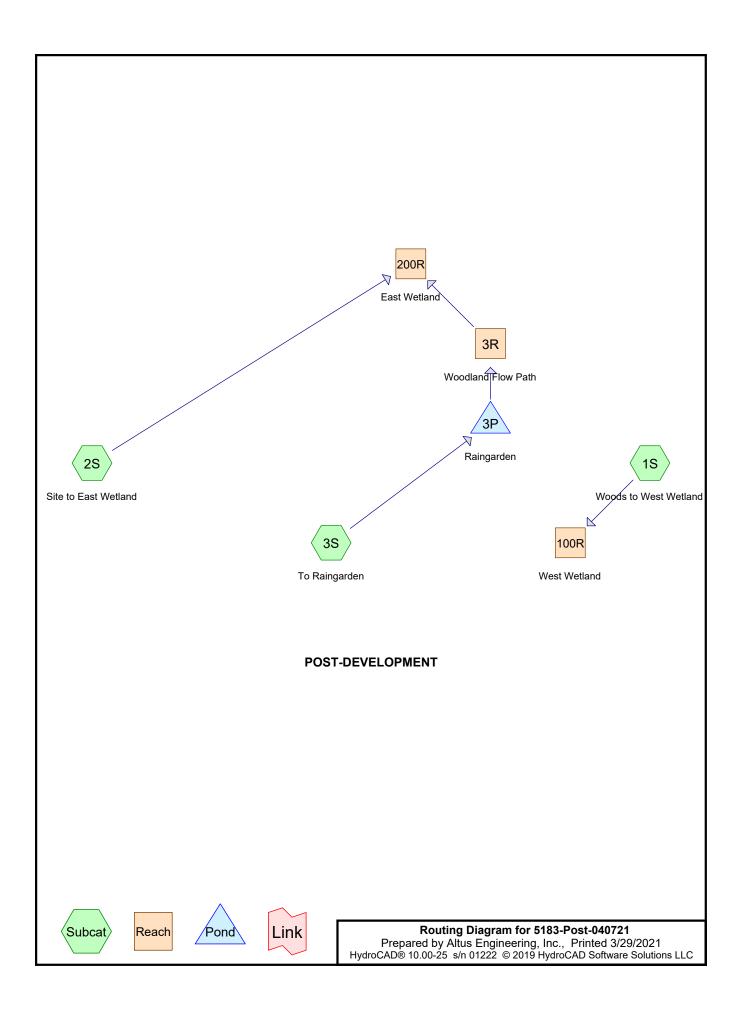
Reach 200R: East Wetland


5183-Pre-040721	Type III 24-hr 25-Year Rainfall=6.02"
Prepared by Altus Engineering, Inc.	Printed 3/29/2021
HydroCAD® 10.00-25 s/n 01222 © 2019 Hydro	CAD Software Solutions LLC Page 2
Runoff by SCS TR	24.00 hrs, dt=0.01 hrs, 2401 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
	d Runoff Area=11,643 sf 0.94% Impervious Runoff Depth>2.91" Flow Length=177' Tc=12.5 min CN=71 Runoff=0.74 cfs 0.065 af
Subcatchment 2S: Site to East Wetland	Runoff Area=87,798 sf 29.11% Impervious Runoff Depth>3.59" Flow Length=370' Tc=6.0 min CN=78 Runoff=8.49 cfs 0.603 af
Reach 100R: West Wetland	Inflow=0.74 cfs_0.065 af
	Outflow=0.74 cfs 0.065 af
Reach 200R: East Wetland	Inflow=8.49 cfs 0.603 af Outflow=8.49 cfs 0.603 af
	c Runoff Volume = 0.668 af Average Runoff Depth = 3.51" 74.19% Pervious = 1.694 ac 25.81% Impervious = 0.589 ac

Section 3


Drainage Calculations

Pre-Development 1", 24-Hour Summary 2-Year, 24-Hour Summary 10-Year, 24-Hour Complete 25-Year, 24-Hour Summary



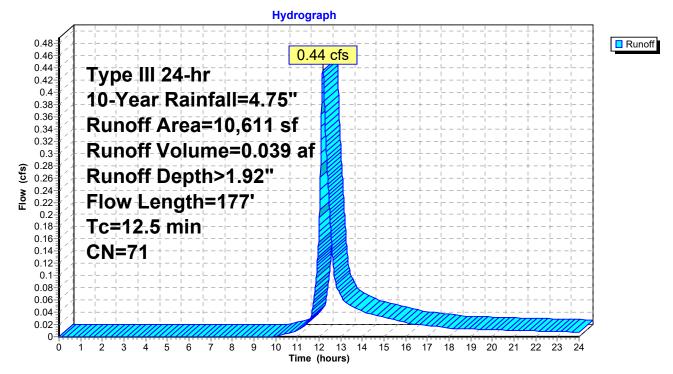
5183-Post-040721 Prepared by Altus Engineering, Inc. <u>HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solutions LLC</u>	<i>Type III 24-hr 1" Rainfall=1.00"</i> Printed 3/29/2021 C Page 2
Time span=0.00-24.00 hrs, dt=0.01 hrs, 24 Runoff by SCS TR-20 method, UH=SCS, We Reach routing by Dyn-Stor-Ind method - Pond routing b	eighted-CN
Subcatchment 1S: Woods to West Wetland Runoff Area=10,611 sf Flow Length=177' Tc=12.5 r	1.04% Impervious Runoff Depth>0.01" min CN=71 Runoff=0.00 cfs 0.000 af
	0.43% Impervious Runoff Depth>0.03" min CN=75 Runoff=0.01 cfs 0.004 af
	5.07% Impervious Runoff Depth>0.28" min CN=89 Runoff=0.17 cfs 0.013 af
Reach 3R: Woodland Flow PathAvg. Flow Depth=0.00' Maxn=0.070L=99.0' S=0.0364 '/' Capacity	Vel=0.00 fps Inflow=0.00 cfs 0.000 af y=15.76 cfs Outflow=0.00 cfs 0.000 af
Reach 100R: West Wetland	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach 200R: East Wetland	Inflow=0.01 cfs 0.004 af Outflow=0.01 cfs 0.004 af
Pond 3P: RaingardenPeak Elev=66.65' StoDiscarded=0.01 cfs0.010 afPrimary=0.00 cfs	orage=781 cf Inflow=0.17 cfs 0.013 af fs 0.000 af Outflow=0.01 cfs 0.010 af
Total Runoff Area = 2.283 ac Runoff Volume = 0.01 70.54% Pervious = 1.610	U 1

5183-Post-040721 Prepared by Altus Engineering, Inc. <u>HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solution</u>	Type III 24-hr 2-Year Rainfall=3.14" Printed 3/29/2021 ns LLC Page 2
Time span=0.00-24.00 hrs, dt=0.01 hr Runoff by SCS TR-20 method, UH=SC Reach routing by Dyn-Stor-Ind method - Pond rou	S, Weighted-CN
Subcatchment 1S: Woods to West Wetland Runoff Area=10,61 Flow Length=177' Tc=	1 sf 1.04% Impervious Runoff Depth>0.84" =12.5 min CN=71 Runoff=0.17 cfs 0.017 af
	sf 20.43% Impervious Runoff Depth>1.05" c=6.0 min CN=75 Runoff=1.73 cfs 0.129 af
	sf 65.07% Impervious Runoff Depth>2.02" c=6.0 min CN=89 Runoff=1.34 cfs 0.096 af
	Max Vel=0.66 fps Inflow=0.50 cfs 0.049 af apacity=15.76 cfs Outflow=0.49 cfs 0.049 af
Reach 100R: West Wetland	Inflow=0.17 cfs 0.017 af Outflow=0.17 cfs 0.017 af
Reach 200R: East Wetland	Inflow=1.73 cfs 0.178 af Outflow=1.73 cfs 0.178 af
	' Storage=2,279 cf Inflow=1.34 cfs 0.096 af 0.50 cfs 0.049 af Outflow=0.51 cfs 0.063 af
Total Runoff Area = 2.283 ac Runoff Volume = 70.54% Pervious = 7	U 1

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.161	61	>75% Grass cover, Good, HSG B (2S)
0.336	74	>75% Grass cover, Good, HSG C (1S, 2S, 3S)
0.025	98	Gravel, HSG C (1S, 3S)
0.129	98	Paved parking, HSG B (2S)
0.362	98	Paved parking, HSG C (2S, 3S)
0.040	98	Roofs, HSG B (2S)
0.116	98	Roofs, HSG C (2S, 3S)
0.034	55	Woods, Good, HSG B (2S, 3S)
1.079	70	Woods, Good, HSG C (1S, 2S, 3S)
2.283	78	TOTAL AREA

5183-Post-040721 Prepared by Altus Engineering, Inc.	Type III 24-hr 10-Year Rainfall=4.75" Printed 3/29/2021
HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solut	tions LLC Page 3
Time span=0.00-24.00 hrs, dt=0.01 Runoff by SCS TR-20 method, UH=S Reach routing by Dyn-Stor-Ind method - Pond ro	CS, Weighted-CN
Subcatchment1S: Woods to West Wetland Runoff Area=10, Flow Length=177' T	611 sf 1.04% Impervious Runoff Depth>1.92" c=12.5 min CN=71 Runoff=0.44 cfs 0.039 af
	03 sf 20.43% Impervious Runoff Depth>2.25" Tc=6.0 min CN=75 Runoff=3.86 cfs 0.275 af
	27 sf 65.07% Impervious Runoff Depth>3.53" Tc=6.0 min CN=89 Runoff=2.29 cfs 0.167 af
	5' Max Vel=1.06 fps Inflow=1.89 cfs 0.120 af Capacity=15.76 cfs Outflow=1.86 cfs 0.119 af
Reach 100R: West Wetland	Inflow=0.44 cfs 0.039 af Outflow=0.44 cfs 0.039 af
Reach 200R: East Wetland	Inflow=5.44 cfs 0.395 af Outflow=5.44 cfs 0.395 af
	79' Storage=2,637 cf Inflow=2.29 cfs 0.167 af /=1.89 cfs 0.120 af Outflow=1.90 cfs 0.134 af
Total Runoff Area = 2.283 ac Runoff Volum 70.54% Pervious =	

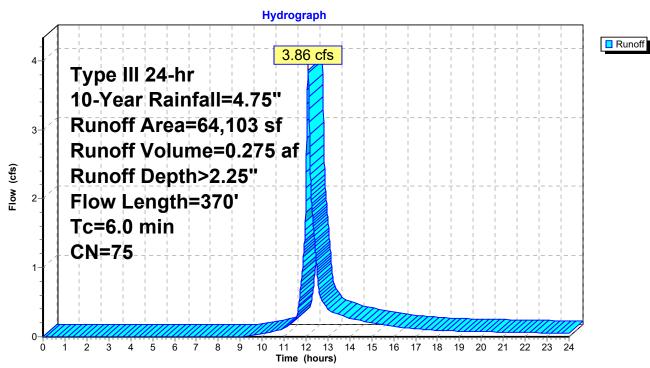

Summary for Subcatchment 1S: Woods to West Wetland

Runoff = 0.44 cfs @ 12.18 hrs, Volume= 0.039 af, Depth> 1.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.75"

_	A	rea (sf)	CN I	Description		
*		110	98 (Gravel, HS	GC	
		1,007	74 >	>75% Gras	s cover, Go	bod, HSG C
_		9,494	70 \	Noods, Go	od, HSG C	
		10,611	71 \	Neighted A	verage	
		10,501	ę	98.96% Pei	rvious Area	
		110	1.04% Impervious Area			à
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.4	50	0.0300	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.25"
	2.1	127	0.0404	1.00		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	12.5	177	Total			

Subcatchment 1S: Woods to West Wetland



Summary for Subcatchment 2S: Site to East Wetland

Runoff = 3.86 cfs @ 12.09 hrs, Volume= 0.275 af, Depth> 2.25"

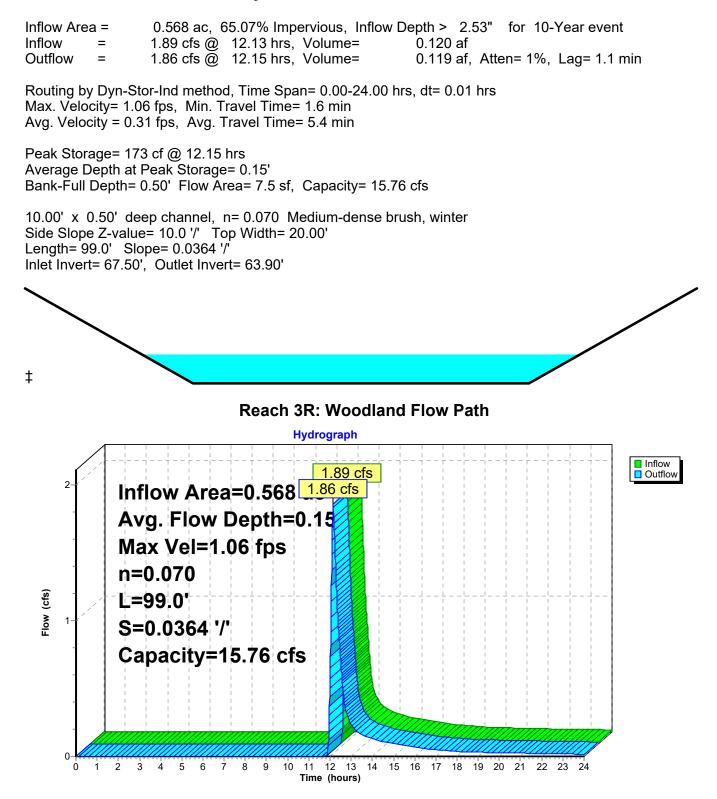
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.75"

	rea (sf)	CN E	Description			
	4,238	98 F	aved park	ing, HSG C	;	
	5,637	98 F	aved park	ing, HSG B		
	1,479	98 F	Roofs, HSG	G Č		
	1,741		Roofs, HSG			
	11,238				ood, HSG C	
	31,377			od, HSG C		
	7,017				ood, HSG B	
	1,376		,	od, HSG B		
	64,103		Veighted A	•		
51,008 79.57% Pervious Area						
13,095 20.43% Impervious Area				pervious Ar	ea	
т						
10	I onath	Slone	Velocity	Canacity	Description	
Tc (min)	•	Slope (ft/ft)	Velocity (ft/sec)		Description	
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)		
	-				Description Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25"	
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25"	
<u>(min)</u> 0.7	(feet) 50	(ft/ft) 0.0200	(ft/sec) 1.21		Sheet Flow,	
<u>(min)</u> 0.7	(feet) 50	(ft/ft) 0.0200	(ft/sec) 1.21		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25" Shallow Concentrated Flow,	
(min) 0.7 0.3 0.8	(feet) 50 97	(ft/ft) 0.0200 0.0571 0.0522	(ft/sec) 1.21 4.85 3.43		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps	
(min) 0.7 0.3	(feet) 50 97	(ft/ft) 0.0200 0.0571	(ft/sec) 1.21 4.85		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,	
(min) 0.7 0.3 0.8 1.6	(feet) 50 97 156	(ft/ft) 0.0200 0.0571 0.0522	(ft/sec) 1.21 4.85 3.43		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps	
(min) 0.7 0.3 0.8	(feet) 50 97 156	(ft/ft) 0.0200 0.0571 0.0522 0.0188	(ft/sec) 1.21 4.85 3.43 0.69	(cfs)	Sheet Flow, Smooth surfaces n= 0.011 P2= 3.25" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,	

Subcatchment 2S: Site to East Wetland

Summary for Subcatchment 3S: To Raingarden

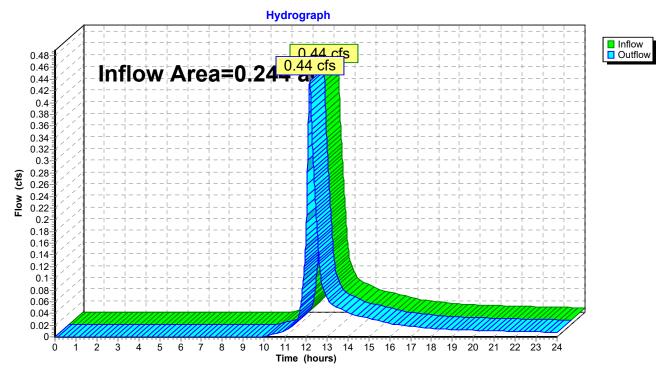
Runoff = 2.29 cfs @ 12.09 hrs, Volume= 0.167 af, Depth> 3.53"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10-Year Rainfall=4.75"

	A	rea (sf)	CN [Description						
		11,550	98 F	98 Paved parking, HSG C						
		3,554	98 F	Roofs, HSC	G Č					
*		987	98 (Gravel, HS	GC					
		6,133	70 V	Voods, Go	od, HSG C					
		2,411	74 >	75% Gras	s cover, Go	bod, HSG C				
		92	55 V	Voods, Go	od, HSG B					
		24,727	89 V	Veighted A	verage					
		8,636	3	4.93% Per	vious Area					
		16,091	6	5.07% Imp	pervious Are	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	3.7	49	0.0555	0.22		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.25"				
	1.4	199	0.0134	2.35		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	0.9	57	0.0050	1.06		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	6.0	305	Total							

Hydrograph Runoff 2.29 cfs Type III 24-hr 10-Year Rainfall=4.75" 2-Runoff Area=24,727 sf Runoff Volume=0.167 af Runoff Depth>3.53" Flow (cfs) Flow Length=305' Tc=6.0 min **CN=89** 0-1 2 7 10 14 15 16 17 18 19 20 21 22 23 ò ż 4 5 6 8 ģ 11 12 13 24 Time (hours)

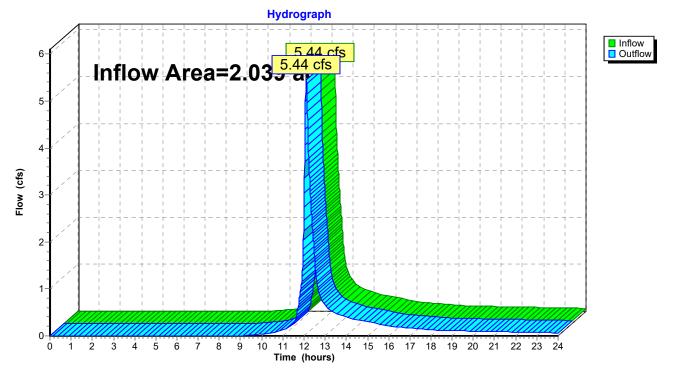
Subcatchment 3S: To Raingarden


Summary for Reach 3R: Woodland Flow Path

Summary for Reach 100R: West Wetland

Inflow Area	a =	0.244 ac,	1.04% Impervious, Inflow	Depth > 1.92"	for 10-Year event
Inflow	=	0.44 cfs @	12.18 hrs, Volume=	0.039 af	
Outflow	=	0.44 cfs @	12.18 hrs, Volume=	0.039 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



Reach 100R: West Wetland

Summary for Reach 200R: East Wetland

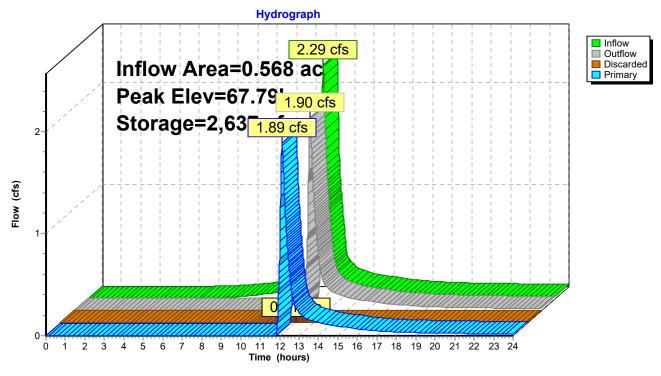
Inflow Area	=	2.039 ac, 32	2.86% Imper\	vious, Inflow I	Depth > 2.32	" for 10-Year event
Inflow	=	5.44 cfs @	12.11 hrs, V	'olume=	0.395 af	
Outflow	=	5.44 cfs @	12.11 hrs, V	'olume=	0.395 af, <i>A</i>	Atten= 0%, Lag= 0.0 min

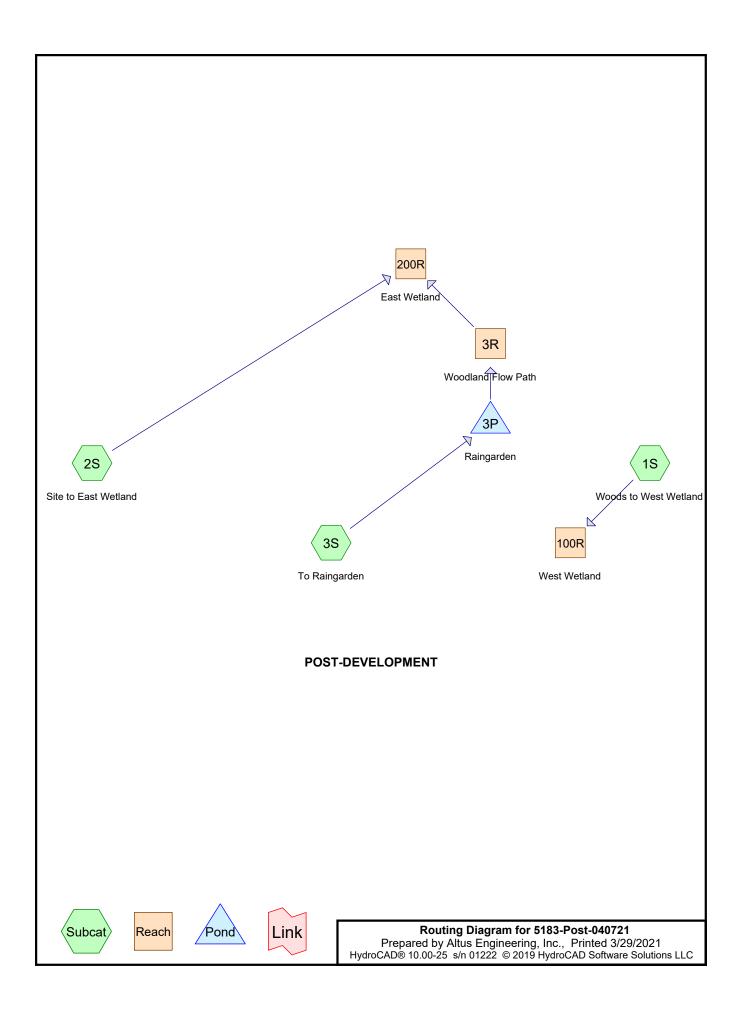
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Reach 200R: East Wetland

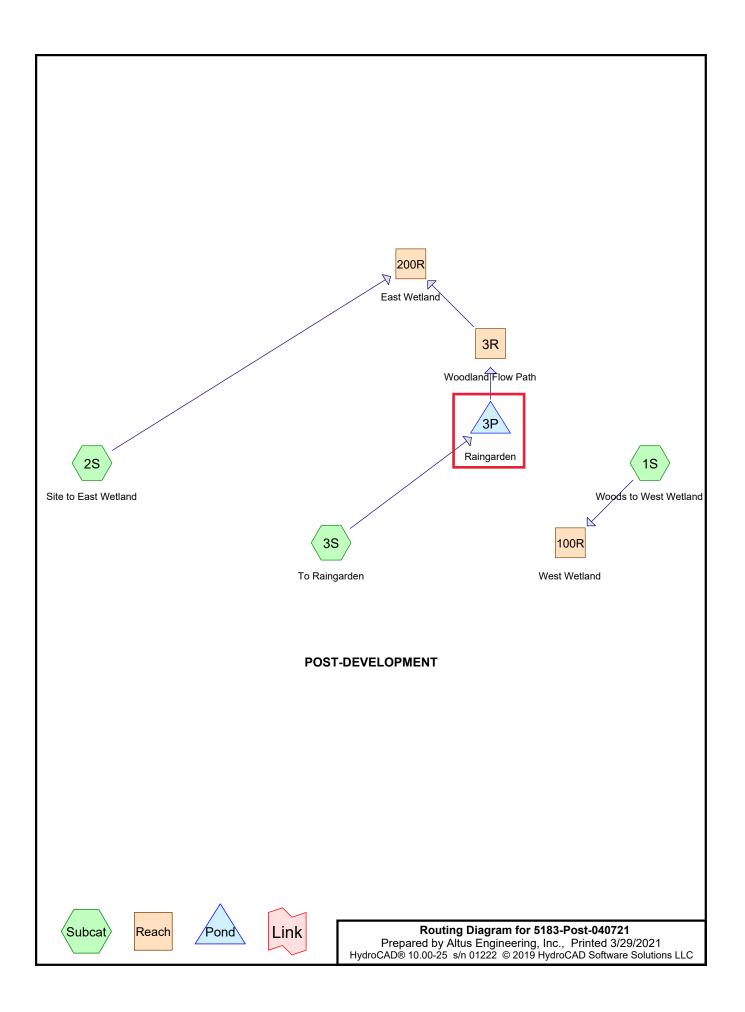
Summary for Pond 3P: Raingarden

Inflow Area =	0.568 ac, 65.07% Impervious, Inflow De	epth > 3.53" for 10-Year event
Inflow =	2.29 cfs @ 12.09 hrs, Volume=	0.167 af
Outflow =	1.90 cfs @ 12.13 hrs, Volume=	0.134 af, Atten= 17%, Lag= 2.9 min
Discarded =	0.01 cfs @ 12.14 hrs, Volume=	0.014 af
Primary =	1.89 cfs $\overline{@}$ 12.13 hrs, Volume=	0.120 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Starting Elev= 66.50' Surf.Area= 1,061 sf Storage= 610 cf Peak Elev= 67.79' @ 12.14 hrs Surf.Area= 2,310 sf Storage= 2,637 cf (2,027 cf above start) Flood Elev= 68.00' Surf.Area= 2,664 sf Storage= 3,167 cf (2,557 cf above start)


Plug-Flow detention time= 153.9 min calculated for 0.120 af (72% of inflow) Center-of-Mass det. time= 36.4 min (832.0 - 795.6)

Volume	Inve	ert Ava	il.Storage	e Storage Descri	iption		
#1	63.7	5'	3,167 c	f Custom Stage	e Data (Prismatic)L	isted below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
63.7		1,061	0.0	0	0		
64.7	75	1,061	40.0	424	424		
65.0	00	1,061	40.0	106	531		
66.5	50	1,061	5.0	80	610		
67.0	00	1,417	100.0	620	1,230		
67.5	50	1,834	100.0	813	2,042		
68.0	00	2,664	100.0	1,125	3,167		
Device	Routing	In	vert Ou	Itlet Devices			
#1	Primary	67	.50' 6.)' long x 4.0' bre	adth Broad-Creste	ed Rectangular Weir	
	-		He	ead (feet) 0.20 0.	40 0.60 0.80 1.00	1.20 1.40 1.60 1.80 2.00	
			2.5	50 3.00 3.50 4.0	0 4.50 5.00 5.50		
			Co	ef. (English) 2.38	3 2.54 2.69 2.68	2.67 2.67 2.65 2.66 2.66	
			2.0	68 2.72 2.73 2.7	6 2.79 2.88 3.07	3.32	
#2	Discarde	d 63	8.75' 0. 2	200 in/hr Exfiltrat	ion over Surface a	irea	
Discord	Disported OutFlow Max-0.01 of (2.14) hrs. $HW=67.70!$ (Erec Displaying)						


Discarded OutFlow Max=0.01 cfs @ 12.14 hrs HW=67.79' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=1.87 cfs @ 12.13 hrs HW=67.79' TW=67.65' (Dynamic Tailwater) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 1.87 cfs @ 1.09 fps) Pond 3P: Raingarden

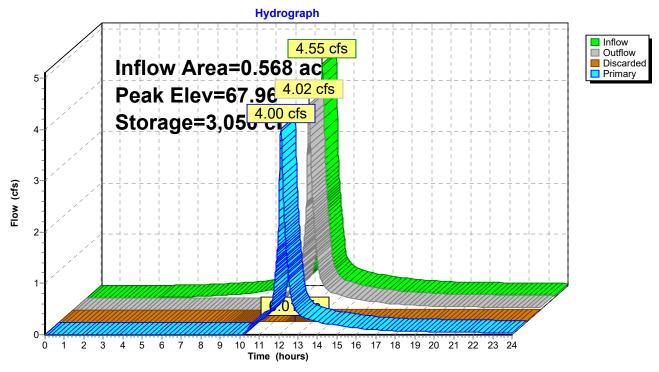
5183-Post-040721 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-25 s/n 01222 © 2019 HydroCAD Software Solut	Type III 24-hr 25-Year Rainfall=6.02" Printed 3/29/2021 tions LLC Page 2
Time span=0.00-24.00 hrs, dt=0.01 Runoff by SCS TR-20 method, UH=S Reach routing by Dyn-Stor-Ind method - Pond ro	SCS, Weighted-CN
Subcatchment 1S: Woods to West Wetland Runoff Area=10, Flow Length=177' T	611 sf 1.04% Impervious Runoff Depth>2.91" ⁻ c=12.5 min CN=71 Runoff=0.67 cfs 0.059 af
	03 sf 20.43% Impervious Runoff Depth>3.30" Tc=6.0 min CN=75 Runoff=5.70 cfs 0.404 af
	27 sf 65.07% Impervious Runoff Depth>4.75" Tc=6.0 min CN=89 Runoff=3.04 cfs 0.225 af
	8' Max Vel=1.19 fps Inflow=2.61 cfs 0.177 af Capacity=15.76 cfs Outflow=2.58 cfs 0.177 af
Reach 100R: West Wetland	Inflow=0.67 cfs 0.059 af Outflow=0.67 cfs 0.059 af
Reach 200R: East Wetland	Inflow=7.98 cfs 0.581 af Outflow=7.98 cfs 0.581 af
· · · · J· · ·	85' Storage=2,788 cf Inflow=3.04 cfs 0.225 af y=2.61 cfs 0.177 af Outflow=2.62 cfs 0.191 af
Total Runoff Area = 2.283 ac Runoff Volum 70.54% Pervious =	v 1

Summary for Pond 3P: Raingarden

Inflow Area =	0.568 ac, 65.07% Impervious, Inflow De	epth > 7.30" for 100-Year event
Inflow =	4.55 cfs @ 12.08 hrs, Volume=	0.345 af
Outflow =	4.02 cfs @ 12.12 hrs, Volume=	0.311 af, Atten= 12%, Lag= 2.3 min
Discarded =	0.01 cfs @ 12.13 hrs, Volume=	0.015 af
Primary =	4.00 cfs $\overline{@}$ 12.12 hrs, Volume=	0.297 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Starting Elev= 66.50' Surf.Area= 1,061 sf Storage= 610 cf Peak Elev= 67.96' @ 12.13 hrs Surf.Area= 2,590 sf Storage= 3,050 cf (2,439 cf above start) Flood Elev= 68.00' Surf.Area= 2,664 sf Storage= 3,167 cf (2,557 cf above start)

Plug-Flow detention time= 105.3 min calculated for 0.297 af (86% of inflow) Center-of-Mass det. time= 32.1 min (808.4 - 776.2)


Volume	Inve	ert Ava	il.Stora	ge Storage Desc	ription		
#1	63.7	5'	3,167	cf Custom Stag	e Data (Prismatio) Listed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)		Cum.Store (cubic-feet)		
63.7		1,061	0.0		0		
64.7	'5	1,061	40.0	424	424		
65.0	00	1,061	40.0		531		
66.5	50	1,061	5.0	80	610		
67.0	00	1,417	100.0		1,230		
67.5	50	1,834	100.0	813	2,042		
68.0	00	2,664	100.0	1,125	3,167		
Device	Routing	In	vert (Outlet Devices			
#1	Primary	67	'.50' (6.0' long x 4.0' bre	eadth Broad-Cres	ted Rectangular Weir	
			I	Head (feet) 0.20 0	.40 0.60 0.80 1.	00 1.20 1.40 1.60 1.80 2.00	
				2.50 3.00 3.50 4.0	00 4.50 5.00 5.5	0	
			(Coef. (English) 2.3	8 2.54 2.69 2.68	3 2.67 2.67 2.65 2.66 2.66	
				2.68 2.72 2.73 2.7	76 2.79 2.88 3.0	7 3.32	
#2	Discardeo	d 63	8.75' ().200 in/hr Exfiltra	tion over Surface	e area	
Discord	Disported OutFlow Max-0.01 of $(2, 12, 12, 12, 14, 14)$ (Erec Displayers)						

Discarded OutFlow Max=0.01 cfs @ 12.13 hrs HW=67.96' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=3.98 cfs @ 12.12 hrs HW=67.95' TW=67.73' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 3.98 cfs @ 1.46 fps)

Type III 24-hr 100-Year Rainfall=8.63" Printed 3/29/2021 ons LLC Page 2

Section 5

Water Quality Volume and Groundwater Recharge Volume Calculations

Water Quality Volume for Groundwater Recharge Calculations (Durham, NH)

Yates Electric 88A Dover Road Durham, NH Altus Project 5183

To Raingarden (HydroCAD Pond 3P)

HSG	Area (ac)	Ratio (Rd)	GRV	
А	0	1	0.000 in	Area*Ratio
В	0	0.75	0.000 in	Area*Ratio
С	0.369	0.4	0.148 in	Area*Ratio
D	0	0.16	0.000 in	Area*Ratio
Area (Al):	0.369		0.148 in	Weighted Rd = Sum of GRV's
			0.054 ac-in	GRV = AI*Rd
			197.70 cf	GRV Conversion (ac-in x 43560sf/ac x 1'/12")

Summary for Pond 3P: Raingarden

Inflow Area =	0.568 ac, 65.07% Impervious, Inflow De	epth > 3.53" for 10-Year event
Inflow =	2.29 cfs @ 12.09 hrs, Volume=	0.167 af
Outflow =	1.90 cfs @ 12.13 hrs, Volume=	0.134 af, Atten= 17%, Lag= 2.9 min
Discarded =	0.01 cfs @ 12.14 hrs, Volume=	0.014 af
Primary =	1.89 cfs @ 12.13 hrs, Volume=	0.120 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Starting Elev= 66.50' Surf.Area= 1,061 sf Storage= 610 cf Peak Elev= 67.79' @ 12.14 hrs Surf.Area= 2,310 sf Storage= 2,637 cf (2,027 cf above start) Flood Elev= 68.00' Surf.Area= 2,664 sf Storage= 3,167 cf (2,557 cf above start)

Plug-Flow detention time= 153.9 min calculated for 0.120 af (72% of inflow) Center-of-Mass det. time= 36.4 min (832.0 - 795.6)

Volume	e Inve	ert Ava	il.Storag	e Storage Descr	iption	
#1	63.7	'5'	3,167 0	of Custom Stage	e Data (Prismatic	Listed below (Recalc)
Elevati (fe 63. 64. 65. 66. 67. 67. 67. 68.	et) 75 75 00 50 00 50	Surf.Area (sq-ft) 1,061 1,061 1,061 1,061 1,417 1,834 2,664	Voids (%) 0.0 40.0 40.0 5.0 100.0 100.0 100.0	Inc.Store (cubic-feet) 0 424 106 80 620 813 1,125	Cum.Store (cubic-feet) 0 424 531 610 1,230 2,042 3,167	66.50 = Surface Elev. 67.50 = Lowest Outlet 2,042 cf - 610 cf = 1,432 cf for WQV
Device #1	Routing Primary		7.50' 6 .			ted Rectangular Weir
#2	Discarde	d 63	2. C 2.	50 3.00 3.50 4.0	0 4.50 5.00 5.50 3 2.54 2.69 2.68 6 2.79 2.88 3.07	2.67 2.67 2.65 2.66 2.66 7 3.32

Discarded OutFlow Max=0.01 cfs @ 12.14 hrs HW=67.79' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=1.87 cfs @ 12.13 hrs HW=67.79' TW=67.65' (Dynamic Tailwater) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 1.87 cfs @ 1.09 fps)

Section 6

Precipitation Table

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	70.906 degrees West
Latitude	43.143 degrees North
Elevation	0 feet
Date/Time	Fri, 26 Mar 2021 12:40:01 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12h	24hr	4 8	8hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.03	1yr	0.70	0.98	1.20	1.55	2.0	2.61	1	.85	1yr	2.31	2.74	3.14	3.86	4.44	1yr
2yr	0.32	0.49	0.61	0.81	1.01	1.29	2yr	0.88	1.17	1.50	1.91	2.4	3.14	I	.48	2yr	2.78	3.35	3.85	4.58	5.21	2yr
5yr	0.37	0.57	0.72	0.96	1.23	1.58	5yr	1.06	1.44	1.85	2.38	3.0	3.98	4	.47	5yr	3.52	4.29	4.91	5.79	6.55	5yr
10yr	0.40	0.63	0.80	1.09	1.42	1.84	10yr	1.22	1.69	2.18	2.82	3.6	4.75	I	.39	10yr	4.21	5.18	5.91	6.92	7.80	10yr
25yr	0.46	0.74	0.94	1.29	1.72	2.27	25yr	1.48	2.09	2.69	3.53	4.6	6.02	4	.92	25yr	5.33	6.65	7.55	8.77	9.82	25yr
50yr	0.51	0.83	1.06	1.48	1.99	2.66	50yr	1.72	2.46	3.17	4.18	5.5	7.21		.36	50yr	6.38	8.04	9.08	10.49	11.69	50yr
100yr	0.58	0.93	1.20	1.70	2.31	3.11	100yr	2.00	2.89	3.74	4.96	6.5	8.63	10).11	100yr	7.64	9.72	10.94	12.56	13.93	100yr
200yr	0.64	1.04	1.35	1.94	2.69	3.66	200yr	2.32	3.40	4.42	5.90	7.8	10.33	12	2.23	200yr	9.14	11.76	13.18	15.03	16.61	200yr
500yr	0.75	1.24	1.61	2.34	3.28	4.52	500yr	2.83	4.21	5.48	7.38	9.8	13.12	15	5.72	500yr	11.61	15.12	16.87	19.09	20.96	500yr
													1 1	-				r				

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.37	0.45	0.60	0.74	0.90	1yr	0.64	0.88	0.91	1.26	1.57	2.06	2.50	1yr	1.82	2.40	2.90	3.29	4.01	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.18	2yr	0.86	1.16	1.36	1.83	2.36	3.04	3.39	2yr	2.69	3.26	3.74	4.46	5.05	2yr
5yr	0.35	0.54	0.67	0.91	1.16	1.40	5yr	1.00	1.37	1.62	2.15	2.78	3.72	4.13	5yr	3.29	3.97	4.59	5.42	6.13	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.82	2.45	3.13	4.29	4.80	10yr	3.80	4.62	5.33	6.28	7.06	10yr
25yr	0.44	0.66	0.83	1.18	1.55	1.91	25yr	1.34	1.87	2.11	2.85	3.66	4.99	5.84	25yr	4.41	5.61	6.51	7.63	8.51	25yr
50yr	0.48	0.73	0.91	1.31	1.76	2.18	50yr	1.52	2.13	2.36	3.20	4.11	5.71	6.75	50yr	5.05	6.49	7.58	8.84	9.80	50yr
100yr	0.54	0.81	1.02	1.47	2.01	2.50	100yr	1.74	2.45	2.64	3.59	4.59	6.52	7.81	100yr	5.77	7.51	8.83	10.24	11.26	100yr
200yr	0.60	0.90	1.14	1.65	2.29	2.86	200yr	1.98	2.80	2.94	4.01	5.13	7.44	9.04	200yr	6.59	8.69	10.29	11.87	12.96	200yr
500yr	0.70	1.03	1.33	1.93	2.75	3.44	500yr	2.37	3.36	3.41	4.65	5.96	8.83	10.96	500yr	7.82	10.53	12.59	14.45	15.55	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.87	1.08	1yr	0.75	1.05	1.24	1.75	2.22	2.85	3.05	1yr	2.53	2.93	3.40	4.19	4.80	1yr
2yr	0.33	0.51	0.62	0.85	1.04	1.25	2yr	0.90	1.22	1.48	1.96	2.51	3.27	3.59	2yr	2.90	3.45	3.96	4.72	5.41	2yr
5yr	0.39	0.60	0.75	1.03	1.31	1.58	5yr	1.13	1.55	1.86	2.50	3.20	4.23	4.80	5yr	3.75	4.61	5.24	6.18	6.95	5yr
10yr	0.46	0.70	0.87	1.21	1.57	1.92	10yr	1.35	1.88	2.23	3.05	3.85	5.21	5.98	10yr	4.61	5.75	6.53	7.58	8.47	10yr
25yr	0.55	0.84	1.05	1.50	1.97	2.48	25yr	1.70	2.42	2.88	3.97	4.95	7.08	8.01	25yr	6.27	7.70	8.69	9.97	11.05	25yr
50yr	0.64	0.97	1.21	1.74	2.34	2.99	50yr	2.02	2.93	3.49	4.84	6.01	8.76	10.01	50yr	7.76	9.63	10.80	12.26	13.51	50yr
100yr	0.74	1.12	1.41	2.03	2.79	3.62	100yr	2.41	3.53	4.23	5.93	7.31	10.85	12.52	100yr	9.60	12.04	13.40	15.09	16.53	100yr
200yr	0.86	1.30	1.64	2.38	3.31	4.38	200yr	2.86	4.29	5.15	7.25	8.86	13.47	15.67	200yr	11.92	15.07	16.65	18.56	20.26	200yr
500yr	1.05	1.56	2.01	2.92	4.16	5.63	500yr	3.59	5.51	6.65	9.50	11.48	17.97	21.08	500yr	15.90	20.27	22.19	24.44	26.52	500yr

Section 7

NRCS Soils Report

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Strafford County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

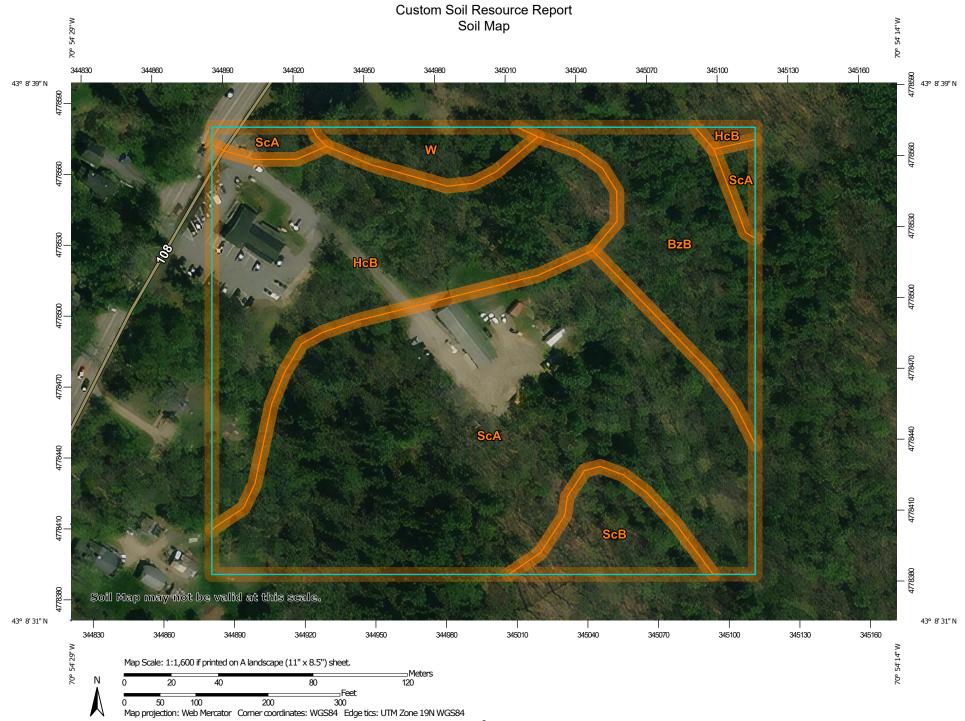
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Strafford County, New Hampshire	
BzB—Buxton silt loam, 3 to 8 percent slopes	
HcB—Hollis-Charlton fine sandy loams, 3 to 8 percent slopes	
ScA—Scantic silt loam, 0 to 3 percent slopes	
ScB—Scantic silt loam, 3 to 8 percent slopes	
W—Water	15

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND	1	MAP INFORMATION
Area of In	terest (AOI) Area of Interest (AOI)	.00	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils		۵ ۵۵	Very Stony Spot	Mamian Osil Man may not be uslid at this scale
	Soil Map Unit Polygons	w W	Wet Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines Soil Map Unit Points	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
Special	Point Features	-	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
అ	Blowout	Water Fea	atures Streams and Canals	scale.
×	Borrow Pit	Transport		Please rely on the bar scale on each map sheet for map
*	Clay Spot	++++	Rails	measurements.
	Closed Depression Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
°°	Gravelly Spot	~	US Routes Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Λ.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
علله	Marsh or swamp	Mar.	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
☆ ©	Mine or Quarry Miscellaneous Water			
ő	Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
~	Rock Outcrop			Soil Survey Area: Strafford County, New Hampshire
+	Saline Spot			Survey Area Data: Version 20, May 29, 2020
000	Sandy Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
÷	Severely Eroded Spot Sinkhole			-
♦	Slide or Slip			Date(s) aerial images were photographed: Dec 31, 2009—Sep 9, 2017
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BzB	Buxton silt loam, 3 to 8 percent slopes	1.4	12.6%
НсВ	Hollis-Charlton fine sandy loams, 3 to 8 percent slopes	3.0	28.1%
ScA	Scantic silt loam, 0 to 3 percent slopes	5.5	50.8%
ScB	Scantic silt loam, 3 to 8 percent slopes	0.5	5.0%
W	Water	0.4	3.6%
Totals for Area of Interest		10.8	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Strafford County, New Hampshire

BzB—Buxton silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d6p Elevation: 0 to 260 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Buxton and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Buxton

Setting

Parent material: Glaciomarine

Typical profile

H1 - 0 to 10 inches: silt loam H2 - 10 to 28 inches: silty clay loam H3 - 28 to 43 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 12 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: C/D Ecological site: F145XY006CT - Semi-Rich Moist Lake Plain Hydric soil rating: No

Minor Components

Elmwood

Percent of map unit: 10 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent *Hydric soil rating:* No

HcB—Hollis-Charlton fine sandy loams, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d7j Elevation: 0 to 1,020 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 120 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Hollis and similar soils: 55 percent *Charlton and similar soils:* 35 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: fine sandy loam *H2 - 14 to 18 inches:* bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: F144AY033MA - Shallow Dry Till Uplands Hydric soil rating: No

Description of Charlton

Setting

Parent material: Till

Typical profile

H1 - 0 to 13 inches: fine sandy loam

H2 - 13 to 36 inches: fine sandy loam

H3 - 36 to 40 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 5.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Not named

Percent of map unit: 5 percent *Hydric soil rating:* No

Buxton

Percent of map unit: 5 percent Hydric soil rating: No

ScA—Scantic silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9d8s Elevation: 0 to 260 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Scantic and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scantic

Setting

Landform: Marine terraces

Typical profile

H1 - 0 to 13 inches: silt loam *H2 - 13 to 23 inches:* silty clay loam *H3 - 23 to 40 inches:* silty clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Not named wet

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Biddeford

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Swanton

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

ScB—Scantic silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d8t Elevation: 0 to 260 feet Mean annual precipitation: 36 to 71 inches *Mean annual air temperature:* 39 to 55 degrees F *Frost-free period:* 140 to 240 days *Farmland classification:* Farmland of local importance

Map Unit Composition

Scantic and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Scantic

Setting

Landform: Marine terraces

Typical profile

H1 - 0 to 13 inches: silt loam H2 - 13 to 23 inches: silty clay loam H3 - 23 to 40 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Swanton

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Not named wet

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Buxton

Percent of map unit: 5 percent *Hydric soil rating:* No

W—Water

Map Unit Composition

Water (less than 40 acres): 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Section 8

Stormwater Operations & Maintenance Plan

STORMWATER INSPECTION AND MAINTENANCE MANUAL

Yates Electric 88A Dover Road Durham, NH Assessor's Map 4, Lot 2

OWNER AT TIME OF APPROVAL: Coyote Court, LLC 82 Chestnut Hill Road Farmington, NH 03855

Proper inspection, maintenance, and repair are key elements in maintaining a successful stormwater management program on a developed property. Routine inspections ensure permit compliance and reduce the potential for deterioration of infrastructure or reduced water quality. The following responsible parties shall be in charge of managing the stormwater facilities:

RESPONSIBLE PARTIES:

Owner:	<u>Covote Court, LLC / Yates E</u>	lectric	(603) 868-8295
	Name	Company	Phone
Inspection:	<u>Coyote Court, LLC / Yates E</u>	lectric	<u>(603) 868-8295</u>
•	Name	Company	Phone
Maintenance	: <u>Coyote Court, LLC / Yates E</u>	Electric	<u>(603) 868-8295</u>
	Name	Company	Phone

<u>NOTES:</u>

Inspection and maintenance responsibilities shall transfer to any future property owner(s).

This manual shall be updated as needed to reflect any changes related to any transfer of ownership and/or any delegation of inspection and maintenance responsibilities to any entity other than those listed above.

RAINGARDENS

Function – Raingardens and infiltration ponds provide treatment to runoff prior to directing it to stormwater systems by filtering sediment and suspended solids, trapping them in the bottom of the garden and in the filter media itself. Additional treatment is provided by the native water-tolerant vegetation which removes nutrients and other pollutants through bio-uptake. Stormwater detention and infiltration can also be provided as the filtering process slows runoff, decreases the peak rate of discharge and promotes groundwater recharge.

Raingardens shall be managed to: prevent and control the spread of invasive plant, insect, and fungal species; minimize the adverse environmental and economic effects invasive species cause to agriculture, forests, wetlands, wildlife, and other natural resources of the state; and protect the public from potential health problems attributed to certain invasive species.

Maintenance

- Inspect annually and after significant rainfall events.
- If a raingarden does not completely drain within 72-hours following a rainfall event, then a qualified professional shall be retained to assess the condition of the facility to determine measures required to restore its filtration and/or infiltration function(s), including, but not limited to, removal of accumulated sediments and/or replacement or reconstruction of the filter media. Filter media shall be replaced with material matching the specification on the design drawings or the MDEP Stormwater Best Practices Manual.
- Replace any riprap dislodged from spillways, inlets and outlets.
- Remove any obstructions, litter and accumulated sediment or debris as warranted but no less than once a year.
- Mowing of any grassed area in or adjacent to a raingarden, including its berm, shall be performed at least twice per year (when areas are not inundated) to keep the vegetation in vigorous condition. The cut grass shall be removed to prevent the decaying organic litter from clogging the filter media or choking other vegetation.
- Select vegetation should be maintained in healthy condition. This may include pruning, removal and replacement of dead or diseased vegetation.
- Remove any invasive species.
- Remove any hard wood growth from raingardens.

CULVERTS AND DRAINAGE PIPES

Function – Culverts and drainage pipes convey stormwater away from buildings, walkways, and parking areas and to surface waters or closed drainage systems.

Maintenance

- Culverts and drainage pipes shall be inspected semi-annually, or more often as needed, for accumulation of debris and structural integrity. Leaves and other debris shall be removed from the inlet and outlet to insure the functionality of drainage structures. Debris shall be disposed of on site where it will not concentrate back at the drainage structures or at a solid waste disposal facility.
- Riprap Areas Culvert outlets and inlets shall be inspected during annual maintenance and operations for erosion and scour. If scour or erosion is identified, the owner shall take appropriate means to prevent further erosion.

LEVEL SPREADERS AND RIP RAP OUTLETS

Function – Level spreaders and rip rap outlets covert concentrated stormwater flows into lesserosive sheet flow, minimizing erosion and maximizing the treatment capabilities of associated buffers. Vegetated buffers, either forested or meadow, slow runoff which promotes and reduces peak rates of runoff. The reduced velocities and the presence of vegetation encourage the filtration of sediment and the limited bio-uptake of nutrients.

Maintenance

- Inspect level spreaders and buffers at least annually for signs of erosion, sediment buildup, or vegetation loss.
- Inspect level for signs of condensed flows. Level spreader and rip rap shall be maintained to disperse flows evenly over level spreader.
- If a meadow buffer, provide periodic mowing as needed to maintain a healthy stand of herbaceous vegetation.
- If a forested buffer, then the buffer should be maintained in an undisturbed condition, unless erosion occurs.
- If erosion of the buffer (forested or meadow) occurs, eroded areas should be repaired and replanted with vegetation similar to the remaining buffer. Corrective action should include eliminating the source of the erosion problem and may require retrofit or reconstruction of the level spreader.
- Remove debris and accumulated sediment and dispose of properly.

LANDSCAPED AREAS - FERTILIZER MANAGEMENT

Function – Fertilizer management involves controlling the rate, timing and method of fertilizer application so that the nutrients are taken up by the plants thereby reducing the chance of polluting the surface and ground waters. Fertilizer management can be effective in reducing the amounts of phosphorus and nitrogen in runoff from landscaped areas, particularly lawns.

Maintenance

- Have the soil tested by your landscaper or local Soil Conservation Service for nutrient requirements and follow the recommendations.
- Do not apply fertilizer to frozen ground.
- Clean up any fertilizer spills.
- Do not allow fertilizer to be broadcast into water bodies.
- When fertilizing a lawn, water thoroughly, but do not create a situation where water runs off the surface of the lawn.

LANDSCAPED AREAS - LITTER CONTROL

Function – Landscaped areas tend to filter debris and contaminates that may block drainage systems and pollute the surface and ground waters.

Maintenance

- Litter Control and lawn maintenance involves removing litter such as trash, leaves, lawn clippings, pet wastes, oil and chemicals from streets, parking lots, and lawns before materials are transported into surface waters.
- Litter control shall be implemented as part of the grounds maintenance program.

VEGETATIVE SWALES

Function – Vegetative swales filter sediment from stormwater, promote infiltration, and the uptake of contaminates. They are designed to treat runoff and dispose of it safely into the natural drainage system.

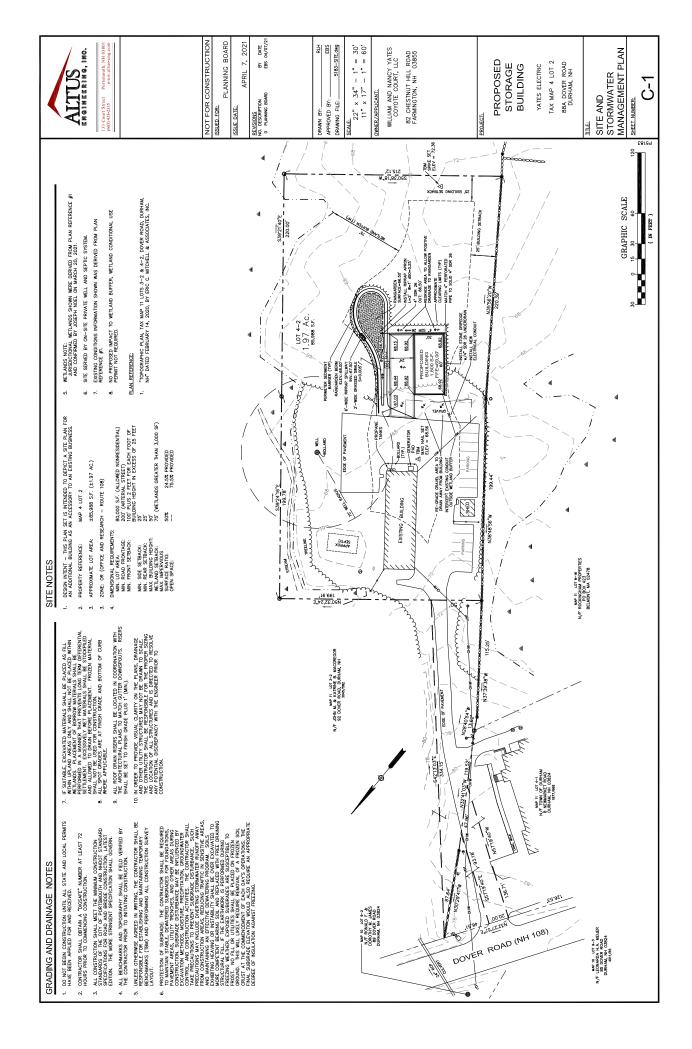
Maintenance

- Timely maintenance is important to keep a swale in good working condition. Mowing of grassed swales shall be monthly to keep the vegetation in vigorous condition. The cut vegetation shall be removed to prevent the decaying organic litter from adding pollutants to the discharge from the swale.
- Fertilizing shall be bi-annual or as recommended from soil testing.
- Inspect swales following significant rainfall events.
- Woody vegetation shall not be allowed to become established in the swales or rock riprap outlet protection and if present shall be removed.
- Accumulated debris disrupts flow and leads to clogging and erosion. Remove debris and litter as necessary.
- Inspect for eroded areas. Determine cause of erosion and correct deficiency as required. Monitor repaired areas.

GENERAL CLEAN UP

- Upon completion of the project, the contractor shall remove all temporary stormwater structures (i.e., temporary stone check dams, silt fence, temporary diversion swales, catch basin inlet filter, etc.). Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required shall be dressed to conform to the existing grade, prepared, and seeded. Remove any sediment in catch basins and clean drain pipes that may have accumulated during construction.
- Once in operation, all paved areas of the site should be swept at least once annually at the end of winter/early spring prior to significant spring rains.

APPPENDIX

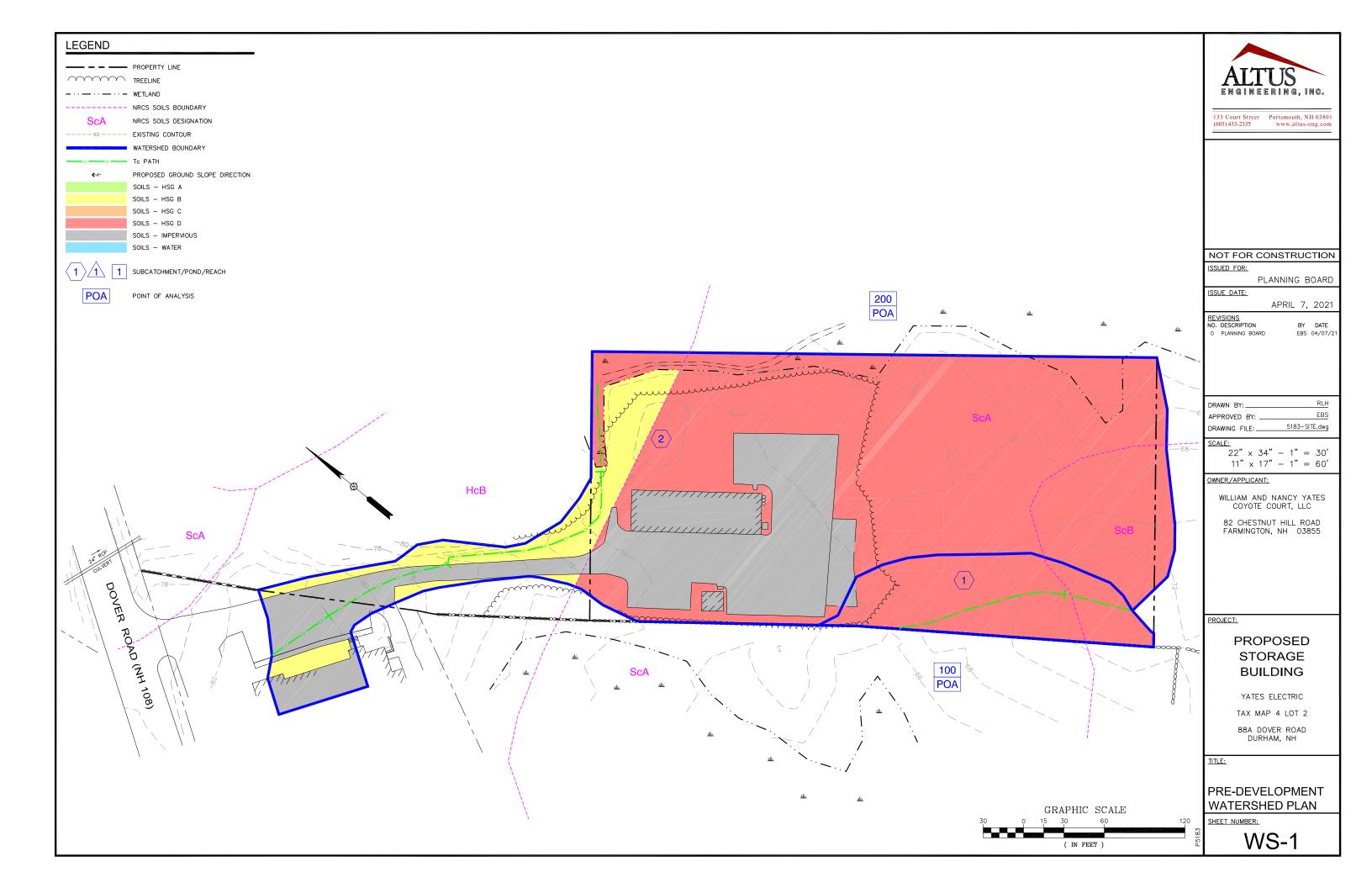

- A. Stormwater System Operations and Maintenance Report
- B. Site Grading and Drainage Plan

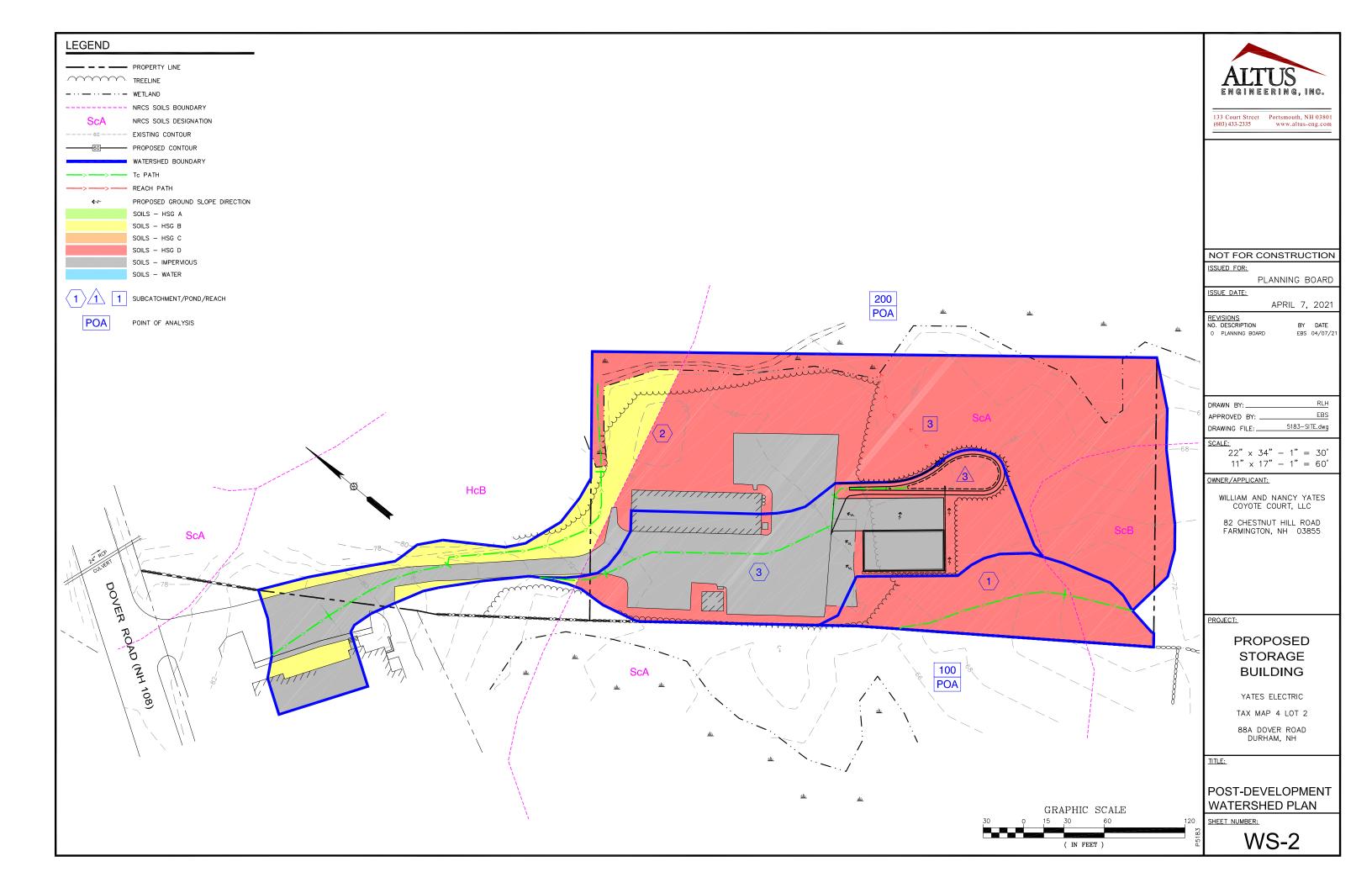
STORM WATER SYSTEM OPERATION AND MAINTENANCE REPORT

			General	Informat	ion		
Project Name							
Owner							
Inspector's Name(s)							
Inspector's Contact Information							
Date of Inspection					Start Time:	End Time:	
Type of Inspection: Annual Report	Post-sto	orm event	Due to a	ı discharge	e of significant amount	s of sediment	
Notes:							

	General Site Questions and Discharges of Significant Amounts of Sediment										
Sut	oject	Status	Notes								
A d	A discharge of significant amounts of sediment may be indicated by (but is not limited to) observations of the following.										
Not	e whether any are observed during this i	inspection:									
			Notes/ Action taken:								
1	Do the current site conditions reflect	□Yes									
	the attached site plan?	□No									
2	Is the site permanently stabilized,	□Yes									
	temporary erosion and sediment	□No									
	controls are removed, and stormwater										
	discharges from construction activity										
	are eliminated?										
3	Is there evidence of the discharge of	□Yes									
	significant amounts of sediment to	□No									
	surface waters, or conveyance										
	systems leading to surface waters?										

		Permit (Coverage and Plans	
#	BMP/Facility	Inspected	Corrective Action Needed and Notes	Date Corrected
	Rain Gardens	□Yes □No		
	Vegetated Swales	□Yes		
	Drainage Pipes	□No □Yes		
	Riprap Aprons	□No □Yes		
		□No □Yes		
		□No □Yes		




Section 9

Watershed Plans

Pre-Development Drainage Area Plan Post-Development Drainage Area Plan

