

Transportation: Engineering • Planning • Design

MEMORANDUM

Ref: 2000A

- To: Michael J. Sievert, P.E. MJS Engineering, P.C.
- From: Stephen G. Pernaw, P.E., PTOE
- Subject: Proposed Residential Development Durham, New Hampshire

Date: February 21, 2020

As requested, Pernaw & Company, Inc. has conducted a trip generation analysis for the proposed residential development located off of Ambler Way in Durham, New Hampshire. The purpose of this memorandum is to summarize the results of our trip generation analyses for several different development scenarios as well as our trip distribution analysis. To summarize:

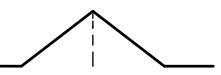
<u>Proposed Development</u> – According to the plan entitled "*Sketch Plan C*," prepared by MJS Engineering, P.C. for Michael & Martha Mulhern (see Attachment 1), the proposed residential development will consist of ten residential dwelling units constructed along two separate cul-desac roadways. The site is located on the east side of Ambler Way at its intersection with Gerrish Drive. Access to the proposed development will be provided via a two-way site access road that will extend easterly from the Ambler Way/Gerrish Drive intersection.

At this juncture, consideration is being given to developing these dwellings as 10 age-restricted units or 10 condominium units. Alternatively, 8 single-family detached dwelling units are also being considered.

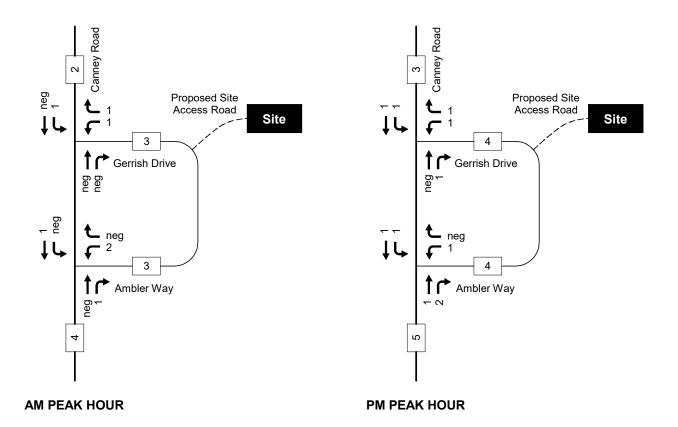
<u>Trip Generation</u> - To estimate the quantity of vehicle-trips that will be produced by the proposed residential development, Pernaw & Company, Inc. considered standard trip generation rates published by the Institute of Transportation Engineers¹ (ITE). Land Use Code LUC 210: (Single-Family Detached Housing), LUC 251: (Senior Adult Housing – Detached) and LUC 220: (Multifamily Housing/Low-Rise) are the most applicable categories and the number of dwelling units was utilized as the independent variables. The average "trip rate" method was utilized due to the small independent variable size (8-10 units).

The following table summarizes the results of the trip generation analyses for the three development scenarios. The computations pertaining to the trip generation analyses are attached (see Attachments 2 & 3).

¹ Institute of Transportation Engineers, *Trip Generation*, 10th Edition (Washington, D.C., 2017)


Table 1		Trip Generatio	on Summary / Cor	nparison
		CASE A ¹	CASE B ²	CASE C ³
		Single-Family (8 Dwelling Units)	Age-Restricted (10 Dwelling Units)	Condominiums (10 Dwelling Units)
Weekday Total				
	Entering	38 veh	22 veh	37 veh
	Exiting	<u>38</u> veh	<u>22</u> veh	<u>37</u> veh
	Total	76 trips	44 trips	74 trips
Weekday AM Pe	ak Hour			
2	Entering	2 veh	1 veh	1 veh
	Exiting	<u>4</u> veh	<u>1</u> veh	<u>4</u> veh
	Total	6 trips	2 trips	5 trips
Weekday PM Pe	ak Hour			
2	Entering	5 veh	2 veh	4 veh
	Exiting	<u>3 veh</u>	<u>1</u> veh	<u>2</u> <u>veh</u>
	Total	8 trips	3 trips	6 trips
Saturday Total				
	Entering	38 veh	14 veh	41 veh
	Exiting	<u>38</u> veh	<u>14</u> veh	<u>41</u> veh
	Total	76 trips	28 trips	82 trips
Saturday Peak H	lour			
-	Entering	4 veh	1 veh	4 veh
	Exiting	<u>3 veh</u>	<u>1</u> veh	<u>3</u> veh
	Total	7 trips	2 trips	7 trips

¹ITE Land Use Code 210 - Single-Family Detached Housing (Trip Rate M ethod due to Independent Variable Size) ²ITE Land Use Code 251- Senior Adult Housing - Detached (Trip Rate M ethod due to Independent Variable Size)

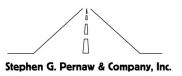

³ITE Land Use Code 220 - Multifamily Housing/Low-Rise (Trip Rate Method due to Independent Variable Size)

This table shows that the proposed single-family residences (Case A) are estimated to generate approximately 6 vehicle-trips (2 arrivals, 4 departures) during the weekday AM peak hour and 8 vehicle- trips (5 arrivals, 3 departures) during the weekday PM peak hour. The age-restricted scenario (Case B) will generate the fewest trips, and the condominium case (Case C) will be comparable to Case A.

The highest hourly traffic volume that will be generated by the proposed development is only 8 vehicle-trips during the weekday PM peak hour period. It should be noted that site traffic will be immediately dispersed at the site entrance as one group will utilize Gerrish Drive for access and the remainder will utilize Ambler Way, depending upon the driver's origin or destination. Figure 1 shows the anticipated travel patterns in the immediate study area for Case A (8 single-family detached dwelling units). The trip distribution analysis is summarized on Attachment 4.

Pernaw & Company, Inc

2000A


AeA

NORTH

Figure 1

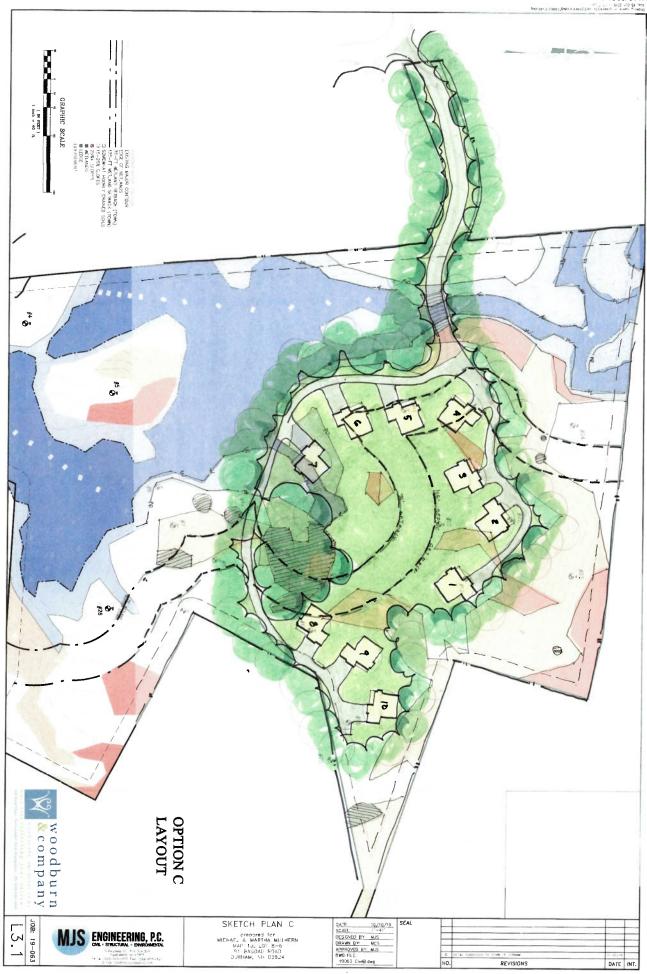
Site Generated Traffic Volumes

Traffic Evaluation, Proposed Residential Development, Durham, New Hampshire

Findings & Conclusions

- 1. Access to the proposed development is proposed via a two-way site access road that will extend from the Gerrish Drive/Ambler Way intersection.
- 2. The trip generation analysis indicates that the proposed development will generate approximately 3 to 8 vehicle-trips during the worst-case PM peak hour period; depending upon the development scenario.
- 3. Site traffic is expected to be split equally between Gerrish Drive and Ambler Way. This means each roadway will accommodate only +4 vehicles over a one-hour period (PM peak hour). This translates into one additional vehicle every 15 minutes, on average.
- 4. Traffic increases of this order of magnitude will not significantly impact traffic operations at nearby intersections.
- 5. Development sites that generate fewer than 500 vehicles per day are generally considered to be "low-volume" traffic generators. Clearly, none of the development scenarios constitute a major traffic generator.
- 6. The proposed site access road approach Gerrish Drive/Ambler Way should operate under STOP sign control (MUTCD R1-1) and include the installation of an 18-inch white stop line. As an option, the access road could be delineated with a four-inch double-yellow centerline to separate ingress and egress vehicles.

Attachments



Stephen G. Pernaw & Company, Inc.

ATTACHMENTS

Trip Generation Summary

Alternative: Alternative 1

Phase: Project: 2000A										Open Date: Analysis Date:		2/11/2020 2/11/2020
	3	Weekday Average Daily Trips	erage Daily	/ Trips		Weekday AM Peak Hour of Adjacent Street Traffic	eekday AM Peak Hour Adjacent Street Traffic	ur of lic	>	Weekday PM Peak Hour of Adjacent Street Traffic	1 Peak Hoi Street Traff	ur of ic
ITE Land Use	*	Enter	Exit	Total	*	Enter	Exit	Total	*	Enter	Exit	Total
210 SFHOUSE 1		38	38	76	ų	2	4	9		5	3	8
8 Dwelling Units												
220 LOW-RISE 1		37	36	73		-	4	5		4	2	9
10 Dwelling Units												
251 SENIORDETACHED 1		22	21	43		-	-	7		7	-	С
10 Dwelling Units												
Unadjusted Volume		97	95	192		4	6	13		11	9	17
Internal Capture Trips		0	0	0		0	0	0		0	0	0
Pass-By Trips		0	0	0		0	0	0		0	0	0
Volume Added to Adjacent Streets		97	95	192		4	6	13		11	9	17

Total Weekday Average Daily Trips Internal Capture = 0 Percent

Total Weekday AM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent Total Weekday PM Peak Hour of Adjacent Street Traffic Internal Capture = 0 Percent

Custom rate used for selected time period.

Source: Institute of Transportation Engineers, Trip Generation Manual 10th Edition TRIP GENERATION 10, TRAFFICWARE, LLC

Alternative:	Alternative 1		
Phase:		Open Date:	2/11/2020
Project:	2000A	Analysis Date:	2/11/2020

				Saturday Av	verage Daily	/ Trips	S	aturday Pea	k Hour of G	enerator
ITE	Land U	se	*	Enter	Exit	Total	*	Enter	Exit	Total
210	SFHOU	ISE 1		38	38	76		4	3	7
	8	Dwelling Units								
220	LOW-R	ISE 1		41	40	81				7
	10	Dwelling Units								
251	SENIOF	RDETACHED 1		14	13	27		1	1	2
	10	Dwelling Units								
Jnadj	usted Vo	lume		93	91	184		5	4	9
Intern	al Captur	e Trips		0	0	0		0	0	0
Pass-	By Trips			0	0	0		0	0	0
Volum	ne Added	to Adjacent Streets		93	91	184		5	4	9

Total Saturday Average Daily Trips Internal Capture = 0 Percent

Total Saturday Peak Hour of Generator Internal Capture = 0 Percent

^{★ -} Custom rate used for selected time period.

Stephen G. Pernaw & Company, Inc.

TRIP DISTRIBUTION ANALYSIS

A. Work Destination Report - Where Workers are Employed Who Live in the Selection Area - by County Subdivisions

		Gateway %	ay %	Gateway Allocation	Allocation	
Jobs Counts by County Subdivisions Where Workers are Employed - All Jobs	e Employed - All Jobs	North	South	North	South	
		Canney Rd Canney Rd	Canney Rd	Canney Rd Canney Rd	Canney Rd	
To/From	Count					
Durham town (Strafford, NH)	628	0.40	0.60	251	377	628
Portsmouth city (Rockingham, NH)	416		1.00	0	416	416
Dover city (Strafford, NH)	309	0.40	0.60	124	185	309
Manchester city (Hillsborough, NH)	191	0.90	0.10	172	19	191
Nashua city (Hillsborough, NH)	147	06.0	0.10	132	15	147
Exeter town (Rockingham, NH)	143		1.00	0	143	143
Salem town (Rockingham, NH)	121	0.20	0.80	24	97	121
Concord city (Merrimack, NH)	87	1.00		87	0	87
Rochester city (Strafford, NH)	85	0.10	06.0	თ	77	86
Boston city (Suffolk, MA)	22		1.00	0	17	17
	2204			662	1406	2205
				36.2%	63.8%	100%

100

65

35